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Correlation of Cell Membrane Lipid Profiles with Daptomycin
Resistance in Methicillin-Resistant Staphylococcus aureus
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We compared the cell membrane (CM) lipid composition among nine well-characterized daptomycin-susceptible (Dap®)/Dap-
resistant (Dap”) methicillin-resistant Staphylococcus aureus (MRSA) strain pairs. Compared to the 9 Dap® parental strains, Dap”
strains (with or without mprF-yycFG mutations) exhibited significantly reduced phosphatidylglycerol (PG) content (P < 0.01),
significantly increased total synthesis of lysyl-PG (LPG) (P < 0.01), and reduced carotenoid content (P < 0.05 for 5/9 strains).
There were no significant changes in LPG flipping, cardiolipin content, or fatty acid composition among strain pairs.

Daptomycin (Dap) is a lipopeptide antibiotic, first FDA ap-
proved in 2003, which demonstrates excellent antibacterial
potency and in vivo activity against susceptible Gram-positive
pathogens (1-7). Although both the bacterial cell membrane
(CM) and cell wall (CW) are felt to participate in its bactericidal
pathway, Dap principally targets the CM in a strictly calcium-
dependent manner, rapidly perturbing its integrity and dissipat-
ing its electrochemical gradient, leading to cell death (8). Staphy-
lococcus aureus utilizes adaptations in both CM phospholipid (PL)
content and CW composition to modulate its relative positive
surface charge as a protective mechanism, presumably against the
binding and insertion of positively charged (cationic) antimicro-
bial peptides (CAPs), such as Dap, and host defense peptides
(HDPs) (8—14). In addition, S. aureus can alter its carotenoid pro-
files to calibrate its CM order (fluidity versus rigidity) to best resist
the microbicidal action of CAPs (12, 15). In these regards, S. au-
reus strains have been shown to accumulate single nucleotide
polymorphisms (SNPs) in two particular gene loci during evolu-
tion of Dap", mprF and yycFG (8, 12, 16). The mprF locus in S.
aureus is involved in the lysinylation of CM phosphatidylglycerol
(PG) to generate the positively charged species, lysyl-PG (LPG),
and also promotes LPG translocation from the inner to outer CM
leaflet (8, 10, 17—-19). In addition, mutations in yycFG (involved in
the CM stress response and fatty acid biosynthesis) is a well-
known accompaniment of the Dap” phenotype in S. aureus (8, 16).
The aim of this study was to analyze the fatty acid (FA) and PL
content of a well-characterized recent set of Dap®/Dap” strain
pairs.

(This work was presented in part at the 52nd Interscience Con-
ference on Antimicrobial Agents and Chemotherapy, San Fran-
cisco, CA, 9 to 12 September 2012, abstract number C1-1744
(20].)

Nine previously published Dap®/Dap" methicillin-resistant S.
aureus (MRSA) clinical bloodstream strain pairs were used in this
study (21). (Although the official terminology is “daptomycin
nonsusceptible,” the term “daptomycin resistant” is employed in
this study for a more facile presentation.) The strain pairs were
initially selected on the basis of whether or not the Dap" isolate
possessed an mprF SNP (with and without a concomitant yyc
operon mutation) (21). Each Dap® and Dap" strain pair was iden-
tical on the basis of pulsed-field gel electrophoresis (PFGE) (21).
In addition, the following detailed comparative genotyping assays
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strongly suggested genetic identity among strain pairs: agr typing
(22), spa typing, clonal complex determinations (23), and staph-
ylococcal cassette chromosome mec element (SCCmec) typing
(24). As reported before (21), among these Dap" isolates, the Dap
MICs ranged from 4- to 16-fold higher than those of their respec-
tive parental Dap® isolates (Table 1). In 4/10 Dap" isolates, the
VISA phenotype was observed (vancomycin MICs of 4 pg/ml)
(21) (Table 1).

Seven of the 9 Dap” strains exhibited SNPs within the mprF
gene locus, with or without concomitant SNPs within yycFG,
while in two of the 9 Dap” strains, there were no mutations in
either gene locus (Table 1) (21).

Detailed methods for PL and FA extractions, fluorescamine
labeling of outer CM LPG to define LPG translocation, FA profil-
ing, and carotenoid quantifications have been described in detail
before (8, 10, 12, 15, 25-29). For PL compositional analysis, major
CM PLs of S. aureus PG, LPG, and CL were separated by two-
dimensional (2-D) thin-layer chromatography (TLC) using Silica
60 F254 HPTLC plates (Merck). A minimum of seven TLC plates
were used from two different lipid extracts on different days for
the PL analysis. Data were expressed as the mean (*=SD) percent-
ages of the three major PLs (LPG + PG + CL = 100%). Distinct
FAs, i.e., total iso-branched-chain FAs (BCFA), anteiso-BCFAs,
saturated FAs (SFA), and unsaturated FAs (UFA), were identified
by a gas-liquid chromatography-based microbial identification
system (Sherlock 4.5; courtesy of Microbial ID Inc., Newark, DE).
FA data represent the means (=SD) from a minimum of two
independent determinations from different FA extracts on differ-
ent days. Data were expressed as the percentage of the major FAs
(BCFA + SCFA + UFA = 100%). FAs present in less than 1% of
the total were not included in the data analysis. For carotenoid
assays, stationary-phase cultures (overnight) of S. aureus cells
were subjected to methanol extraction. The absorbance profile of
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TABLE 1 Description of study strains”

MIC

Daptomycin ~ Vancomycin ~ USA mprF
Strain (pg/ml) (pg/ml) group SNP yycG SNP
CB1483  0.25 1 USA100
CBI85 4 2 L826F®  None
CB5079 0.5 1 USA300
CB5080 2 2 L826F°  None
CB5083  0.25 1 USA100
CB5082 4 2 L341S8° None
CB5088 0.5 1 USA300
CB5089 24 2 S295L° None
CB1631 0.5 2 USA100
CB1634 4 4 L826F”  Frameshift
CB1663 0.5 1 ND
CBl664 4 4 L826F”  R86H
CB5057 0.5 1 USA300
CB5059 4 4 1420NY  T4741
CB5062 0.5 1 ND
CB5063 8 2 None None
CB5015 1 4 ND
CB5016 4 4 None None

“ Data in this table have been previously published (21). ND, not determined; none, no
mutation detected.

b Mutation in putative mprF C-terminal synthase domain.

¢ Mutation in putative mprF central bifunctional domain.

TABLE 2 PL content and asymmetry of LPG of 9 study strain pairs

Membrane Lipids in Daptomycin Resistance

the extracts was measured at an optical density of 450 nm (OD,s)
(15). Carotenoid analyses are reported as the means (+SD) from
a minimum of three independent experiments for all strains on
different days.

The two-tailed Student ¢ test was used for statistical analyses of
quantitative data. P values of =0.05 were considered significant.

Several interesting findings were noted in this study. The Dap”
MRSA strains demonstrated a significant enhancement in overall
synthesis of LPG (P < 0.01), with a concomitantly reduced pro-
duction of PG (P < 0.01) (Table 2). There were no statistically
significant differences in CL production, and importantly, the
amount of LPG which was translocated to the outer CM did not
differ among strain pairs (Table 2). Of note, this same PL pheno-
type occurred in the presence or absence of mutations in mprF,
suggesting that genetic networks outside mprF in Dap” strains may
well impact the expression and/or functionality of the latter locus.
In previous studies, mprF SNPs were associated either with excess
production or increased flipping of LPG to the outer layer of CM,
depending on their location within either the synthase or translo-
case domains of this locus, respectively (10, 25, 30). In the current
study, the major “gain-in-function” phenotype observed was in
overall LPG synthesis but not in translocation function. Thus, it
would be predicted that there would be no major differences in net
surface positive charge in comparing the Dap" strains with their
respective Dap® parental isolate. In this regard, in a recent publi-
cation using these same 9 strain pairs (21), there was no consistent
pattern of surface charge differences in comparing the respective
paired Dap® and Dap” isolates.

Next, liposome-based data from our laboratories have also

Cell membrane PL composition (% of total PL [mean * SD])

Strain I-LPG 0O-LPG Total LPG PG CL

CB1483 13.39 = 3.5 191 * 1.6 15.30 = 3.7 77.21 £ 4.2 7.49 + 1.8
CB185 32.10 + 6.6° 3.85 +2.3 35.96 + 6.5° 52.31 = 4.9° 11.73 = 7.9
CB5079 13.63 = 3.9 1.80 * 0.4 1543 + 3.9 72.12 * 8.0 12.44 *+ 6.5
CB5080 24.78 + 4.4° 1.39 + 0.4 26.18 = 4.1° 64.08 + 7.3" 9.75 + 4.2
CB5083 10.15 + 4.8 1.92 0.7 12.07 £ 5.0 83.3 + 6.1 4.63 +2.4
CB5082 19.24 = 5.1° 237 %09 21.61 £ 5.9° 73.58 = 7.2° 482 +26
CB5088 13.61 = 1.6 175+ 1.3 15.36 = 2.5 77.66 + 4.1 6.97 + 3.7
CB5089 22.62 * 6.0 229 + 1.4 2491 * 7.2° 65.93 + 4.8" 9.16 + 5.4
CB1631 10.25 = 3.2 1.83 * 0.6 12.08 = 3.2 80.41 * 4.3 751 =23
CB1634 18.68 * 3.1 1.93 + 1.0 20.61 *+ 3.6° 71.75 + 4.8° 7.63 £ 2.4
CB1663 10.24 = 2.7 1.72 £ 0.4 11.96 * 3.0 83.20 * 4.6 484 +25
CB1664 14.69 * 1.2¢ 1.36 * 0.5 16.05 * 1.0 81.33 = 1.7 262+ 1.8
CB5057 1432 = 1.6 1.59 + 0.8 1591 = 1.9 79.25 * 2.9 4.85 + 2.0
CB5059 24.77 + 3.9 244 + 15 27.22 + 4.9° 69.92 + 4.5" 287 + 1.8
CB5062 11.49 * 2.0 1.21 £ 0.70 12.71 = 2.1 79.90 * 1.6 7.40 + 2.6
CB5063 29.23 * 6.5° 233 + 1.43 31.55 + 7.8" 59.01 + 6.3% 9.44 + 2.4
CB5015 12.73 = 1.15 1.32 = 0.7 14.06 * 1.0 83.31 + 1.4 2.63 + 1.0
CB5016 17.61 * 3.12° 1.66 * 0.38 19.27 = 3.2° 77.20 * 3.1° 353+ 1.7

@ P value <0.005 versus parent strain.
b P value <0.01 versus parent strain.
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TABLE 3 Carotenoid profiles of study strain pairs

Strain OD,5, of carotenoids Pvalue
CB1483 0.616 = 0.1

CB185 0.705 £ 0.07 0.19
CB5079 1.102 £ 0.08

CB5080 0.616 £ 0.10 0.003
CB5083 0.994 £ 0.10

CB5082 0.531 £ 0.11 0.006
CB5088 0.922 £ 0.15

CB5089 0.604 = 0.01 0.06
CB1631 0.638 £ 0.03

CB1634 0.405 £ 0.06 0.02
CB1663 1.12 = 0.06

CB1664 0.798 £ 0.10 0.01
CB5057 0.564 £ 0.01

CB5059 0.336 £ 0.05 0.01
CB5062 0.143 £ 0.04

CB5063 0.122 £ 0.02 0.5
CB5015 0.606 * 0.07

CB5016 0.489 * 0.04 0.07

suggested that LPG plays an additional key role beyond surface
charge regulation in Dap-CM interactions (31). Thus, increases in
LPG CM content (as in the current study) concomitantly reduce
the proportionality of CM PG (31). It appears that the latter neg-
atively charged PG (as well as negatively charged CL) are impor-
tant participants in the initial “docking” of CAPs within target
CMs. In support of this notion, Dap” strains of enterococci and
Bacillus subtilis also exhibit reductions in CM PG (27, 32); in B.
subtilis, derived as Dap” by serial in vitro passage in Dap, such PG
content reductions are associated with an acquired mutation in
pgs (the PG synthase gene locus) (32). Further, PG appears to have
an independent and pivotal function in the capacity of Dap to
oligomerize within target CMs (32). Thus, there are at least two
mechanisms by which increases in LPG synthesis, with reciprocal
decreases in PG production, may impact Dap” in a “noncharge”-
based manner.

Further, our prior investigations with the same strain pairs
confirmed that the Dap” isolates had more fluid CMs than their
respective Dap® parental strains (21). It is known that extremes of
CM order (highly fluid or highly rigid CMs) can alter susceptibil-
ity to a variety of CAPs, presumably by modifying the capacity of
such molecules to bind to and/or oligomerize within target CMs
(33). We therefore performed a detailed FA compositional analy-
sis (a major contributor to CM order) (8, 12, 15, 34), especially the
proportionality of total iso-BCFAs, anteiso-BCFAs, SFAs, and
UFAs. The Dap” strains did not exhibit any consistently or signif-
icantly altered FA content pattern compared to that of their re-
spective Dap® parental strains (data not shown).

In addition, since we have noted before that carotenoid con-
tent of the S. aureus CM affects not only its fluidity properties but
also susceptibility profiles to CAPs (15), the comparative caro-
tenoid content among strain pairs was determined. Most of the
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Dap" isolates (excluding CB185) exhibited less CM carotenoid
content than their respective Dap® parental strains (Table 3). In
5/9 strain pairs, this difference reached statistical significance (Ta-
ble 3). As carotenoids can influence CM order by rigidifying their
architecture, our observation of lowered carotenoid content
among Dap” strains fits with their previously observed increases in
CM fluidity profiles (27). A recent investigation from our labora-
tory involving the evolution of Dap" during in vitro passage (12)
also confirmed a parallelism between CM order and carotenoid
content. Thus, in the latter study, progressive evolution of Dap”
during such serial in vitro passages correlated with both enhanced
CM rigidity and increased carotenoid content.

In summary, the major CM lipid perturbation demonstrated
in the current study among Dap" isolates was a hyperproduction
of the positively charged PL species, LPG. This was accompanied
by a concomitant reduction in CM PG content. Of interest, this
unique phenotype occurred in Dap’ strains both with and with-
out mprF mutations, suggesting that gene loci and/or networks
outside mprF can have a major influence on ultimate LPG bio-
synthesis.
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