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Abstract
In order to improve therapeutic outcomes, there is a tremendous need to identify patients who are
likely to respond to a given asthma treatment. Pharmacogenomic studies have explained a portion
of the variability in drug response and provided an increasing list of candidate genes and SNPs.
However, as phenotypic variation arises from a network of complex interactions among genetic
and environmental factors, rather than individual genes or SNPs, a multidisciplinary, systems-
level approach is required in order to understand the inter-relationships among these factors.
Systems biology, which seeks to capture interactions between genetic factors and other variables,
offers a promising approach to improved therapeutic outcomes in asthma. This aritcle will review
and update progress in the pharmacogenomics of asthma and then discuss the application of
systems biology approaches to asthma pharmacogenomics.
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Asthma is a common inflammatory airway disease that is characterized by chronic
inflammation, reversible airway obstruction, broncho-spasm and heterogeneous phenotypes.
Asthma affects more than 300 million people worldwide and represents a significant public
health burden due to its high prevalence (approaching 7–9% in children and adults in
developed countries) [201]. Asthma symptoms are treated predominantly through three
classes of prescription medications: inhaled short- and long-acting β2 agonists, inhaled and
oral corticosteroids and leukotriene antagonists. While these drugs show efficacy in a
majority of patients, they are not effective for all patients and also demonstrate significant,
reproducible, interindividual variability in therapeutic response [1]. Identifying individuals
who are most and least likely to benefit from a given asthma treatment is necessary to
improve therapeutic outcomes.
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Asthma is a complex disease that is likely the result of multiple gene–gene and gene–
environment interactions [2,3]. Genome-wide association studies (GWAS) and candidate-
gene studies have attempted to resolve some of this complexity through seeking to identify
genes that underlie asthma pathology.

Asthma susceptibility genes identified through GWAS include genes related to both TH2
and non-TH2 immune cellular processes, including T-cell response and differentiation (IL6R
[4], DENND1B [5], LRRC32 [6], IL2RB [7], HLA-DQ [7]), recruitment or activation of
inflammatory cells (IL1RL1 [8], TSLP [7] and IL33 [7]), cAMP and cell-signaling
modulation (PDE4D [9], SMAD3 [7] and ORMDL3 [10]) and apoptosis (GSDMB [7]).
Although these loci are important regulators of asthma pathogenesis and may be therapeutic
targets, they have not been associated with treatment response in patients. Pharmacogenomic
approaches, which investigate the effect of genetic variation on treatment response or
treatment-related events, are promising for improving therapeutic targeting in patients.
Candidate gene studies and GWAS have identified multiple genes involved in asthma drug
response: ADRB2 [11–13], ARG1 [14], ALOX5 [15–18], CYSLTR2 [19], CRHR1 [20],
DUSP1 [21], FCER2 [22,23], GLCCI1 [24], GSNOR [25], LTC4S [18,26–29], ABCC1
[17,30], NK2R [31], SLCO2B1 [32], STIP1 [33], TBX21 [20] and others. While these
studies have successfully characterized many genes that may explain a proportion of the
interindividual variability in patient treatment response, the majority of the heritability of
therapeutic response remains unaccounted for [34]. Traditional pharmacogenomic studies
have evaluated the effects of single SNPs or genes using genetic models that evaluate
individual variables, none of which can individually predict the phenotype. The variability
observed in asthma phenotypes is likely to arise from the coordinated effects of multiple
genes, pathways and environmental factors. Systems biology seeks to investigate the
relationship among these pathways and related factors in order to understand how these
relationships impact health and disease [35].

The goal of a systems biology approach is to create a model of the meaningful interactions
within a network that best reflects the underlying biology [36–38]. Systems biology is
particularly applicable to pharmacogenomic studies, where complex genetic factors
contribute to the observed variability in therapeutic response in patients. In addition, this
approach can be useful for profiling large, well-characterized asthma cohorts in an effort to
improve understanding of asthma phenotypes. Integration of `omics' data with multiple
levels of biological, phenotypic and clinical information can then be used to develop
predictive models of asthma treatment response. From these models, working hypotheses of
the mechanisms of asthma treatment response can be formulated and tested in clinical trials
or in cell-based and animal models. The individual components of the model itself, which is
represented as a probabilistic graphical network, can also be targeted at nodal points or
clusters in order to select potential drug targets or pathways for intervention.

The purpose of this review is to first provide an update of recent progress in the
pharmacogenomics GWAS and candidate-gene studies in asthma, and second to discuss the
major applications of integrated systems biology approaches to asthma pharmacogenomics.

Progress in the pharmacogenomics of asthma
In 2011, the authors completed the first GWAS of asthma treatment response [24]. We
genotyped 935 asthmatic participants from one asthma clinical trial: CAMP [39,40], and
three replication cohorts, the SOCS [41] and SLIC [42] trials, the Adult Study [43] and the
LOCCS [44] trial, with the goal of identifying novel variants associated with response to
inhaled glucocorticoids (GCs). To identify markers with the greatest positive association
with the primary-outcome phenotype of change in forced expiratory volume in 1 s (ΔFEV1)
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from baseline during the first 16 months of budesonide therapy, 534,290 SNPs from an
initial cohort of 403 CAMP trios (children and their parents) were first screened using a
powerful family-based screening algorithm [45], which applies parental genotype
information in order to rank the top 100 SNPs with the highest statistical associations [46].
This pharmacogenomic GWAS identified a candidate SNP (rs37972) in a GC pathway gene
associated with patient response to inhaled corticosteroids (ICS). This SNP, present in the
promoter region of the GLCCI1 gene, was significantly associated with the post-ICS FEV1
change in three of the four replication cohorts (p = 0.0085) (Figure 1). This SNP was in
complete linkage disequilibrium (i.e., perfectly correlated) with a functional variant that was
experimentally confirmed to reduce both gene expression and pharmacological response to
ICS, and which may account for a substantial proportion of poor responders to ICS. A
strength of this study was the use of the family-based screening method, which is ideally
suited for studies with small sample sizes and limited power; however, the study has
important limitations. First, the inclusion of only white subjects limits the generalizability of
these findings. Second, the study design required that only the top 100-ranked SNPs be
investigated, precluding testing of the majority of SNPs in the GWAS that may also play a
role in ICS response. Although the identified SNP had functional consequences on GLCCI1
expression, the presence of unidentified functional variants may also account for these
results. Additional mechanistic studies would clarify the role of this (and potentially other)
SNPs in relation to ICS response and GLCCI1 function.

Candidate-gene studies
Several asthma candidate-gene studies have been performed to identify genetic loci
associated with therapeutic response to the three major classes of asthma therapy: β2-
adrenergic receptor agonists (salmeterol and salbutamol), leukotriene modifiers (LTMs;
montelukast and zileuton) and ICS (prednisolone and beclomethasone) [16,20,22,47–49].
For comprehensive reviews of these drug classes, see references [50–54].

The most commonly prescribed drugs for treatment of mild to moderate asthma are β2-
agonists, which target ADRB2, a member of the seven-transmembrane, G-protein-coupled
receptor family. Bronchodilator response (BDR) to β2-agonists is commonly used as a
measure of pharmacological response to β2-agonist medications. The ADRB2 gene consists
of a single exon, yet is highly polymorphic and at least 49 SNPs in this gene have been
identified and validated [11]. The best studied ADRB2 SNP is a nonsynonymous variant at
position 16, encoding for an arginine to glycine amino acid change, Arg16Gly, which
decreases ADRB2 gene expression and is clinically and pharmacologically associated with
BDR [55]. However, results of these pharmacogenetic studies have been mixed. The earliest
investigation of the pharmacogenetics of β2-agonists showed that Arg16 wild-type carriers
were more likely to show a positive response to short-acting β2-agonists than subjects who
were heterozygous for Arg16Gly, and also had higher predicted values for FEV1 [55]. By
contrast, other studies report no significant effect of Arg16 genotype [56–58]. This
discrepancy may be attributed to diverse allele frequencies of Arg16Gly in different ethnic
groups within the clinical study populations, haplotype effects, as well as differences in
environmental and related factors or study design [55–59].

The β2-adrenergic receptor response is highly complex and involves multiple genes; for a
detailed review of this pathway, see references [51,55,60]. For this reason, a major recent
focus of more recent candidate-gene studies has been to clarify the role of other genes
related to the ADRB2 pathway [61] and how these genes may interact with one another (i.e.,
gene–gene interactions). Through molecular genetic studies, Tantisira and colleagues first
identified AC9 as a potential candidate gene for therapeutic response to β2-agonists [62]. In
a large clinical asthmatic cohort, the AC9 Ile772Met SNP was associated with a significant
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upregulation of ICS-specific response, which was also confirmed in functional assays using
AC9-transfected human lung cells [62]. Recently, in a Korean cohort of 86 asthmatics,
Kim et al. reported significant associations of the two previously reported AC9 variants, the
AC9 Ile772Met and AC9 5′-UTR 150397, with two measures of lung function (ΔFEV1%
and change in maximum mid-expiratory flow) following 8 weeks of inhaled combination
therapy with budesonide and formoterol [63]. Notably, in patients with one or more variant
alleles of AC9 Ile772Met and ADRB2 Arg16Gly polymorphisms, an additive effect on BDR
was observed, suggesting that the response to combined treatment of ICS and β2-agonists
can be mediated by the ADRB2-AC9 gene–gene interaction in addition to AC9 alone [63].

Other candidate genes for β2-agonist response that have been studied to date include: ARG1
[49], GSNOR [25,64], GCLC [65], CPS1 [25] and THRB [66]. Many of these loci were
investigated using gene–gene interaction studies [63]. Various SNPs, including those in
linkage disequilibrium with the promoter SNP rs2781659 in ARG1, have been significantly
associated with BDR in two separate candidate-gene studies in large asthmatic cohorts
[14,49]. In a study of 221 asthmatics, ARG2 SNPs were also associated with BDR,
suggesting that both genes are involved in therapeutic response [49]. The improvement of
BDR observed in carriers of the ARG1 promoter haplotypes is believed to be due to
increased transcription of ARG1, which may promote BDR by reducing bronchial hyper-
responsiveness [67,68].

In an African–American cohort, SNPs in several candidate genes – ADRB2, ADCY9,
GSNOR, GCLC and CPS1 – were evaluated for their joint association with asthma severity
and BDR [25]. In the gene–gene interaction analysis, a promoter SNP in GSNOR
(rs1154400) that was associated with acute BDR also interacted with ADRB2 Arg16Gly and
ADRB2 Gly27Glu [25]. By multifactor dimensionality reduction prediction method, a
multilocus model that included ADRB2 Arg16Gly, ADRB2 Gly27Glu, GSNOR
(rs1154400) and CPS1 (rs2230739), was able to predict BDR with an accuracy of 70% [25].
These findings suggest that BDR to β2-adrenergic receptor agonists is dependent upon
multiple genes in diverse biological pathways of airway response. In a family-based
candidate gene study of 609 Puerto Rican and Mexican asthmatic trios, four SNPs within
GSNOR, including a promoter SNP haplotype associated with increased GSNOR
transcription, were associated with increased susceptibility to asthma and decreased BDR
[64]. A subsequent gene–gene interaction study of the variants within GSNOR and ADRB2
identified significant association of the GSNOR promoter SNP variant allele, ADRB2
Arg16Gly and ADRB2 Gly27Glu genotypes with lower BDR compared with the wild-type
carriers in both cohorts [64]. These findings suggest that individuals with the combined
genotypes may be at increased risk for poor therapeutic outcomes to β2-agonist treatment. In
a recent candidate gene screen, Duan et al. evaluated the association of BDR with 1116
SNPs in 98 genes encoding 59 transcription factors with BDR in an initial asthma cohort (n
= 403) and three replication cohorts receiving β2-agonists [66]. The authors identified
multiple SNPs that were modestly associated with BDR [66]. An intergenic SNP (rs892940)
near the THRB gene was significantly associated with response to β2AR agonists in the
initial population and also replicated in the other populations [66]. This locus represents a
novel candidate for regulation of β2AR response. Together, these studies demonstrate
significant progress in recent efforts to unravel multilocus interactions in the β2-agonist
pathway.

5-Lipoxygenase (5-LO) mediates the production of leukotrienes, which are inflammatory
mediators generated from arachidonic acid that contribute to a variety of disease states,
including asthma. LTMs such as zileuton, montelukast, pranlukast and zafirlukast ameliorate
inflammation-induced asthma symptoms by either selectively inhibiting leukotriene
production from arachidonic acid (zileuton) or preventing leukotrienes from binding to
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CYSLTR1, the major leukotriene receptor (montelukast, pranlukast and zafirlukast). For an
overview of this molecular pathway, see reviews [17,69,70].

There is significant heterogeneity in response to LTMs, and a genetic basis for this
variability was established with the first studies that associated a functional Sp1 tandem
repeat promoter variation within the 5-LO-encoding gene (ALOX5) with treatment
outcomes [15,16]. Candidate genes involved in the 5-LO pathway include: LTC4S [15,16],
CYSLTR1 [18,71], CYSLTR2 [15,16], ABCC1 [15,16], LTA4H [72–74] and SLC02B1
[15,16]. However, in nearly all cases, replication of identified associations has been difficult,
and the extent of contribution of the individual genes to LTM response is unclear. For
ALOX5, three intronic SNPs with unknown function have demonstrated associations with
ΔFEV1 after zileuton (n = 577 asthmatics) [17] and montelukast (n = 252 asthmatics) [18]
therapy. Two additional SNPs (rs4987105, Thr120Thr and rs4986832, 5′-UTR) were
associated with improved response to montelukast (n = 147 asthmatics) [19]. These
associations have not yet been validated, and their functional significance has not been
determined. The LTC4S gene promoter polymorphism (A-444C) was associated with
improved response to LTMs; however, consistent reproduction of these results has been
problematic [19]. Tantisira et al. showed that an intronic LTC4S variant, rs272431, was
associated with improvement in FEV1 following zileuton treatment [17]. While no variants
of CYSLT1 have been significantly associated with LTM response, two variants in the 3′-
UTR of CYSLT2 were associated with an increase in morning peak expiratory flow in 174
asthmatics taking montelukast [18,19].

Recent studies identified genetic determinants of LTM response and plasma levels in
transporter genes SLCO2B1 and MRP1 [17,30,32]. Multiple SNPs within MRP1 have been
associated with differential responses to montelukast [30] and zileuton [17] treatment;
however, the molecular mechanisms of these variants have not yet been determined. The
SLCO2B1 gene encodes OAT2B1, which transports montelukast in a concentration-
dependent manner and is a probable determinant of montelukast pharmacokinetics [32].
Recently, Mougey et al. identified a nonsynonymous SLCO2B1 SNP, rs12422149
(Arg312Gln), associated with reduced montelukast plasma concentrations during a 1-month
or 6-month treatment regimen [32]. In 80 asthma patients who were genotyped for
Arg312Gln, heterozygotes had approximately 20% lower montelukast plasma levels at 1
month, and approximately 30% lower concentrations at 6 months, compared with the wild-
type carriers [32]. Furthermore, scores for the Asthma Symptom Utility Index (the primary
clinical phenotype) showed that Arg312Gln heterozygotes did not show improvement in
their symptom scores [32]. These findings suggest that, in carriers of the Arg312Gln
genotype, lower systemic exposure to montelukast and a corresponding decrease in
pharmacodynamic response are likely to be a result of impaired OAT2B1-mediated
intestinal absorption. Screening individuals for the SCLO2B1 Arg312Gln variant (which is
present at minor allele frequencies of approximately 20% in the general population) prior to
montelukast adminstration may therefore be useful for identifying patients who are unlikely
to respond. However, replication of these studies in larger cohorts is necessary in order to
make clinical inferences about these results.

GCs initiate their therapeutic effects by forming a complex with the intracellular GC
receptor (GR), which then translocates to the nucleus to modulate transcription of
inflammatory genes. For a review of this pharmacological pathway in asthma treatment
response, see references [50,69]. ICS and oral corticosteroids (e.g., budesonide,
prednisolone and beclomethasone) are among the most highly effective drugs for asthma
treatment. However, response to these drugs shows significant and repeatable interindividual
variability, suggesting that genetic mechanisms may play a role in therapeutic response
[50,69].
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Efforts to discern the genetics of corticosteroid response in asthma have focused on
candidate genes involved in the corticosteroid pathway. In addition to NR3C1, which
encodes the GR, other genes were identified including CRHR1 [50,69], TBX21 [50,69],
FCER2 [50,69], DUSP1 [50,69], STIP1 [50,69] and NK2R [50,69]. Several studies have
reported the NR3C1 gene to be associated with asthma, some of which have demonstrated
functional consequences for GC sensitivity [19,75–79]. Recently, Panek and colleagues
established that a coding SNP in NR3C1 is associated with moderate/severe bronchial
asthma [78]. However, whether this SNP affects GC response via the GR is unknown [78].
An additional SNP encoding a valine to aspartate change at amino acid 641 was shown to
alter the affinity of dexamethasone binding to the GR [78]. Molecular genetic studies of GR
would benefit asthma pharmacogenetic studies; however, the majority of variants identified
in NR3C1 are rare and remain unvalidated.

In addition to the GLCCI1 GWAS, candidate gene SNPs that have been significantly
associated with changes in lung function in response to ICS (%ΔFEV1) in larger asthmatic
cohorts (n > 400 patients) have been identified in the following genes: CRHR1 (rs242941)
and DUSP1 (rs881152) [21] In a candidate gene analysis of a smaller cohort (n = 382
asthma patients), multiple SNPs in STIP1 (rs4980524, rs6591838 and rs2236647) were also
associated with variable response to ICS [78]. Additional primary outcome measures
investigated in GC candidate-gene studies include airway responsiveness (4-year change)
[20], improved asthma control [31], exacerbations [22,23] and plasma IgE levels [22]. In
these studies, significant SNP associations with post-ICS airway responsiveness were
observed for TBX21 (rs224001) [47]. Single SNP associations with improved asthma
control were identified in NK2R (rs7703891) [78] and DUSP1 (rs881152) [21]. In three
separate asthma cohorts, an intronic SNP within FCER2 (rs28364072) was associated with
increased risk of severe asthma exacerbations while on ICS [78]. The minor SNP allele was
also associated with elevated IgE levels, hospital visits and poor asthma control in the
replication cohorts [22].

The loss of regulatory control of GC response in asthma creates chronic inflammation,
which worsens lung function and leads to exacerbations and poor asthma control despite ICS
use. Understanding the functional genotype–phenotype relationships of these clinical
symptoms, which are controlled by complex interactions among GC pathway genes, requires
additional investigation in efforts to improve quality of life and therapeutic outcomes for
patients taking corticosteroids.

In the previous sections of this review, we discussed the most relevant recent findings from
asthma pharmacogenomics studies of candidate genes and GWAS, with particular attention
to studies with well-powered cohorts and associations of gene–gene and gene–environment
interactions. In the subsequent sections, we will discuss how pharmacogenomic associations
can be applied toward improved therapeutic outcomes in asthma using systems biology and
integrative genomics approaches.

Introduction to systems biology in pharmacogenomics
Despite the existence of numerous pharmacogenomic SNP associations, very few SNPs can
explain more than a small percentage of the variability in a pharmacogenomic clinical
outcome. Additionally, there is solid evidence of a genetic relationship between treatment
outcomes and asthma phenotypes that clearly involves diverse pathways and multiple genes.
Recent advances in genomics and other `omics' now provide an unbiased, systems-based
approach to investigate both genetic and environmental factors that have direct and indirect
effects on gene expression, phenotype and therapeutic outcomes. As a result of these
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advances, we are now poised to identify relevant biomarkers and design more rational,
targeted therapy for inflammatory lung diseases [80].

The role of systems biology in pharmacogenomics is to construct the best model of a
biological network from cellular, genomic, proteomic and bioinformatics data to more
accurately predict clinical drug response. A systems biology approach generally proceeds in
the following manner: data collected from multiple sources are used to generate modeling
algorithms that can interpret large data sets and link phenotypic information to genetic,
regulatory or protein networks; through iteration and refinement of the original model and
testing for accuracy, a final model is obtained, which is used to both predict behavior of the
network of interest, and allow the network to be perturbed and manipulated in order to
accommodate novel information. For a comprehensive overview of systems biology in
pharmacogenomics, see reviews [36,38].

Systems biology in asthma pharmacogenomics
Methodological approaches in systems biology incorporate data mining and network-
reconstruction methods with machine-learning algorithms to generate graphical models to
infer relationships between the network components. Machine-learning algorithms apply a
priori information from known biological pathways to construct representative model
networks. For a comprehensive review of machine learning, see reference [81].
Classification-based algorithms, which are valuable in pharmacogenomic analyses for their
ability to identify predictive relationships among the variables and generate descriptive
models that capture the biological relationships, include decision trees (e.g., Random
Forests) [82,83] and representation learning (e.g., cluster analysis and principal components
analysis) [84]. Network-based descriptive modeling algorithms, for example, Bayesian
networks, allow reverse engineering and graphical visualization of biological networks from
data [85–87]. This approach is the most common method used in systems biology data
analysis of pharmacogenomic studies [37]. Due to the recent implementation of systems
biology toward asthma pharmacogenomic studies, some of the examples to follow relate
specifically to asthma rather than asthma treatment response. However, given that asthma is
a disease characterized by airways inflammation and reversible airflow obstruction (which
the two major categories of asthma therapy target), the findings reported in these studies
may be relevant to asthma pharmacogenetics as well.

Bayesian networks
Bayesian networks are useful for descriptive and predictive modeling, and have been used
for reconstruction of genetic pathways and cellular networks [87–89]. Bayesian networks
are machine-learning algorithms that can be represented by directed acyclic graphs
containing nodes (i.e., variables with conditional probability distributions, e.g., genes) and
edges (i.e., causal relationships/dependency among the variables, e.g., regulatory
relationships among the genes) [85,87]. Bayesian networks and their components are learned
directly from the data, and can account for simultaneous associations and interactions among
variables. For example, for a known Bayesian network modeling a gene regulatory network,
a given node represents a subset of genetic interactions, and inferences about the likely
values of other genes in the network can be calculated as a product of relevant conditional
probability distributions [87]. Of particular note, the modular nature of Bayesian networks
makes them ideal for analysis of large association studies [88,89]. Limitations of Bayesian
networks include the choice of variables to include in the model (candidate genes or SNPs),
the number of variables to add (e.g., sample size) and the classification or estimation of
phenotype, which are often continuous.
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Previously, Bayesian network analysis identified associations of innate immune response
genes with asthma and eczema [90], predicted clinical factors that modulate risk of
progression to chronic obstructive pulmonary disease based on patient data from electronic
medical records [91] and predicted asthma exacerbations [92,93]. Recently, Himes et al.
investigated the predictive validity of Bayesian networks in asthma pharmacogenomics
using a candidate gene approach to generate a predictive network of SNPs associated with
BDR [94]. The Bayesian model was applied to pharmacogenomic data from the CAMP
clinical trial to identify a set of genetic predictors of drug response [94]. A set of 254
candidate genes, based on previously published associations with asthma- and therapeutic
response-related phenotypes, were genotyped to obtain a subset of 426 associated SNPs, and
genetic case–control analysis was conducted to measure the association of these SNPs to
BDR [94]. From these data, the authors constructed a Bayesian network of SNPs with the
highest likelihood of predicting BDR, which was learned directly from the genetic data
(Figure 2) [94]. The Bayesian network model was better at predicting BDR, in comparison
with single SNPs or regression models [94]. This approach identified 3.5% of SNPs
(15/426) within 5.4% (15/254) of candidate genes that were predictive of BDR [94]. The
model showed reasonable predictive accuracy (area under the receiver operating
characteristic curve of 0.75) as determined by fivefold cross-validation [94]. When
compared with a single-gene approach, the model showed superior predictive accuracy;
however, the model was limited by the small sample size (which reduces power to predict
genetic effects), the definition of the bronchodilator-response phenotype, the selection of
SNPs and candidate genes, and the lack of independent (external) validation [94].

This study demonstrates both the beneficial applications of Bayesian networks in
pharmacogenomics as well as some important limitations. While Bayesian networks
automatically learn complex models and can be successfully applied as predictive models of
therapeutic response, their success is dependent upon having sufficient power to detect
genetic effects and the definition of phenotypes used to build the model [87]. Furthermore,
when the number of genes or SNPs greatly outnumbers the sample size, estimation of the
model becomes difficult. Nevertheless, Bayesian networks represent a promising approach
to pharmacogenomic studies as they provide multivariate networks of SNP–phenotype
associations, and are capable of automatically learning complex models and accurately
predicting phenotypic response.

Random Forests
Random Forests are randomized decision tree algorithms where each tree makes a decision
and votes for the final prediction outcome [83,95–98]. As Random Forests can contain from
500,000 to 1 million variables and can repeatedly evaluate multiple combinations of
variables without overfitting, these algorithms are well suited to analyzing GWAS data
[95,96]. Importantly, Random Forest models can effectively extract and evaluate
information from small numbers of samples, making them a useful option for analyses of
pharmacogenomic studies, which are typically constrained by small sample sizes [98].

Random Forests have previously been used to identify susceptibility loci in asthma [99,100].
Xu et al. recently developed a predictive model of asthma exacerbations and clinical
attributes including bronchodilator treatment using the Random Forests algorithm [101].
Using GWAS data from 417 Caucasian participants (parent–child trios) in the CAMP study,
the authors applied a multistep Random Forests model to rank and select SNPs as predictors
of asthma exacerbations [101]. For multiple clinical attributes (e.g., age, prebronchodilator
FEV1% and treatment group) and 160 predictor SNPs, which were selected based on
Random Forests importance scores, the model predicted severe exacerbations with
reasonable success [101]. The authors identified a SNP (rs10496476) in the gene DPP10,
which was previously associated with asthma [102], while the remaining SNPs had not
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previously been reported, suggesting that these SNPs were novel asthma-related
associations. The identification of novel SNP–asthma associations by Random Forests may
be partially due to the properties of the Random Forests algorithm, which, in contrast to
conventional statistical methods for GWAS analysis that only evaluate single-SNP
associations, simultaneously evaluates multiple SNPs with additive and interactive effects in
the context of multiple clinical factors [101]. The Random Forests approach employed by
this investigation underscores the likelihood of complex traits such as asthma exacerbations
to be due to a large number of genetic and environmental factors. These results are
encouraging examples of how Random Forests methods will be valuable approaches for
prediction of complex traits, such as genotype–phenotype relationships in drug response.

Combined methods
Genome-wide gene-expression profiling through microarray analysis and next-generation
sequencing provides important information about biological processes by identifying groups
of coexpressed genes. Characterization of gene signatures is traditionally inferred through
cluster analysis and correlation procedures, which alone are not meant to infer higher-order
relationships among genes and gene networks [103]. By combining clustering methods with
graphical machine-learning algorithms, subsets of coregulated gene modules that reflect
disease states or complex phenotypes can be obtained [104–106]. These modules can then
be individually analyzed, for example, to identify novel targets for modulating clinical
outcomes, using a variety of integrated statistical and bioinformatic approaches.

Classification algorithms such as weighted voting classifiers have been applied to predictive
modeling of asthma drug response phenotypes [107]. To search for genes that accurately
predict responders and nonresponders to GC treatment, microarray gene-expression profiles
from peripheral blood mononuclear cells from GC-sensitive and GC-resistant asthma
patients were examined [106]. The analysis identified 923 genes that were significantly up-
or down-regulated in response to treatment with cytokines in vitro and that had reversed
expression in the GC responders after treatment with GC [106]. To identify genes predictive
of GC response, the most extreme subsets of GC responders and GC-resistant cohorts were
split into equally sized training and test sets, and a weighted voting algorithm was applied
[106]. At baseline, the GC-response phenotype could be predicted with 60% accuracy.
When profiles from the most extreme phenotypes were evaluated, a resulting subset of 15
genes predicted patient phenotypes with an accuracy of 84%. By reverse transcription PCR
validation, 11 of the 15 genes could predict a GC response phenotype from an independent
asthma cohort with 84% accuracy [106]. Among these genes, NF-κB could independently
predict GC response with an accuracy of 81.25% [106]. These findings suggest that a few
GC-response genes can predict response to GC in asthmatics with high accuracy. However,
as the authors trained their algorithm on extreme phenotypes, the GC-resistant study
population consisted of individuals who were truly steroid resistant, a situation which affects
only a small minority of asthmatics (0.5%).

Module networks analysis is a machine-learning algorithm that incorporates graphical
models with clustering and regression methods [104–106]. This method was developed to
identify regulatory gene modules and coregulated genes, using gene expression data and a
priori biological information [106]. The algorithm requires an input gene-expression data set
(e.g., DNA microarray data set) and a list of candidate regulatory genes (e.g., transcription
factors). The procedure applies an expectation maximization algorithm to iteratively search
and partition genes into modules with associated regression trees specifying a set of genes
that regulate the other genes or processes within a module. Given a set of modules and
regression trees, the algorithm first learns the best regression tree for each module and then
determines the module whose associated regression tree best predicts the behavior for each
gene, repeating this procedure until convergence is reached. The resulting output, a list of
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modules and their associated regulation programs, may then be evaluated for biological
significance by database annotation. These annotated modules can then be further analyzed
to infer functionally related genes and gene networks, and to derive testable hypotheses,
thereby providing a powerful means to generate new insights into complex regulatory
processes.

Using publicly available microarray expression data, Novershtern et al. performed module
networks analysis to identify significantly coregulated gene modules and potential
regulatory networks within these modules, by projecting the discovered modules to
annotated protein interaction networks using the Ingenuity Knowledge Base [108]. A
complete map of all network interactions is publicly available online at the interactive
AsthmaMap website [108,202]. The authors identified four distinct responses to asthma
treatment, defined by early response, general induction, repression and dependence on IL13
induction [108]. Modeling of IL13-dependent response using protein interaction networks
identified a key regulatory gene for IL13-dependent therapeutic responses in allergic lung
inflammation, TGF-β1 (Figure 3) [108]. This effort underscores the utility of using
complementary analytic approaches to identify novel regulatory pathways that are only
apparent when multiple levels of information are simultaneously analyzed.

A systems biology perspective of asthma phenotypes
A goal of systems biology is to integrate the relevant clinical and pharmacogenomic
phenotypes with genomic and expression information to explore the relationships among
genes and to identify disease susceptibility loci. Because pharmacogenomic studies are
designed to relate drug response (i.e., phenotype) to genotype, the definition of accurate and
repeatable phenotypes is crucial in order to avoid bias. While tremendous effort has been
exerted toward identifying the genotypic basis for variation in asthma phenotypes,
comparably little effort has focused on accurately defining phenotypic features and
integrating these efforts toward discerning environmental influences on phenotypes. In
genetic studies of complex traits such as asthma, misclassification of phenotypes through
measurement errors and poor phenotypic definition can bias the observed relative risk or
relative odds of response. These errors have contributed to the lack of reproducibility of
results obtained through large-scale genomic studies. Due to the differing levels of asthma
severity, diversity and complexity of emerging phenotypic definitions of asthma, researchers
have called for the re-evaluation of asthma, not as a single disease, but as an entity of
multiple diverse phenotypes [6,109].

Phenotypic definitions in asthma pharmacogenomics have traditionally been categorized
into two functional response classes. The first class comprises diverse factors that directly
determine drug pharmacokinetics and pharmacodynamics; that is, `drug response', and the
second class reflects factors that influence disease outcome, symptoms, therapeutic effects
and disease pathogenesis; that is, `target response' (reviewed in [110]). The two functional-
response classes can be further divided into phenotypic subcategories based on the effects of
genetic variability and environmental perturbation on the pharmacological properties of a
drug (Figure 4). These phenotypic categories include pharmacokinetic and
pharmacodynamic response, idiosyncratic drug reactions and the natural history of the
disease (Figure 4). The majority of pharmacogenomic studies to date have focused on
pharmacokinetic phenotypes. This is primarily due to the direct relationship between drug
levels in vivo and genetic variation in the metabolic enzymes and transporters that govern
the absorption, disposition and elimination of a specific drug. By contrast, fewer
associations with pharmacodynamic effects and idiosyncratic drug reaction associations
have been identified, which reflects the complexity of most drug target and hypersensitivity-
response pathways and the reduced power to detect true differences in response pathways
versus single-drug targets.
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As previously discussed in this review, many recent large-scale genomic studies have
identified candidate genes and pathways involved in symptomatic response and disease
progression of asthma. Most of these studies have focused on early-onset or childhood
clinical asthma phenotypes, such as asthma severity, quantitative measures of lung function
and exacerbations (e.g., hospitalizations and emergency room visits; reviewed in [111]).
Childhood asthma is believed to be a result of TH2-type immune responses linked to
numerous additional covariate phenotypes, many of which have not been fully characterized
(reviewed in [6]). However, recent progress in the characterization of asthma phenotypes
suggests up to half of mild-to-moderate adult-onset asthmatics show little evidence of TH2
processes (reviewed in [6]). From a natural history of disease perspective, non-TH2 asthma
may represent a subgroup of patients who are more likely to be poor responders to
corticosteroid therapy, probably due to the lack or suppression of TH2 pathway response
(reviewed in [6]).

Due to the overlap of genetic pathways involved in asthma pathogenesis and
pharmacological response to treatment (e.g., corticosteroid-targeting of TH2 pathways),
discerning true pharmacogenomic associations from those associated with the natural history
of the disease has been difficult. In particular, clarification of pharmacogenetic associations
jointly with disease-related phenotypes such as symptomatic response (which incorporates
asthmatic immune response pathways as well as pharmacokinetic and pharmacodynamic
phenotypes) is challenging. One solution to the problem of asthma phenotype complexity
may be found in moving away from traditional epidemiological approaches for disease
classification and hypothesis development, and embracing systems-level methods that can
readily integrate the complexity of multidimensional asthmatic phenotypes. Recently,
several investigators have utilized clustering and network-based approaches to evaluate
asthma, atopy and wheezing [6,112–115]. These methods have been able to differentiate
severity of phenotype [114], but cannot always provide reproducible results among different
studies. Network methods that cluster phenotypes based on similarity and/or severity prior to
genetic analysis would also be useful for identifying functional or disease modules that more
closely reflect the true relationships between genotype and drug or target responses. The
resulting networks could also be combined with metabolome or transcriptome profiles to
improve phenotypic characterization of a disease or biological process. For example, Inouye
et al. applied network analysis of genome-wide genetic and transcriptional variation with
blood lipid measurements from 500 unrelated individuals to identify a tissue-specific
immune response network module associated with blood lipid levels, inflammatory and
allergic processes and a single SNP that regulates serum IgE levels [116].

Integrative pharmacogenomics
Genomic technologies including expression microarrays, high-throughput genotyping and
next-generation sequencing platforms have significantly advanced the identification of
causal variants. By integrating expression data with genotype data through functional
genomic screens, investigators can identify genetic variants contributing to the expression
and activity of genes and pathways involved in drug response (i.e., functional SNPs),
thereby enabling the rapid discovery of pharmacogenetic biomarkers that alter gene
expression and function.

An integrative pharmacogenomic study might involve first obtaining genotype data (i.e.,
SNPs) through pharmacogenomic GWAS or candidate-gene studies in an appropriate
asthma patient cohort. One historical method of obtaining gene-expression data (e.g., by
microarray) is from immortalized B-lymphocytes, which can potentially be derived from the
original patient population, and which have been pharmacologically treated or left untreated
with the study drug. The expression quantitative trait loci (eQTL; reviewed in reference
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[117]), which are defined as genome-wide expression SNPs with the greatest association to
pharmacologically induced expression differences in the asthmatic cell lines, are identified
through statistical analysis of the expression data. The most salient of eQTLs are then tested
for clinical validation using genomic information from the previously completed clinical
trial of asthmatics taking drug therapy. The eQTL can be used to weight or otherwise be
statistically linked with the genomic information, and then modeled through various
statistical or systems biology approaches, including pathway modeling and multivariate
analysis [117]. Through integrating genome-wide expression data with population genomics,
pharmacogenetic eQTLs can be rapidly identified.

Functional eQTL studies, where gene transcripts are evaluated as a quantitative phenotype in
genetic association studies, are becoming increasingly valuable for identifying and
validating pharmacogenomic loci. These studies are particularly useful for identifying
treatment-specific genetic determinants of regulation of gene expression, and are well-suited
to pathway-based modeling approaches. Through an extensive global eQTL mapping study,
Grundberg et al. queried the genome expression profiles of cultured human osteoblast-like
cells in response to treatment with dexamethasone, a potent GC steroid hormone, and
identified dexamethasone-specific eQTLs in which approximately 60 genes per sample
showed significant evidence of dexamethasone-specific allele-specific expression
differences [118]. A top dexamethasone eQTL locus encoded TNC, an extracellular matrix
protein involved in inflammation that is increased in the lung tissue of asthmatics [119] and
is known to be downregulated by dexamethasone [118,119]. After determining that
dexamethasone-specific downregulation of TNC occurs in a genotype-dependent manner,
the authors sought to determine whether dexamethasone-dependent, heritable cis-regulation
of TNC expression was responsible for the observed variability in therapeutic response to
ICS in asthma patients. Six expression SNPs within the TNC locus were tested for
association with response (FEV1 measured before and after 2 months of corticosteroid
treatment) to daily inhaled budesonide treatment in 170 children with mild-to-moderate
persistent asthma, who had been randomized to receive either daily ICS treatment or
placebo. Of these, four SNPs (rs955387-A [β = −6.99; p = 0.005], rs10982634-C, [β =
−6.01; p = 0.01], rs10817727-G [β = −5.78; p = 0.02] and rs12380804-A [β = −8.09, p =
0.02]) demonstrated significant associations with treatment response. These results
demonstrate the utility of functional genomics in identifying specific pharmacogenomic
eQTLs for asthma treatment response.

Many eQTL studies have identified regulatory variants located near target transcripts (e.g.,
cis-acting variants), of which only a small number are heritably expressed [120–122].
Identifying the epistatic effects that are likely to explain the remaining heritable variation is
a difficult problem owing to the large number of tests in proportion to the number of
samples analyzed. Bayesian networks and other graphical network models that can estimate
millions of combinations of variables, such as GGMs, have been applied in the context of
integrative genomics in an effort to circumvent this problem [124–125]. Recently, Chu et al.
employed this approach to investigate gene–SNP associations [126]. A GGM was developed
to infer SNP–gene networks from an asthma integrated genomic data set. The model was
constructed using a multistep approach based on conditional independence of SNPs, using
partial correlation to define the gene–SNP interaction matrix, and false-discovery rate
multiple testing and posterior probability threshold to estimate the significance of the
interactions. To validate the model, the authors created an asthma integrative genomics data
set, using the genome-wide genotype data from the CAMP GWAS of patients on ICS (n =
229) and whole-genome gene expression data from CD4+ T lymphocytes isolated from a
subset of these CAMP participants (n = 154) [126]. GGM was applied to 534,290 SNP
markers identified in the GWAS and 3203 RefSeq-annotated transcript profiles from the
CD4+ lymphocyte samples, from which 513,203 probable gene–gene associations were
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identified [126]. The model was independently validated using a publicly available gene
expression set in the Gene Expression Omnibus [127] from CD4+ lymphocytes in asthmatic
and normal subjects [126]. Using a stringent threshold (posterior probability > 0.9) a
significant proportion of gene–gene interactions (1913 interactions) and 40 hub genes with
>100 significant connections to other genes were found, suggesting that these genes are of
biological importance in CD4+ lymphocytes (Figure 5) [126]. To demonstrate the utility of
the model, one of the significant hub networks, containing the β2 subunit of the IL12RB2,
which has important immunomodulatory roles in CD4+ lymphocytes and airway disease,
was evaluated. The GGM found 306 IL12Rβ2-interacting genes with 5611 cis-acting SNPs;
following false-discovery rate adjustment, the model selected 225 SNP–gene pairs with
significant association, including two asthma-related genes, RAP1A and TBKBP1 [127].
GGM was also applied to nonhub genes in order to identify regulatory variants for genes
associated with a second asthma candidate gene, IL1B, for which it identified 353
significant SNP–ene pairs [127]. These results demonstrate a novel application of graphical
network models for inferring gene–SNP associations that reflect the underlying biological
network between genes and phenotypes. The integration of clinical phenotypes with
expression and genotype information to identify novel candidate genes represents an
exciting frontier in asthma pharmacogenomics.

Conclusion
Significant recent progress has been made in the pharmacogenomics of asthma treatment
response. Through candidate gene studies and GWAS, novel pharmacogenetic loci and
SNPs associated with therapeutic response to B2-agonists and GCs have been identified. An
important finding in these studies is that treatment response is significantly influenced by the
interaction of mutiple genes (i.e., gene–gene interactions), SNPs and haplotypes. These data
provide strong evidence of involvement of genetic networks in asthma therapeutic response
phenotypes and demonstrate a need for prospective clinical studies of gene–gene
interactions as well as genome-wide approaches that interrogate all available SNPs in order
to identify true markers of asthma treatment response.

Several recent studies have applied network-based, integrative methods to identify
genotype–phenotype relationships in asthma pharmacogenomics. SNP networks generated
through Bayesian modeling and Random Forests classifiers have successfully predicted
BDR and asthma exacerbations. Module networks analysis, which generates probabilistic
graphical models of gene expression and function, was used to create a global map of
asthma that contains network modules associated with treatment response. Importantly,
these findings can infer significant genotype–phenotype relationships that are otherwise
difficult to discern.

Integrative genomic approaches that combine genome-wide genotype data with gene-
expression profiles have been used to identify novel candidate genes and infer biological
networks associated with therapeutic response. The results of these studies illustrate the
utility of systems biology approaches in asthma. Using data from an omics data set,
researchers can develop descriptive and predictive models of drug-response phenotypes that
incorporate multiple genetic and environmental factors.

While the systems biology methods offer promising solutions, their direct applicability in
clinical practice and drug development is hindered by some significant limitations. The
greatest limitation is that many of these methods are still under development and have not
been widely validated. In addition, there has been little independent replication of findings
resulting from these studies. The clinical translation and predictability of these methods
therefore remains to be seen; however, increased efforts to validate methodologies and a
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focus on replicating initial results will expedite this process. Given its relevance and utility,
we anticipate that the systems biology paradigm will soon become standard practice in
pharmacogenomic research in asthma.

Future perspective
The initial asthma pharmacogenomics GWAS represents the first of many
pharmacogenomic GWAS to come. These future GWAS will drive the development of
larger well-characterized cohorts, new and improved study design and statistical analysis
strategies that take into account the unique challenges presented by genome-wide
pharmacogenomic studies. In addition, recent progress in next-generation sequencing
technologies such as whole-genome sequencing, exome sequencing, RNA-sequencing and
chromatin immunoprecipitation sequencing represent an exciting frontier in asthma
pharmacogenomics. These technologies will lead to an abundance of genetic information,
and integrating these data with other relevant clinical and biological information will
provide informative data sets for predictive modeling. However, these efforts are expected
to introduce significant methodological and bioinformatic challenges. As data analysis
becomes more complex, the development and refinement of software tools that provide
improved and more rapid knowledge discovery, data mining and network engineering
activities is anticipated to overcome some of these challenges.
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Executive summary

Progress in asthma pharmacogenomics

■ The first pharmacogenomic genome-wide association study of inhaled
corticosteroids response in an asthma cohort identified a functional variant in
GLCCI1, a glucocorticoid pathway gene.

■ Gene–gene interactions of various candidate loci are associated with
treatment response.

Systems biology

■ Systems biology approaches seek to generate the best model of a biological
network from large-scale `omics' data.

Systems biology approaches in asthma

■ Bayesian networks and Random Forests are capable of modeling and
accurately predicting phenotypic response from genomic and expression data.

■ Integration of modeling with expression data provides a system-level view of
asthma.

■ Incorporating epistasis and directionality effects will improve the accurate
prediction of pharmacogenomic phenotypes through utilization of clustering
and network-based approaches.

Integrative pharmacogenomics

■ Integrating genomic data with expression quantitative trait loci can identify
candidate genes and infer biological networks associated with therapeutic
response.

Conclusion

■ Novel pharmacogenetic loci and gene pathways can be inferred using a
systems biology approach.
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Figure 1. GLCCI1 rs37972 SNP genotype predicts inhaled corticosteroid treatment response in
asthma patient cohorts
The rs37972 mutant (T) allele was significantly associated with poorer therapeutic response
(measured as the mean ± standard error ΔFEV1, expressed as the percentage of the predicted
value), after 4–8 weeks of therapy with inhaled glucocorticoids in four study groups: SOCS
and SLIC trials (SS; n = 264), the Adult Study (n = 385), the LOCCS trial (n = 185) and the
CARE network trials (n = 101). CC represents the homozygous reference genotype; CT
represents the heterozygous genotype; TT represents the variant genotype.
ΔFEV1: Forced expiratory volume in 1 s.
Reproduced with permission from [24] © 2011 Massachusetts Medical Society.
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Figure 2. Bayesian network model of SNPs predictive of bronchodilator response
A Bayesian network, which was learned directly from the data, shows 15 SNPs from 15
candidate genes that are significant predictors of BDR.
BDR: Bronchodilator response.
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Figure 3. Module network analysis of a treatment-dependent protein interaction network
Ingenuity pathway analysis of a treatment response-induced, IL13-dependent cluster
identified key regulatory genes TGF-β1 and JUNB. Eight of the network proteins were
regulated by TGF-β1, which in turn is activated or induced by THBS1, MMP14 and IL13 in
a positive-feedback loop. Proteins are represented by nodes, and edges indicate all
interactions other than coexpression. Nodes of dark blue indicate IL13-dependent expression
(i.e., genes that are induced by treatment only in the presence of IL13).
Reproduced with permission from [108] © 2008, American Thoracic Society.
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Figure 4. Pharmacogenetic categories of asthma phenotypes
Combined effects of genetic and environmental variation categorically affect drug and target
response in four distinct ways: pharmacokinetics (therapeutic concentrations at the target
site), pharmacodynamics (drug–target interactions), idiosyncratic drug reactions (immune
hypersensitivity and drug–drug interactions) and genetic variation related to the natural
history of the disease (pathogenesis and symptomatic response).
IDR: Idiosyncratic drug reaction; NHD: Natural history of the disease; PD:
Pharmacodynamic; PK: Pharmacokinetic.
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Figure 5. Integrative gene network of 86 common edges from the CAMP and HapMap
consortium (GeneVar) cohorts
From a subset of 608 genes, a subnetwork of 86 edges appeared in both CAMP and
GeneVar networks using a threshold of posterior probability of 0.9. Hub nodes are indicated
in pink for CAMP, cyan for GeneVar and yellow for both. The direction of the edges is
shown by the edge color (green: both positive; black: both negative; red: opposite).
Reproduced with permission from [126] © 2009 BioMed Central.
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