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Pseudomonas syringae pv. tomato DC3000 contains genes for 15 sigma factors. The majority are members of the extracytoplas-
mic function class of sigma factors, including five that belong to the iron starvation subgroup. In this study, we identified the
genes controlled by three iron starvation sigma factors. Their regulons are composed of a small number of genes likely to be in-
volved in iron uptake.

Pseudomonas syringae is a globally dispersed bacterial pathogen
that is well known for its ability to cause disease in plants (1, 2).

Plant-pathogenic bacteria tend to possess functions that enable
them to adapt and thrive under diverse environmental conditions.
One feature that may contribute to survival in different habitats is
the abundance of TonB-dependent signal transduction systems
(3). These systems often activate gene expression through a signal
transduction cascade that activates a cytoplasmic iron starvation
(IS) sigma factor in response to siderophore binding (4–6). Sigma
factors are exchangeable subunits of RNA polymerase that func-
tion in promoter recognition and transcription initiation (7, 8).

P. syringae pv. tomato DC3000 contains five IS sigma factor
genes (9, 10). We previously determined the regulons of two IS
sigma factors, PvdS and PSPTO_1203, which control genes for the
production/uptake of pyoverdine and expression of genes in re-
sponse to hydroxamate siderophores, respectively (11, 12). All five
IS sigma factors are positioned downstream of Fur binding sites
(13), and expression of pvdS, PSPTO_1209 and PSPTO_1286
sigma factor genes is controlled by iron concentration in the
growth medium (14). Here we determined the regulons of three IS
sigma factors encoded by PSPTO_0444, PSPTO_1209, and
PSPTO_1286.

Chromatin immunoprecipitation sequencing (ChIP-seq) was
used to screen the P. syringae DC3000 genome for sites bound by

PSPTO_0444, PSPTO_1209, and PSPTO_1286 as described by
Markel et al. (11). In these experiments, C-terminally Flag-tagged
derivatives of each sigma factor were constitutively expressed
from plasmids (see Table S1 in the supplemental material for a
complete list and description of plasmids used in this study) in P.
syringae DC3000 cells grown to an optical density at 600 nm
(OD600) of 0.5 in a low-iron minimal medium (11). After formal-
dehyde cross-linking, sigma factor-DNA complexes were immu-
noprecipitated via the Flag epitope, the DNA was analyzed by
high-throughput sequencing, and sequence reads were aligned
with the P. syringae DC3000 genome. Enrichment was evaluated
by comparing the number of sequence reads at each locus in ex-
perimental samples to the number of reads from controls pre-
pared from cells containing the empty vector.
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TABLE 1 Genomic loci enriched in sigma factor ChIP-seq experiments

ChIP-seq yielding
enrichment Peak Peak coordinatesa Flanking gene Product Expression ratiob

PSPTO_0444 1 490523–490864 PSPTO_0446 Uncharacterized membrane protein 70.8 (1.3)
2 4653465–4653851 PSPTO_4128 TonB-dependent siderophore receptor 477 (1.5)

PSPTO_1209 1 1277234–1277588 PSPTO_1164 OmpA-family protein 0.47
2 1323698–1323965 PSPTO_1207 TonB-dependent siderophore receptor 34.4 (2.2)
3 1826690–1827094 PSPTO_1660 Helicase/SNF2 family domain protein 0.67
4 6178066–6178398 PSPTO_5432 Type VI protein secretion system 0.57

PSPTO_1286 1 1410711–1410926 PSPTO_1283 Heme oxygenase 84.04 (0.9)
2 1413374–1413707 PSPTO_1284 TonB-dependent heme receptor 84.11 (11.7)

a Peak coordinates refer to positions in the P. syringae pv. tomato DC3000 genome (9).
b Expression ratios show the difference in expression (obtained by qRT-PCR) of genes flanking ChIP-seq peaks in cells containing the sigma factor expression vector relative to cells
containing the empty vector control plasmid, pBS60 (12). Expression ratios are the averages of three biological replicates (standard deviations are in parentheses). Data without
standard deviations are representative results, and genes are not considered differentially expressed by the corresponding sigma factor under these conditions. Flag-tagged and
native sigma factor expression vectors are described in Table S1 in the supplemental material.
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Four loci were enriched in the PSPTO_1209 ChIP-seq, and two
loci were enriched in the PSPTO_1286 and PSPTO_0444 ChIP-
seq (Table 1). As expected, each sigma factor captured regions
upstream of genes encoding TonB-dependent receptors. The
genes encoding these types of TonB-dependent receptors are typ-
ically colocated with the sigma factor and anti-sigma factor genes
that control their expression (3). The TonB-dependent receptor
genes bound by PSPTO_1286 and PSPTO_1209 exhibited this
typical genomic arrangement. However, the TonB-dependent
siderophore receptor gene PSPTO_4128, which was immediately
downstream of a genomic site bound by PSPTO_0444, was lo-
cated more than 2.2 Mb from the sigma factor gene itself.

Genes downstream of loci identified in the ChIP-seq experi-
ments were tested to determine whether their transcription was
dependent on the associated sigma factor. Using quantitative re-
verse transcription-PCR (qRT-PCR), we compared the relative
abundance of selected transcripts in cells constitutively expressing
each of the three sigma factors versus with the abundance of those
containing the empty vector, as described in reference 11.

This analysis confirmed that each sigma factor regulates the
expression of a TonB-dependent receptor gene and showed that
PSPTO_0444 and PSPTO_1286 each regulate another gene (Table
1). PSPTO_0444 controls the expression of PSPTO_0446, which
is predicted to encode a 377-amino-acid protein annotated as an
uncharacterized iron-regulated membrane protein similar to
PiuB in the Conserved Domain database (E value � 3.93e-51).
PiuB is a transmembrane permease/iron uptake ABC transporter,
first characterized in the Gram-positive bacterium Streptococcus
pneumoniae (15, 16). PSPTO_1286 regulates PSPTO_1283, pre-
dicted to encode a heme oxygenase. Proteins of this class are often
involved in the degradation of chelators to extract the iron (17).
Three additional locations were also enriched in the PSPTO_1209
ChIP-seq experiments, but we were unable to detect regulation of
the genes downstream of them. These genes may be regulated by
PSPTO_1209 under different conditions, or binding at these lo-
cations may be an artifact of constitutive expression of the sigma
factor.

The 5= ends of transcripts regulated by each sigma factor were
determined using 5= random amplification of cDNA ends (RACE)
(11) and RNA collected from P. syringae DC3000 expressing each
of the respective sigma factors (Fig. 1). Cells used in this experi-
ment were grown under the same conditions as those used in the
ChIP-seq experiments. This confirmed that promoters regulated
by these sigma factors are located in regions enriched by ChIP and
defines the relationship between the transcription start sites and
the annotated initiation codon of the downstream gene. Approx-
imate locations of the �10 and �35 promoter elements were as-

signed based on their distance from the 5= end (Fig. 1). These
sequence elements are used by sigma factors to locate RNA poly-
merase on the DNA when transcription is being initiated. There
are few clearly defined promoter elements for this sigma factor
class because the IS sigma factor regulons are generally small,
making it difficult to identify conserved sequences (11, 12, 18). An
amalgamated IS sigma-regulated promoter motif presented by
Staron et al. (19) suggests that a T-rich �35 region and a con-
served TGT in the �10 region are common features of these types
of promoters. There is some evidence of a T-rich �35 element
upstream of PSPTO_1284, but the �10 elements are quite differ-
ent from the generalized motif. This is likely due to specialization
of the promoters recognized by IS-class sigma factors, a feature
that is presumably necessary to avoid cross regulation in organ-
isms that carry genes encoding multiple IS sigma factors.

Fur box operator sites were found upstream of the TonB-
dependent receptor genes regulated by PSPTO_0444 and
PSPTO_1286 (Fig. 1) (13). Fur binding at these locations has been
observed using ChIP-seq (13), and earlier microarray experiments
demonstrated that PSPTO_1284 but not PSPTO_4128 is con-
trolled by iron status (14). The discrepancy in iron-dependent
regulation at these locations may be due to the positioning of the
Fur box relative to the promoter sequences. Together, these data
suggest that the regulatory circuit controlling PSPTO_1284 ex-
pression involves Fur-mediated control at two levels: expression
of both the sigma factor and the target TonB-dependent receptor
gene. It has been proposed that Fur-dependent regulation of
TonB-dependent receptor genes is an ancestral regulatory state
that has been replaced by IS sigma factor-dependent regulation
(20). Accordingly, direct Fur regulation of both sigma factor genes
and their downstream regulon targets may represent an interme-
diate state (20). Alternatively, there may be selective pressures that
maintain this more complex arrangement for certain receptors.
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