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Abstract
As an important application of spatial databases in pathology imaging analysis, cross-comparing
the spatial boundaries of a huge amount of segmented micro-anatomic objects demands extremely
data- and compute-intensive operations, requiring high throughput at an affordable cost. However,
the performance of spatial database systems has not been satisfactory since their implementations
of spatial operations cannot fully utilize the power of modern parallel hardware. In this paper, we
provide a customized software solution that exploits GPUs and multi-core CPUs to accelerate
spatial cross-comparison in a cost-effective way. Our solution consists of an efficient GPU
algorithm and a pipelined system framework with task migration support. Extensive experiments
with real-world data sets demonstrate the effectiveness of our solution, which improves the
performance of spatial cross-comparison by over 18 times compared with a parallelized spatial
database approach.

1. INTRODUCTION
Digitized pathology images generated by high resolution scanners enable the microscopic
examination of tissue specimens to support clinical diagnosis and biomedical research [10].
With the emerging pathology imaging technology, it is essential to develop and evaluate
high quality image analysis algorithms, with iterative efforts on algorithm validation,
consolidation, and parameter sensitivity studies. One essential task to support such work is
to provide efficient tools for cross-comparing millions of spatial boundaries of segmented
micro-anatomic objects. A commonly adopted cross-comparing metric is Jaccard similarity
[35], which computes the ratio of the total area of the intersection divided by the total area
of the union between two polygon sets.

Building high-performance cross-comparing tools is challenging, due to data explosion in
pathology imaging analysis, as in other scientific domains [22, 27]. Whole-slide images
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made by scanning microscope slides at diagnostic resolution are very large: a typical image
may contain over 100,000×100,000 pixels, and millions of objects such as cells or nuclei. A
study may involve hundreds of images obtained from a large cohort of subjects. For a large-
scale interrelated analysis, there may be dozens of algorithms — with varying parameters —
generating many different result sets to be compared and consolidated. Thus, derived data
from images of a single study is often in the scale of tens of terabytes, and will be
increasingly larger in future clinical environments.

Pathologists mainly rely on spatial database management systems (SDBMS) to execute
spatial cross-comparison [36]. However, cross-comparing a huge amount of polygons is
time-consuming using SDBMSs, which cannot fully utilize the rich parallel resources of
modern hardware. In the era of high-throughput computing, unprecedentedly rich and low-
cost parallel computing resources, including GPUs and multi-core CPUs, have been
available. In order to use these resources for maximizing execution performance,
applications must fully exploit both thread-level and data-level parallelisms and well utilize
SIMD (Single Instruction Multiple Data) vector units to parallelize workloads.

However, supporting spatial cross-comparison on a CPUGPU hybrid platform imposes two
major challenges. First, parallelizing spatial operations, such as computing areas of polygon
intersection and union, on GPUs requires efficient algorithms. Existing CPU algorithms,
e.g., those used in SDBMSs, are branch intensive with irregular data access patterns, which
makes them very hard, if not impossible, to parallelize on GPUs. Efficient GPU algorithms,
if exist, must successfully exploit massive data parallelisms in the cross-comparing
workload and execute them in an SIMD fashion. Second, a GPU-friendly system framework
is required to drive the whole spatial cross-comparing workload. The special characteristics
of the GPU device require data batching to mitigate communication overhead, and
coordinated device sharing to control resource contention. Furthermore, due to the diversity
of hardware configurations and workloads, task executions have to be balanced between
GPUs and CPUs to maximize resource utilization.

In this paper, we present a customized solution, SCCG (Spatial Cross-comparison on CPUs
and GPUs), to address the challenges. Through detailed profiling, we identify that the
bottleneck of cross-comparing query execution mainly comes from computing the areas of
polygon intersection and union. This explains the low performance of SDBMSs and
motivates us to design an efficient GPU algorithm, called PixelBox, to accelerate the spatial
operations. Both the design and the implementation of the algorithm are optimized
thoroughly to ensure its high performance on GPUs. Moreover, we develop a pipelined
system framework for the whole workload, and design a dynamic task migration component
to solve the load balancing problem. The pipelined framework has advantages for its natural
support of data batching and GPU sharing. The task migration component further improves
system throughput by balancing workloads between GPUs and CPUs.

The main contributions of this paper are as follows: 1) PixelBox, an efficient GPU algorithm
and its optimized implementation for computing Jaccard similarity of polygon sets; 2) a
pipelined framework with task migration support for spatial cross-comparison on a CPU-
GPU hybrid platform; and 3) a demonstration of our solution’s performance (18x speedup
over a parallelized SDBMS) with extensive and intensive experiments using real-world
pathology data sets.

The rest of the paper is organized as follows. Section 2 introduces the background and
identifies the problem with SDBMSs in processing spatial cross-comparing queries. Our
GPU algorithm, PixelBox, is presented in Section 3 to accelerate the bottleneck spatial
operations. Section 4 introduces the pipelined framework and the design of a task migration
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facility for workload balancing. Comprehensive experiments and performance evaluation
are presented in Section 5, followed by related works in Section 6 and conclusions in
Section 7.

2. PROBLEM IDENTIFICATION
2.1 Background: Spatial Cross-Comparison

A critical step in pathology imaging analysis is to extract the spatial locations and
boundaries of micro-anatomic objects, represented with polygons, from digital slide images
using segmentation algorithms [10]. The effectiveness of a segmentation algorithm depends
on many factors, such as the quality of microtome staining machines, staining techniques,
peculiarities of tissue structures and others. A slight change of algorithm parameters may
also lead to dramatic variations in segmentation output. As a result, evaluating the
effectiveness and sensitivity of segmentation algorithms has been very important in
pathology imaging studies.

The core operation is to cross-compare two sets of polygons, which are segmented by
different algorithms or the same algorithm with different parameters, to obtain their degree
of similarity. Jaccard similarity, due to its simplicity and meaningful geometric
interpretation, has been widely used in pathology to measure the similarity of polygon sets.

Suppose P and Q are two sets of polygons representing the spatial boundaries of objects
generated by two methods from the same image. Their Jaccard similarity is defined as

where P ∩ Q and P ∪ Q denote the intersection and the union of P and Q, and ‖ · ‖ is defined
as the area of one or multiple polygons in a polygon set. To further simplify the
computation, researchers in digital pathology use a variant definition of Jaccard similarity:

let , then

(1)

in which 〈·〉represents the average value of all the elements in a set. The greater the value of
J′ is, the more likely P and Q resemble each other. Compared with J, J′ does not consider
missing polygons that appear in one polygon set but have no intersecting counterpart in the
other. Missing polygons can be easily identified by comparing the number of polygons that
appear in the intersection with the number of polygons in each polygon set. Other additional
measurements of similarity, such as distance of centroids, are omitted in our discussion, as
their computational complexity is low.

What makes the computation of J′ highly challenging is the huge amount of polygons
involved in spatial cross-comparison. Due to the high dependability required by medical
analysis, the image base has to be sufficiently large — hundreds of whole slide images are
common, with each image generating millions of polygons. Since a single image contains a
great number of objects, the average size of polygons extracted from pathology images is
usually very small.

To expedite both segmentation and cross-comparing, large image files are usually pre-
partitioned into many small tiles so that they can fit into memory and allow parallel
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segmentations. The generated polygon files for each whole image also reflect the structure
of such partitioning: polygons extracted from a single tile are contained in a single polygon
file; a group of polygon files constitute the segmentation result for a whole image; different
segmentation results for the same image are represented with different groups of polygon
files, which are cross-compared with each other for the purpose of algorithm validation or
sensitivity studies.

In the rest of the paper, we refer to the area of the intersection of two polygons as area of
intersection and the area of the union of two polygons as area of union.

2.2 Existing Solutions with SDBMSs
Pathologists mainly rely on SDBMSs to support spatial cross-comparison [36]. In this
solution, the cross-comparing workflow typically consists of three major steps: first,
polygon files (raw data) are loaded into the database; second, indexes are built based on the
minimum bounding rectangles (MBRs) of polygons; finally, queries are executed to
compute the similarity score. Figure 1(a) shows a cross-comparing query in PostGIS [1]
SQL grammar that computes the Jaccard similarity of two polygon sets, named
‘oligoastroiii_1_1’ and ‘oligoastroiii_1_2’. The join condition is expressed with spatial
predicate ST_Intersects which tests whether two polygons have intersection. For each pair of
intersecting polygons, their area of intersection, area of union, and thus the ratio of the two
areas are computed. Spatial operators ST_Intersection and ST_Union compute the
boundaries of the intersection and the union of two polygons, while ST Area returns the area
of one or a group of polygons. Finally, these ratios are averaged to derive the similarity
score for the whole image.

According to the formula ‖p ∪ q‖ = ‖p‖ + ‖q‖ − ‖p ∩ q‖, the query can be re-written so that
only the ST_Intersection operator is executed for each pair of intersecting polygons, while
the area of union can be computed indirectly through the formula. Moreover, ST_Intersects
can also be removed since we only need records with ratio > 0 and whether two polygons
intersect can be determined by their area of intersection. By replacing ST_Intersects with the
&& operator, which tests whether the MBRs of two polygons intersect, we can further
optimize the query, as shown in Figure 1(b).

2.3 Performance Profiling of SDBMS Solution
To identify the performance bottleneck of cross-comparing queries in SDBMSs, we
performed a set of experiments with PostGIS, a popular open-source SDBMS 1 2. We used a
real-world data set extracted from a brain tumor slide image. The total size of the data set in
raw text format is about 750MiB, with two sets of polygons (representing tumor nuclei) each
containing over 450,000 polygons, and over 570,000 pairs of polygons with MBR
intersections. Details of the platform and the data set will be described in Section 5.

We split the query execution into separate components, and profiled the time spent by the
query engine on each component during a single-core execution. The result is presented in
Figure 2 for both the unoptimized and optimized queries. Index Search refers to the testing
of MBR intersections based on the indexes built. Area_Of_Intersection and Area_Of_Union
represent computing the areas of intersection and union, which correspond to the two combo
operators, ST_Area(ST_Intersection()) and ST_Area(ST_Union()). ST_Area denotes the
other two stand-alone ST_Area operators in the optimized query.

1We also performed similar experiments on a mainstream commercial SDBMS, but its performance was much worse. For simplicity,
we only present the results with PostGIS.
2Based on our communication with the community of SciDB [2], spatial cross-comparing queries are not natively supported by
SciDB.
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For the unoptimized query, ST_Intersects (21.8%), Area_Of_Intersection (37.4%), and Area
Of Union (36.7%) take the highest percentages of execution time, representing the
bottlenecks of the query execution. For the optimized query, since ST_Intersects and Area
Of Union are removed from the SQL statement, Area_Of_Intersection becomes the sole
performance bottleneck, capturing almost 90% of the total query execution time. As the left
two bars show, very little time (less than 6%) was spent on index building and index search
in both queries. The bar for ST_Area shows that the time to compute polygon areas is
negligible, and further indicates that the high overhead of Area_Of_Intersection and
Area_Of_Union comes from spatial operators ST_Intersection and ST_Union.

The profiling result explains the low performance of spatial databases in supporting cross-
comparing queries—computing the intersection/union of polygons is too costly as the
number of polygon pairs is large. SDBMSs usually rely on some geometric computation
libraries, e.g., GEOS [3] in PostGIS, to implement spatial operators. Designed to be general-
purposethe algorithms used by these libraries to compute the intersection and union of
polygons are computeintensive and very difficult to parallelize. We analyzed the source
codes of respective functions for computing polygon intersection and union in GEOS and
another popular geometric library, CGAL [4], and find that only very few sections of codes
can be parallelized without significantly changing algorithm structures. Both GEOS and
CGAL use generic sweepline algorithms [11], which are not built for computationally
intensive queries and thus lead to the limited performance in SDBMSs.

Using a large computing cluster can surely improve system performance. However, unlike
in many high-performance computing applications, pathologists can barely afford expensive
facilities in real clinical settings [24]. A cost-effective and meanwhile highly productive
solution is thus greatly desirable. This motivates us to design a customized solution to
accelerate large-scale spatial cross-comparisons. To eliminate the performance bottleneck,
our solution needs an efficient GPU algorithm for computing the areas of intersection and
union, as will be introduced in the next section.

3. THE PIXELBOX ALGORITHM
We describe a GPU algorithm, PixelBox, that accepts an array of polygon pairs as input and
computes their areas of intersection and union. The design of PixelBox mainly solves three
problems: 1) how to parallelize the computation of area of intersection and area of union on
GPUs, 2) how to reduce compute intensity when polygon pairs are relatively large, and 3)
how to implement the algorithm efficiently on GPUs. We use the terms of NVIDIA CUDA
[5] in our description. However, the algorithm design is general and applicable to other GPU
architectures and programming models as well.

3.1 Pixelization of Polygon Pairs
As measured in the previous section, computing the exact boundaries of polygon
intersection/union incurs enormous overhead and has been the main cause to the low
performance of SDBMSs in processing cross-comparing queries. However, the most
relevant component to the definition of Jaccard similarity (as shown in Formula 1) is the
areas, not the intermediate boundaries. As a key to enable parallelization on GPUs, PixelBox
directly computes the areas without resorting to the exact forms of the intersections or
unions.

Polygons extracted from medical images share a common property: the coordinates of
vertices are integer-valued, and the directions of edges are either horizontal or vertical. This
kind of polygons are a special form of rectilinear polygons [34]. As illustrated in Figure 3,
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since medical images are usually raster images, the boundary of a segmented polygon
follows the regular grid lines at the pixel granularity.

Taking advantage of this property, PixelBox treats a polygon as a continuous region
surrounded by its spatial boundary on a pixel map. As shown in Figure 4(a), pixels within
the MBR of polygons p and q can be classified into three categories: 1) pixels (e.g., A) lying
inside both p and q, 2) pixels (e.g., B and C) lying inside one polygon but not the other, and
3) pixels (e.g., D) lying outside both. The area of intersection (‖p ∩ q‖) can be measured by
the number of pixels belonging to the first category. The area of union (‖p∪q‖) corresponds
to the number of pixels in the first and second categories. Finally, pixels in the third
category do not contribute to either ‖p∩q‖ or ‖p∪q‖. The pixelized view of polygon
intersection and union averts the hassle of computing boundaries and, more importantly,
exposes a great opportunity for exploiting fine-grained data parallelism hidden in the cross-
comparing computation.

In order to determine a pixel’s position relative to a polygon, a well-known method is to cast
a ray from the pixel and count its number of intersections with the polygon’s boundary [28].
As illustrated in Figure 4(b), if the number is odd, the pixel (e.g., A) lies inside the polygon;
if the number is even, the pixel (e.g., B) lies on the outside.

The pixelization method is very suitable for execution on GPUs. Since testing the position of
one pixel is totally independent of another, we can parallelize the computation by having
multiple threads process the pixels in parallel. Moreover, since the positions of different
pixels are computed against the same pair of polygons, the operations performed by
different threads follow the SIMD fashion, which is required by GPUs. Finally, the area of
intersection and area of union can be computed altogether during a single traversal of all
pixels with almost no extra overhead, because the criteria for testing intersection (which
uses Boolean AND operation) and union (which uses Boolean OR operation) are both based
on each pixel’s positions relative to the same polygon pair. As the number of input polygon
pairs is large, we can delegate them to multiple thread blocks. For each polygon pair, the
contributions of all pixels in the MBR can be computed by all threads within a thread block
in parallel.

3.2 Reduction of Compute Intensity
The pixelization method described above has a weakness — the compute intensity rises
quickly as the number of pixels contained in the MBR increases. Even though polygons are
usually very small in pathology imaging applications, as the resolution of scanner lens
increases, the sizes of polygons may also increase accordingly to capture more details of the
objects. There are also cases when the areas of intersection and union are computed between
a small group of relatively large polygons and many small polygons, e.g., when processing
an image with a few capillary vessels surrounded by many cells. Moreover, as will be shown
in Section 5, even when polygons are small, it is still possible to further bring down the
compute intensity and improve performance.

To reduce the intensity of computation and make the algorithm more scalable, PixelBox
utilizes another technique, called sampling boxes, whose idea is similar to the adaptive mesh
refinement method [9] in numerical analysis. Due to the continuity of the interior of a
polygon, the positions of pixels have spatial locality – if one pixel lies inside (or outside) a
polygon, other pixels in its neighborhood are likely to lie on the inside (or outside) too, with
exceptions near the polygon’s boundary. Exploiting this property, we can calculate the areas
of intersection and union region by region, instead of pixel by pixel, so that the contribution
of all pixels in a region may be computed at once.
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This technique is illustrated in Figure 4(c). The MBR of a polygon pair is recursively
partitioned into sampling boxes, first at coarser granularity (see the large grid cells in the
figure), then going finer at selected sub-regions (e.g., as shown by the small boxes near the
top) which need further exploration. For example, when computing the area of intersection,
if a sampling box lies completely inside both polygons, the contribution of all pixels within
the sampling box is obtained at once, which equals the size of the sampling box; otherwise,
the sampling box needs to be partitioned into smaller sub-sampling boxes and tested further.
In Figure 4(c), the grey sampling boxes do not need to be further partitioned because their
contributions to the areas of intersection and union are already determined.

Similar to the pixelization method, the sampling-box approach requires computing a
sampling box’s position relative to a polygon, which has three possible values: inside –
every pixel in the box lies inside the polygon; outside – every pixel in the box lies outside
the polygon; and hover – some pixels lie inside while others lie outside the polygon.

Lemma 1. A sampling box’s position relative to a polygon is determined by three
conditions: (i) none of the sampling box’s four edges crosses through the polygon’s
boundary; (ii) none of the polygon’s vertices lies inside the sampling box; (iii)
sampling box’s geometric center lies inside the polygon.

The sampling box lies inside the polygon if all three conditions are true; it lies
outside the polygon if the first two conditions are true but the last is false; it hovers
over the polygon in all other cases, when condition (i) or (ii) is false.

Lemma 1 gives the criteria for computing a sampling box’s position, which is further
illustrated in Figure 5. For each sampling box, its four edges are tested against the polygon’s
boundary. If there are edge-to-edge crossings, the sampling box must hover over the
polygon (case (d) in Figure 5). Otherwise, if any of the polygon’s vertices lies inside the
sampling box, the entire polygon must be contained in the sampling box due to the
continuity of its boundary, in which case the position is also hover (case (c) in Figure 5); if
none of the polygon’s vertices is inside the sampling box, the sampling box may be either
totally inside (case (b) in Figure 5) or totally outside (case (a) in Figure 5) the polygon , in
which case the position of the sampling box’s geometric center gives the final answer. If the
sampling box’s four edges overlap with the polygon’s boundary, the sampling box’s position
can be considered as either inside or outside. The next level of partition will distinguish the
contribution of each sub-sampling box to the areas of intersection and union.

Testing the position of a sampling box is more costly than doing this for a pixel. When the
granularity of a sampling box is large, the extra overhead is compensated by the amount of
per-pixel computations reduced. However, as sampling boxes are more fine-grained, the cost
of computing their positions becomes more significant. Moreover, applying sampling boxes
requires synchronization between cooperative threads — examination of one sampling box
cannot begin until all threads have finished the partitioning of its parent box. Frequent
synchronizations lead to low utilization of computing resources and have been one of the
main hazards to performance improvement on GPUs [37].

To retain the merits of both efficient data parallelization and low compute intensity,
PixelBox combines pixelization with sampling-box techniques. As depicted in Figure 4(d),
sampling boxes are applied at first to quickly finish testing for a large number of regions;
when the size of a sampling box becomes smaller than a threshold, T, the pixelization
method takes order and finishes the rest of the computation.

Unlike the pixelization-only method, computing area of intersection and area of union
altogether will incur extra overhead with sampling boxes. For example, if a sampling box
hovers over one polygon but lies outside the other, its contribution is clear to the area of
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intersection, but unclear to the area of union; in this case, more fine-grained partitionings are
required until the area of union is determined or the pixelization threshold is reached. To
reduce the amount of sampling box partitionings and further improve algorithm
performance, the area of union is not computed together with the area of intersection in
PixelBox. Instead, similar to the query optimization in Figure 1(b), we compute the areas of
polygons, and use the formula, ‖p∪q‖ = ‖p‖+‖q‖− ‖p ∩ q‖, to derive the areas of union
indirectly. Computing the area of a simple polygon is very easy to implement on GPUs.

With formula3 , in which (xi, yi) is the coordinate of the ith vertex
of the polygon, we can let different threads compute different vertices and sum up the partial
results to get the area.

3.3 Optimized Algorithm Implementation
Algorithm 1 shows the pseudocode of PixelBox. Sampling boxes are created and examined
recursively — one region is probed from coarser to finer granularities before the next one. A
shared stack is used to store the coordinates of the sampling boxes and the flags showing
whether each sampling box needs to be further partitioned. For each polygon pair allocated
to a thread block, its MBR is pushed onto the stack as the first sampling box (line 13). All
threads pop the sampling box on the top of the stack to examine (line 18). If the sampling
box does not need to be further probed, all threads will continue to pop the next sampling
box (line 19 – 20) until the stack becomes empty and the computation for the polygon pair
finishes. For a sampling box that needs to be further examined, if its size is smaller than
threshold T, the pixelization procedure is applied (line 22 – 28); otherwise, it is partitioned
into sub-sampling boxes, and, after further processing, new sampling boxes will be pushed
onto the stack by all threads simultaneously (line 30 – 39).

In the algorithm, POLYAREA computes the partial area of a polygon handled by a thread; BOXSIZE

returns the number of pixels contained in a sampling box; PIXELINPOLY(m, i, p) computes the
position of the ith pixel in sampling box m relative to polygon p; SUBSAMPBOX(b, i) partitions a
sampling box b and returns the ith sub-box for a thread to process; BOXPOSITION(b, p) computes
the position of sampling box b relative to polygon p; BOXCONTINUE computes whether a
sampling box needs to be further partitioned based on its positions relative to two polygons;
and BOXCONTRIBUTE computes whether a sampling box contributes to the area of intersection
according to its position.

The use of a stack to store sampling boxes saves lots of memory space and makes testing
sampling box positions and the generation of new sampling boxes parallelized. A
synchronization is required before popping a sampling box (line 17) to ensure that thread 0
or the last thread in the thread block has pushed the sampling box to the top of the stack.
When threads push new sampling boxes to the stack, they do not overwrite the old stack top
(line 37); otherwise, an extra synchronization would be required before pushing new
sampling boxes to ensure that the old stack top has been read by all threads. In the current
design, the old stack top is marked as ‘no further probing’ (line 38), and will be omitted by
all threads when being popped out again.

The GPU kernel only computes the partial areas of intersections and the partial summed
areas of polygons accumulated per thread (lines 5 – 6), which will be reduced later

3See http://en.wikipedia.org/wiki/Polygon
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Algorithm 1

The PixelBox GPU algorithm.

1: {pi, qi}i : the array of input polygon pairs

2: {mi}i : the MBR of each polygon pair

3: N : total number of polygon pairs

4: stack[] : the shared stack containing sampling boxes

5: I[N][blockDim.x] : partial areas of intersections

6: A[N][blockDim.x] : partial summed areas of polygons

7:

8: procedure KERNEL_SAMPBOX

9:    tid ← threadIdx.x

10:    for i = blockIdx.x to N do

11:       A[i][tid] ← A[i][tid] + POLYAREA(pi)

12:       A[i][tid] ← A[i][tid] + POLYAREA(qi)

13:       Thread 0: stack[0] ← {mi, 1}

14:       top ← 1

15:       while top > 0 do

16:          top ← top − 1

17:          syncthreads()

18:          {box, c} ← stack[top]

19:          if c = 0 then

20:             continue

21:          else

22:             if BOXSIZE(box) < T then

23:                for j ← tid to BOXSIZE(box) do

24:                   ϕ1 ← PIXELINPOLY(box, j, pi)

25:                   ϕ2 ← PIXELINPOLY(box, j, qi)

26:                   I[i][tid] ← I[i][tid] + (ϕ1 ˄ ϕ2)

27:                   j ← j + blockDim.x

28:                end for

29:             else

30:                subbox ← SUBSAMPBOX(box, tid)

31:                ϕ1 ← BOXPOSITION(box, pi)

32:                ϕ2 ← BOXPOSITION(box, qi)

33:                c ← BOXCONTINUE(ϕ1, ϕ2)

34:                t ← BOXCONTRIBUTE(ϕ1, ϕ2)

35:                a ← (1 − c) × t × BOXSIZE(subbox)

36:                I[i][tid] ← I[i][tid] + a

37:                stack[top + 1 + tid] ← {subbox, c}

38:                Thread 0: stack[top].c ← 0

39:                top ← top + 1 + blockDim.x

40:             end if
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41:          end if

42:       end while

43:       i ← i + gridDim.x

44:    end for

45: end procedure

on the CPU to derive the final areas of intersection and union. Reduction is not performed
on the GPU because the number of partial values for each polygon pair is relatively small
(equal to the thread block size), which makes it not very efficient to execute on the GPU.
We measured the time take by the reductions on a CPU core; the cost is negligible compared
to other operations on the GPU.

In the rest of this sub-section, we explain some optimizations employed in the algorithm
implementation.

Utilize shared memory—Effectively using shared memory is important for improving
program performance on GPUs [32]. The sampling box stack is frequently read and
modified by all threads in a thread block, and thus should be allocated in the shared
memory. Meanwhile, polygon vertex data are also repeatedly accessed when computing the
positions of pixels and sampling boxes. Loading vertices into shared memory reduces global
memory accesses. Due to the limited size of shared memory on GPUs, it is infeasible to
allocate for the largest vertex array size. To make a trade off, we set a static size for the
shared memory region containing polygon vertices, and only those polygons whose vertices
fit into the region are loaded into the shared memory.

Avoid memory bank conflicts—Bank conflicts happen when threads in a warp try to
access different data items residing in the same shared memory bank simultaneously. In this
case, memory access is serialized which decreases both bandwidth and core utilization. In
the sampling box procedure, pushing new sampling boxes to the stack may incur bank
conflicts if each sampling box is stored continuously in the shared stack. This problem can
be solved by separating the stack into five independent ones: four sub-stacks store the
coordinates of sampling boxes, and the fifth one stores whether each sampling box needs to
be further probed.

Perform loop unrolling—Computing pixel or sampling box positions requires comparing
with polygon edges in a loop. Unrolling the loop to have multiple polygon edges tested in a
single iteration reduces the number of branch instructions and hides memory latency more
efficiently.

3.4 Related Discussions
Pixelization threshold T—The pixelization procedure is applied when the number of
pixels contained in a sampling box becomes less than the threshold T. Let the number of
threads in a thread block be n, a good value for T should be between n and n2. If T < n, the
number of pixels contained in the last sampling box is less than the number of threads,
which will not keep all threads busy during the pixelization procedure; if T > n2, the last
sampling box contains too many pixels, because it could have been further partitioned at
least once meanwhile guaranteeing all threads busy during the pixelization procedure.

According to our testing (see Section 5.4),  is a very good choice.
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Algorithm accuracy—Pixelizing polygons may introduce errors into the areas computed.
In a general sense, the finer the granularity of pixels is defined, the more accurate the
computed result is. For pathology imaging analysis, however, PixelBox does not incur any
loss of precision. As explained in Section 3.1, the areas computed equal the numbers of
pixels actually lying inside the intersection/union of polygons on the original image. This
property generalizes to polygons segmented from any raster image in medical imaging and
other applications. We validated the correctness of PixelBox by comparing the areas
computed by PixelBox with those computed by PostGIS, and find that the results are the
same. We regard the generalization of PixelBox to vectorized polygons as a future work.

Implications of PixelBox to other spatial operators—The principal ideas of
PixelBox can also be applied to accelerate other compute-intensive spatial operators on
GPUs. For example, ST_Contains can be implemented by computing the area of intersection
and testing whether it equals the area of the object being contained. ST_Touches can be
accelerated using ideas similar to PixelBox: compare the edges of one polygon with the
edges of the other; also test the positions of vertices in one polygon relative to the other
polygon; if there is no edge-to-edge crossing, no vertex of one polygon lies within the other
polygon, and at least one vertex of one polygon lies on the edge of the other, these two
polygons touches each other; otherwise, they do not touch.

We believe that many frequently used spatial operators in SDBMSs can be parallelized on
GPUs by either directly utilizing the PixelBox algorithm or using approaches similar to
PixelBox. This is another interesting topic we would like to explore in the future.

4. SYSTEM FRAMEWORK
Having presented our core GPU algorithm for computing areas of intersection and union, we
are now in a position to introduce how the whole workflow for spatial cross-comparison is
implemented and optimized in a CPU-GPU hybrid environment. From the input of the raw
text data for polygons to the output of the final results, the workflow consists of multiple
logical stages. To fully exploit the rich resources of the underlying CPU/GPU hardware,
these stages must be executed in a controllable and dynamically adaptable way. To achieve
this goal, the system framework must address three challenges: 1) Since GPU has a
disconnected memory space from CPU, input data batching for GPU is needed to
compensate the long latency of host-device communication; 2) GPU is an exclusive, non-
preemptive compute device [21], thus uncontrolled kernel invocations may cause resource
contention and low execution efficiency on GPU; and 3) task executions have to be balanced
between CPUs and GPUs in order to maximize system throughput.

In this section, we present our system framework solution. We first introduce our pipelined
structure for the whole workload, and then present our dynamic task migration mechanism
between CPUs and GPUs.

4.1 The Pipelined Structure
We have designed and implemented a pipelined structure for the whole workload. Through
inter-stage buffers, task productions and consumptions are overlapped to improve resource
utilization and system throughput. As depicted in Figure 6, the cross-comparing pipeline
comprises four stages:

1. The parser loads polygon files and transforms the format of polygons from text to
binaries. This stage executes on CPUs with multiple worker threads.

2. The builder builds spatial indexes on the transformed polygon data. Since polygons
are small, Hilbert R-Tree [20] is used to accelerate index building. This stage
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executes on CPUs in a single thread because its execution speed is already very
fast.

3. The filter performs a pairwise index search on the polygons parsed from every two
polygon files, and generates an array of polygon pairs with intersecting MBRs.
Similar to the builder, this stage also executes on CPUs with a single worker
thread.

4. The aggregator computes the areas of intersection and union for each polygon array
using our PixelBox algorithm. The ratios of areas are then aggregated to derive the
Jaccard similarity for a whole image. Polygon pairs that do not actually intersect,
i.e., with the area of intersection being zero, will not be considered.

A computation task at each pipeline stage is defined at the image tile scale. For example, an
input task for the parser is to parse two polygon files segmented from the same image tile;
an input task for the builder is to build indexes on the two sets of polygons parsed by a
single parser task. In practice, a digital image slide may contain hundreds of small image
tiles; each tile may contain thousands of polygons. The granularity of tasks defined at image
tile level matches the image segmentation procedure, and allows the workload to propagate
through the pipeline in a balanced way.

Utilizing such a pipelined framework is critical to solve the aforementioned challenges.
First, the work buffers between pipeline stages provide natural support for GPU input data
batching. For example, since the number of polygon pairs filtered may be drastically
different from tile to tile, it is necessary for the aggregator to group multiple small tasks in
its input buffer and send them in a batch to the GPU at once. Second, with a pipelined
framework, a single instance of the aggregator consolidates all kernel invocations to the
GPUs, which greatly reduces unnecessary contentions and makes the execution more
efficient. Finally, the pipelined framework creates a convenient environment for load
balancing between CPUs and GPUs, as will be introduced next.

4.2 Dynamic Task Migration
Based on the pipelined structure, we have built a task migration component for the whole
workflow to achieve load balancing between CPUs and GPUs. First, we have ported the
PixelBox algorithms to CPUs (called PixelBox-CPU), and parallelized its execution with
multiple worker threads. Second, we have also designed a GPU kernel for the parser stage
(called GPU-Parser), whose performance is only comparable to its CPU counterpart since
text parsing requires implementing a finite state machine, which has been shown not very
efficient for parallel execution [8]. In this way, the parser and the aggregator stages are
flexible to execute tasks on both CPUs and GPUs, which creates an opportunity for
balancing workload distributions through dynamic task migrations.

What must be noted is that the task migration relies on a special feature of the pipelined
framework to detect workload imbalance from the application level. The work buffers
between pipeline stages give useful indication on the progress of computation and the status
of compute devices. Specifically, if the input buffer of the aggregator stage becomes full, the
migrator knows that this stage is making slow progress and the GPUs have been congested.
On the other hand, if the input buffer of the aggregator stage becomes empty, it indicates
that the GPUs are being under-utilized. In each case, tasks are dynamically migrated from
GPUs to CPUs, or from CPUs to GPUs, to mitigate load imbalance and improve system
throughput.

To implement the task migration scheme, two background threads, called migration threads
are created — one for the aggregator stage, one for the parser stage. They usually stay in the
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sleeping state and are only woken up when the input buffer of the aggregator stage becomes
full or empty. In the case of GPU congestion, the aggregator’s migration thread is woken up,
which selects the smallest tasks from the input buffer of the aggregator and invokes
PixelBox-CPU to execute them. In the case of GPU idleness, the parser’s migration thread is
woken up to fetch some tasks from the parser’s input buffer and execute them on GPUs. The
design of the task migration component is also illustrated in Figure 6.

5. EXPERIMENTS
This section evaluates our SCCG solution, including the PixelBox algorithm and the system
framework. We have implemented PixelBox and GPU-Parser with NVIDIA CUDA 4.0.
Intel Threading Building Blocks [25], a popular workstealing software library for task-based
parallelization on CPUs, is used to parallelize text parsing and PixelBox-CPU. The pipelined
framework is developed using Pthreads. The dynamic task migration component is built into
the execution pipeline, and can be turned on or turned off according to the requirements of
respective experiments.

5.1 Experiment Methodology
We perform experiments on two platforms. One is a Dell T1500 workstation with an Intel
Core i7 860 2.80GHz CPU (4 cores), an NVIDIA GeForce GTX 580 GPU, and 8GiB main
memory. The operating system is 64-bit Red Hat Enterprise Linux 6 with 2.6.32 kernel. The
other platform is an Amazon EC2 instance with two Intel Xeon X5570 2.93GHz CPUs
(totally 8 cores, 16 threads) and two NVIDIA Tesla M2050 GPUs. The size of the main
memory is 22 GiB, and the operating system is 64-bit CentOS with 2.6.18 linux kernel.
T1500 is primarily used to test the performance of the PixelBox algorithm and the pipelined
scheme, and to measure the overall performance of SCCG in cross-comparing all data sets.
Amazon EC2 instance is used to measure the performance of a parallelized PostGIS solution
to cross-compare the whole data sets. The task migration component is verified on both
platforms. The version of PostGIS we used is 1.5.3; the PostgreSQL version is 9.1.3.

Our experiments use 18 real-world data sets extracted from 18 digital pathology images used
in a brain tumor research at the authors’ institution. The total size of the data sets in raw text
format is about 12GiB. The average size of polygons is about 150 in the number of pixels
contained, with the standard deviation around 100. The average number of polygons in each
data set is about half million, with the largest data set containing over 2 millions.

In all experiments performed in this paper, we do not consider data loading or disk I/O time
for the purpose of fair comparison. First, it is well known that the database system has high
loading overhead when processing one-pass data with the “first-load-then-query” data
processing model. SCCG averts this problem through customized text parsing and pipelined
execution to process the polygon stream on the fly. Second, disk I/O, even though still a
significant performance factor for SDBMSs, is not longer the severest bottleneck for cross-
comparing queries; most time is spent on computation. The effect of disk I/O can be further
mitigated through SCCG’s pipelined framework by adding a disk pre-fetcher in front of
parser stage to sequentially load polygon files into main memory. The use of more advanced
storage devices, such as SSDs and disk arrays, can also reduce disk I/O time significantly.
Thus, in the following experiments, we assume that the polygon data are already loaded into
main memory or imported into the database before the pipeline or queries are executed.

5.2 Performance of the PixelBox Algorithm
In this subsection, we evaluate the performance of PixelBox and verify some design
decisions discussed earlier. The experiments are carried out on the T1500 workstation. Since
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PostGIS uses GEOS as its geometric computation library, we use the performance of GEOS
on a singe core as the baseline in respective experiments. Optimizations similar to the query
in Figure 1(b) is used in the baseline to avoid the heavy function call for polygon unions.
We select a representative data set, called oligoastroIII_1for the experiments. It contains
462016 polygons in one polygon set and 458878 polygons in the other. Totally, 619609
pairs of polygons, whose MBRs intersect, are filtered.

In Figure 7, we first show the overall performance of GEOS, PixelBox-CPU on a single core
(denoted PixelBox-CPU-S), and PixelBox in computing the areas of intersection and union
for all 619609 polygon pairs. Both absolute execution times and relative speedups are shown
in logarithmic scales. The computation with GEOS takes over 430 seconds. PixelBox-CPU-
S performs better than GEOS thanks to algorithm improvement, reducing computation time
to about 290 seconds. Compared with GEOS, PixelBox achieves over two-orders-of-
magnitude speedup, finishing all computations within only 3.6 seconds. This experiment
shows the efficiency of PixelBox algorithm that can fully utilize the power of GPUs to
accelerate the computation.

In order to validate several algorithm design decisions, i.e., using sampling boxes to reduce
compute intensity, and computing areas of union indirectly, we do a stress testing with
PixelBox using a set of 15724 polygon pairs filtered from two representative polygon files
in oligoastroIII_1. We increase the polygon sizes by multiplying the coordinates of polygon
vertices with a scale factor whose value varies from 1 to 5. The data sets used in this paper
are extracted from slide images captured under 20x objective lens. Considering that the
resolution of objective lens commonly used is around 40x at the maximum (which increases
the sizes of polygons by 4 times), scaling up the coordinates of polygons by a maximum
factor of 5 (which increases the sizes of polygons by 25 times) is more than sufficient.

We compare the performance of PixelBox with two base versions: one that uses only the
pixelization method (called PixelOnly), the other that combines the pixelization and
sampling-box techniques but computes both area of intersection and area of union directly
(called PixelBox-NoSep). We tune the grid size, block size, and T (for PixelBox-NoSep and
PixelBox), so that all algorithms execute in their best performance. Their execution times
are shown in Figure 8.

In all scale factors, the performance of PixelBox-NoSep is consistently higher than that of
PixelOnly due to the use of sampling boxes, while PixelBox beats the performance of
PixelBox-NoSep by further reducing the amount of sampling box partitionings performed.
When the scale factor is 1, the overhead of per-pixel examination is relatively low because
the sizes of polygons are small. But PixelBox-NoSep and PixelBox still out-perform
PixelOnly in this case, reducing execution time by 28% and 34% respectively. As the scale
factor increases, the performance of PixelOnly drops rapidly due to the dramatic increase of
the number of pixels that must be handled by the algorithm. However, the performance of
PixelBox-NoSep and PixelBox only degrades slightly. As the scale factor reaches 5, that is
when the sizes of polygons are increased by 25 times, PixelBox-NoSep improves over
PixelOnly by reducing execution time by over 50%, while PixelBox shortens the execution
time even further by 73% compared with PixelBox-NoSep. This experiment verifies the
effectiveness of using sampling boxes to reduce compute intensity. It also shows that, by
computing areas of union indirectly, the performance of the algorithm can be further
enhanced due to reduced sampling box partitions. It has to be noted that the performance of
PixelOnly, PixelBox-NoSep and PixelBox are much higher than the GEOS baseline at all
scale factors (it takes GEOS over 11 seconds).
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5.3 Effectiveness of Optimization Techniques
On the T1500 workstation, we evaluate the effectiveness of various optimization techniques
employed during algorithm implementation, i.e., using shared memory (for loading the
polygon vertex data), avoiding bank conflicts (when pushing new sampling boxes), and loop
unrolling (when computing positions). We take the same set of 15724 polygon pairs used in
the previous experiment, with the scaling factors being 1, 3, and 5, and measure the
execution times of four variants of the PixelBox algorithm: PixelBox-NoOpt denotes the
base version in which none of the optimization techniques are used; PixelBox-NBC denotes
the version when bank conflicts are avoided; PixelBox-NBC-UR denotes the version when
bank conflicts are avoided and loop unrolling is performed; finally, PixelBox-NBC-UR-SM
denotes the version when all optimizations are utilized. In all variants, the sampling box
stack is always allocated in shared memory, because otherwise a global heap whose size is
proportional to the total number of threads in the whole grid has to be allocated, which we
consider an unreasonable design scheme.

The performance of each variant normalized to PixelBoxNoOpt is shown in Figure 9. It can
be seen that the optimization techniques discussed above are effective in improving the
performance of PixelBox. When the scale factor is 1, the performance is improved by a
factor of 1.14 after all optimization techniques are utilized; when the scale factor is 5, the
speedup raises to a factor of 1.30. The weights of different optimization techniques to the
algorithm performance are, however, varied. The effects of loop unrolling and using shared
memory are more significant than that of avoiding bank conflicts. This is because PixelBox
spends more time on computing the positions of pixels and sampling boxes than on
generating new sampling boxes. Thus, loop unrolling and using shared memory, which
improves the efficiency of computing positions, play a larger role in the performance of
PixelBox.

5.4 Parameter Sensitivity of PixelBox
In order to test the sensitivity of algorithm performance to the pixelization threshold T, we
take the same set of 15724 polygon pairs used above and measure how the execution time of
PixelBox varies as we change the value of T. We do the experiments on the T1500
workstation. We set the thread block size to 64, and the performance trend in each scale
factor (SF1 to SF5) is shown in Figure 10. The result verifies our analysis for choosing the
value of T. The performance of PixelBox is sub-optimal when T is too small or too large. It
performs the best when the value of T lies between 512 and 4096, which corresponds to the
range from n2/8 to n2, in all scale factors. We also repeated the experiment when setting
thread block size to other values, and the trend was similar. But when the block size is too
large (e.g., >= 256), the overall performance of PixelBox degrades. This is because less
thread blocks can run concurrently on a multiprocessor and the sampling box partitioning
will be less fine-grained when block size is too large. According to our experience, setting n
to a small value and the value of the pixelization threshold around n2/2 achieves the highest
performance.

5.5 Performance of the Pipelined Framework
We evaluate the performance of the pipelined framework in this subsection. Task migration
is disabled to remove its influence on the pipeline’s performance. On the T1500 workstation,
we collect the execution times of four schemes that cross-compares the oligoastroIII_1 data
set:

• PostGIS-S executes the optimized query shown in Figure 1(b) with PostGIS on a
single core;
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• NoPipe-S uses a single execution stream that executes a non-pipelined version of
the framework in Figure 6, in which the four stages execute sequentially on each
pair of input polygon files without pipelining;

• NoPipe-M represents the thread-parallel scheme where multiple execution streams
are launched with each one invoking NoPipe-S independently;

• Pipelined is the fully pipelined scheme used in SCCG.

The result is shown in Table 1, with speedup numbers normalized against the PostGIS-S
baseline. Since the bottleneck stage of the pipeline has been accelerated by PixelBox on
GPUs, NoPipe-S achieves over 37-fold speedup compared with PostGIS-S. NoPipe-M
performs better than NoPipe-S (63x speedup over PostGIS-S) because simultaneously
issuing multiple streams improves the utilization of resources. However, due to the
serialization caused by uncoordinated use of GPUs on the last stage, the CPU resource
cannot be well utilized. We measured the CPU utilization during the execution of NoPipe-M
and observed that all CPU cores were only about 50% saturated all the times, which
confirmed our analysis. The Pipelined scheme achieves the highest performance,
accelerating the speed of cross-comparison by a factor of 76 compared with PostGISS. The
result justifies the use of the pipelined framework and shows the importance of coordination
when using GPUs.

5.6 Effectiveness of Dynamic Task Migration
In order to verify the design of the task migration component, we perform experiments in
three different platform configurations: the T1500 workstation (Config-I), the Amazon EC2
instance with both GPU cards used (Config-II), and the Amazon EC2 instance with only one
GPU card used (Config-III). We use the first two configurations to evaluate the
effectiveness of the task migration component to offload workloads from CPUs-to-GPUs,
and use the last one for testing load balance in the other direction. Since the GPUs on both
platforms are too powerful, in order to make the case of GPU-to-CPU task migrations
happen, we purposely slow down PixelBox by selecting a sub-optimal thread block size in
Config-III. In real-world system environment, due to concurrent sharing of GPUs with other
applications, GPUs may not be exclusively occupied by a single application, which is the
case we want to emulate in the last configuration.

The oligoastroIII_1 data set is used in experiments. We show the throughput of task-
migration-enabled SCCG normalized to the throughput of task-migration-disabled SCCG in
each configuration. Throughput is defined as the size of data set divided by execution time.

As Figure 11 shows, on T1500 workstation, the throughput of SCCG with dynamic task
migration is about 50% higher than SCCG without dynamic task migration. In this setting,
the aggregator stage cannot keep the GPU fully occupied, which triggers the migrator to
dynamically offload tasks from the parser stage to execute on GPU. This improves the
performance of the parser stage and thus enhances the throughput. On Amazon EC2 with
both GPUs utilized, the GPU resource still cannot be fully utilized by the aggregator stage.
Thus, workloads are migrated from CPUs to GPUs, and the throughput of the pipeline is
improved by over 40%. The throughput improvement is lower than Config-I, because the
CPUs are more powerful, which causes less workload offloaded to GPUs. On Amazon EC2
with only one GPU utilized, dynamic task migration improves the pipeline throughput by
over 14%. In this scenario, the aggregator stage becomes the bottleneck of the pipeline, and
some aggregator tasks are migrated to execute on CPUs. But due to the relatively small
speed gap between the parser and the aggregator stage and the limited performance of
PixelBox-CPU on CPUs, the throughput improvement is smaller compared to other
configurations.
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5.7 Performance Evaluation with All Data Sets
In this section, we give the complete performance results of SCCG compared with a
parallelized PostGIS solution over all 18 data sets. The experiments with SCCG are
performed on the T1500 workstation with only one GPU card and a 4-core CPU. The
experiments with PostGIS are performed on the Amazon EC2 instance with both 4-core
CPUs fully utilized. The reason why we choose a less powerful platform for SCCG is to
demonstrate both its performance advantage and cost-effectiveness. Query executions in
PostGIS are parallelized over all CPU cores by evenly partitioning polygon tables into 16
chunks and launching 16 query streams to process different chunks concurrently. We refer
to this execution scheme as PostGIS-M. Being generous to PostGIS, we only consider index
building and query execution times; time spent on partitioning polygon tables is not
included. We measure the times taken by SCCG and PostGIS-M on cross-comparing each
data set, and the relative speedups of SCCG compared with PostGIS-M are presented in
Figure 12.

To give an impression on the absolute execution times, it takes PostGIS-M over 1120
seconds to process all data sets, while SCCG finishes all computations within only 64
seconds. As Figure 12 shows, the varied speedups of SCCG over PostGIS-M on different
data sets are due to the different numbers and sizes of polygons among the data sets. For
example, the first data set contains only 20 polygon files and about 57000 polygons; while
the last data set comprises a total of 442 polygon files with over 4 million polygons
contained. Among all data sets, SCCG achieves a minimum of 13-fold speedup and a
maximum of over 44-fold speedup compared with PostGIS-M. The last column gives the
geometric mean of speedups across all data sets, which is over 18 times.

The result shows the effectiveness of our SCCG solution in improving the performance of
spatial cross-comparison at low cost. Two Intel X5570 CPUs cost over $2000, while the
total cost of an Intel Core i7 860 CPU and an NVIDIA GTX580 GPU is only about $820
according to the current market price as of March 2012.

6. RELATED WORK
Though modern computer architecture has brought rich parallel resources, existing
geometric algorithms for spatial operations implemented in the widely used libraries (e.g.
CGAL and GEOS) and in major SDBMSs are still singlethreaded. There are several
attempts of parallel algorithms. A parallel algorithm was proposed in [14] to compute the
areas of intersection and union on CPUs. The algorithm was not designed to execute in
SIMD fashion, which has been the key to achieve high performance on both CPUs and
GPUs in the era of high-throughput computing [26]. As a numerical approximation method,
Monte Carlo [13] can be used to compute the areas of intersection and union on GPUs, by
repeatedly generating randomized sampling points and counting the number of points lying
within the region. However, repeated casting of random sampling points makes Monte Carlo
much more compute-intensive than our optimized PixelBox algorithm. A paper [33]
proposed to test polygon intersections by drawing polygons on a frame buffer through the
OpenGL interfaces and counting the number of pixels with specific colors. This method
could be extended to compute the areas of intersection and union, but it would suffer a
similar performance problem like the pixelizationonly approach due to high compute
intensity. The idea of rounding objects to pixels has appeared in fields such as computer
graphics [30] and GIS [6], while we realize and utilize the rectilinear property of polygons
to solve an important problem in pathology imaging analysis.

Prior work have proposed optimized algorithms and implementations for various database
operations on the GPU architecture, including join [18], selection and aggregation [16],
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sorting [15], tree search [23], list intersection and index compression [7], and transaction
execution [19]. Moreover, using a CPU-GPU hybrid environment to accelerate foreignkey
joins has been explored in the paper [31]. Compared with these works, we focus on
optimizing spatial operations for image comparisons in a CPU-GPU hybrid environment. In
addition, considering our system execution framework, related work about the utilization of
pipelined execution parallelism can be found in parallel database systems [29] and
optimized data-sharing query execution engine [17]. Related work about task scheduling and
GPU resource management can be found in work-stealing and real-time systems [12, 21].

7. CONCLUSIONS
We have presented our solution for fast cross-comparison of analytical pathology imaging
data in a CPU-GPU hybrid environment. After a thorough profiling of a spatial database
solution, we identified the performance bottleneck of computing areas of intersection and
union on polygon sets. Our PixelBox algorithm and its implementation on GPUs can
fundamentally remove the performance bottleneck. Moreover, our pipelined structure with
dynamic task migration can efficiently execute the whole workload using CPUs and GPUs.
Our solution has been verified through extensive experiments. It achieves more than 18x
speedup over parallelized PostGIS when processing real-world pathology data.

We believe our work makes a strong case for performing high-performance, cost-effective
digital pathology analysis. The immense power of GPUs and the vectorized functional units
on modern hardware must be fully utilized in order to handle the ever-increasing, data-
intensive computations. Efficient parallelization of computations on GPUs whilst relies on
both the problem characteristics and GPUoptimized algorithm design and implementation.
For example, PixelBox trades off a little bit of compute efficiency for a huge gain of data
parallelism, and its compute-bound nature also perfectly matches the advantages of GPU
architecture. From the system perspective, we consider the incorporation of GPUs into the
database ecosystem as an imperative trend with high economic benefits. In a CPU-GPU
hybrid environment, many system problems, such as GPUaware query execution engine,
load balancing, and multiquery GPU sharing, need to be addressed.
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Figure 1.
Cross-comparing queries for the Jaccard similarity of two polygon sets extracted from the
same image.
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Figure 2.
Execution time decomposition of cross-comparing queries in PostGIS on a single core.
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Figure 3.
Polygons extracted from medical images have axis-aligned edges and integer-valued
vertices.
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Figure 4.
The principles of PixelBox.
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Figure 5.
A sampling box’s position relative to a polygon: (a) outside; (b) inside; (c, d) hover.
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Figure 6.
A cross-comparing pipeline with dynamic task migrations.
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Figure 7.
Performance comparison of GEOS and PixelBox.
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Figure 8.
Performance of two algorithm decisions: using sampling boxes and computing areas of
union indirectly.
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Figure 9.
Performance impact of various optimization techniques in algorithm implementation.
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Figure 10.
The sensitivity of pixelization threshold T.
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Figure 11.
Performance benefits of dynamic task migration.
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Figure 12.
The overall performance of SCCG compared with PostGIS-M on 18 data sets.
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Table 1

Performance comparisons between different schemes.

Scheme PostGIS-S NoPipe-S NoPipe-M Pipelined

Speedup 1 37.07 63.64 76.02
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