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The Vibrio cholerae BreR protein is a transcriptional repressor of the breAB efflux system operon, which encodes proteins involved in
bile resistance. In a previous study (F. A. Cerda-Maira, C. S. Ringelberg, and R. K. Taylor, J. Bacteriol. 190:7441–7452, 2008), we used gel
mobility shift assays to determine that BreR binds at two independent binding sites at the breAB promoter and a single site at its own
promoter. Here it is shown, by DNase I footprinting and site-directed mutagenesis, that BreR is able to bind at a distal and a proximal
site in the breAB promoter. However, only one of these sites, the proximal 29-bp site, is necessary for BreR-mediated transcriptional
repression of breAB expression. In addition, it was determined that BreR represses its own expression by recognizing a 28-bp site at the
breR promoter. These sites comprise regions of dyad symmetry within which residues critical for BreR function could be identified.
The BreR consensus sequence AANGTANAC-N6-GTNTACNTT overlaps the �35 region at both promoters, implying that the
repression of gene expression is achieved by interfering with RNA polymerase binding at these promoters.

Vibrio cholerae is a Gram-negative bacterium that causes the
severe diarrheal disease cholera and is acquired by oral inges-

tion of contaminated water or food. Upon infection, the bacteria
colonize the intestinal epithelium via the toxin coregulated pilus
(TCP) and produce cholera toxin (CT), which induces severe loss
of fluid and ions. A virulence regulatory system coordinately con-
trols the production of a number of virulence factors, including
CT and TCP. ToxT, a member of the AraC family of transcrip-
tional regulators, is the direct activator of the genes encoding CT
and TCP (1, 2). Expression of toxT is dependent upon a complex
transcriptional regulatory cascade (3, 4).

During the course of infection, enteric pathogens encounter
different environments within the stomach and the intestinal lu-
men, including changes in pH, CO2, and osmolarity and the pres-
ence of bile (5). Bile is produced by the liver and stored in the
gallbladder. It is secreted into the proximal portion of the duode-
num upon ingestion of food. The main components of bile are bile
salts, which are detergents that aid in the emulsification of dietary
fats and in their absorption (6). Additionally, the detergent prop-
erty of the bile salts affects the cell membrane of bacteria, acting in
a bactericidal manner (5, 6).

Enteric bacteria, including V. cholerae, are able to employ bile
as a host signal to modulate gene expression and overcome the
bactericidal effect of bile (5, 7). V. cholerae resistance to bile de-
pends on (i) increased motility in the presence of bile, which is
hypothesized to be essential for evading the high concentrations of
bile in the lumen, penetrating the mucus layer, and achieving ac-
cess to the underlying epithelial cells for colonization (8, 9); (ii)
biofilm formation, where cells inside the biofilm are resistant to
the bactericidal effect of bile (10); (iii) selectively excluding bile
from entering the cell by differentially expressing genes encoding
the OmpU and OmpT porins (11–13); and (iv) extruding bile out
of the cell by inducing the expression of genes encoding proteins
involved in efflux, such as acrA (14), tolC (15), vceB (16), vexB
(11), and breB (11, 17).

We have recently demonstrated that the expression of breB,
encoding an efflux pump belonging to the RND family, is induced
by bile and bile salts (cholate, deoxycholate, and chenodeoxy-

cholate) (17). The expression of genes encoding multidrug trans-
porters is usually tightly controlled by transcriptional regulators
to prevent nonspecific transport and loss of membrane potential
that could result in cell death (18, 19). We have established that
BreR, a member of the TetR family of transcriptional regulators, is
a direct repressor of breAB operon expression, and that it binds at
two independent sites at this promoter (17). Typically, genes en-
coding TetR repressors that control the expression of genes en-
coding efflux pumps are located either in the same operon or
adjacent and are divergently transcribed from the genes they reg-
ulate (20–25). However, the breR gene is located 8.99 kb upstream
of the breAB operon, with several genes between them. Like other
TetR regulators, BreR is able to regulate its own expression (neg-
ative regulation), and it binds to a single site at the breR promoter
(17). Furthermore, breR expression is induced in the presence of
bile, cholate, deoxycholate, and chenodeoxycholate, and it has
been shown that deoxycholate prevents BreR binding to the breR
promoter (17).

The present study examines BreR binding sites and their loca-
tions in the breR and breAB promoter regions to gain a better
understanding of the mechanism of BreR-mediated repression.
Electrophoretic mobility shift assays (EMSA) and DNase I foot-
printing demonstrate that BreR recognizes a single 28-bp binding
site at its own promoter (�51 to �24) and two binding sites at the
breAB promoter separated by 141 bp, a 29-bp proximal binding
site (�54 to �26), and a 29-bp distal binding site (�224 to �196).
Transcriptional assays showed that the mutations at the breR pro-
moter resulted in PbreR-lacZ overexpression, and EMSAs con-
firmed that the mutations prevented BreR from binding. How-
ever, only mutations at the proximal site at the breAB promoter
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caused PbreAB-lacZ overexpression and loss of BreR binding by
EMSA. The distal binding site did not exhibit any regulatory
role in vivo. Altogether, these results indicate that the BreR
binding sites overlap the �35 regions of the breAB and breR
promoters, suggesting that BreR inhibits initiation of tran-
scription by blocking RNA polymerase access to the promoter
sequences.

MATERIALS AND METHODS
Bacterial strains, plasmids, primers, and growth conditions. The V.
cholerae strains, plasmids, and primers used in this study are listed in
Tables 1 and 2. The strains were grown in Luria-Bertani (LB) medium
(26). Antibiotics (Sigma) were used at the following concentrations:
kanamycin, 45 �g/ml; polymyxin B, 50 U/ml; and streptomycin, 100
�g/ml or 1 mg/ml (allelic exchange experiments). For PbreR-lacZ and
PbreAB-lacZ induction experiments, strains were grown in subinhibitory
concentrations of sodium cholate (crude bile; Sigma) as noted in the
�-galactosidase assay methods. Bile stocks were freshly prepared in LB
medium and filter sterilized. For allelic exchange experiments, LB agar
contained 40 �g/ml 5-bromo-4-chloro-3-indolyl-�-D-galactopyranoside
(X-Gal; Gold Biotechnology Inc.).

Construction of in-frame deletion strains. The deletions were ob-
tained by PCR amplifying, from C6706 str2, �500-bp DNA fragments
flanking the gene of interest while retaining several codons from the 5=
and 3= ends of the gene fused in frame. The fragments were ligated into
pKAS154 (27), and the different genes were deleted from the V. cholerae
chromosome by allelic exchange (28). The deletion of breR was obtained
using TR3B with TR3N2 and TR3N1 with TR3E. The constructs were
confirmed by DNA sequencing.

Construction of the PbreAB-lacZ fusion. The pGKK346 plasmid was
linearized with XbaI between the chromate homology fragment and
the promoterless lacZ gene (17). Approximately 500 bp of the breAB
promoter region was amplified by PCR using FC70 with FC71. The
resulting fragment was digested with XbaI and ligated into the linear-
ized pGKK346 plasmid, generating pFC43. The lacZ fusions were
transferred into the chromosome of a V. cholerae �lacZ strain by allelic
exchange (28) between the chr and gal loci. All of the constructs were
confirmed by DNA sequencing.

Introduction of base pair changes into the PbreR-lacZ and PbreAB-
lacZ fusions. The mutations were introduced into the R, the ABproximal

(ABp), and the ABdistal (ABd) binding sites by PCR amplifying fragments
from C6706 str2 using overlapping primers containing the site for the
SapI enzyme. The A-50G/A-44G changes in the R binding site were ob-
tained using FC68 with FCmut11-Sap and FC69 with FCmut2-Sap. The
A-52G/T-49C/A-46G changes in the ABp binding site were obtained using
FC70 with FCmut5-Sap and FC71 with FCmut6-Sap, and the A-223G/T-
220C/A-217G changes in the ABd binding site were obtained using FC70
with FCmut3-Sap and FC71 with FCmut4-Sap. The resulting fragments
were then digested with XbaI and SapI and ligated into a linearized (XbaI)
pGKK346 plasmid, generating pFC38 (ABd mutations), pFC39 (ABp mu-
tations), and pFC42 (R mutations). The double ABd and ABp mutations
were obtained by PCR amplifying fragments from pFC38 using FC71 with
FCmut6-Sap and FC70 with FCmut5-Sap. The fragments were digested
with XbaI and SapI and ligated into a linearized (XbaI) pGKK346, gener-
ating pFC40. After screening for the correct orientation of the fragment,
the lacZ fusions were transferred into the chromosome of a V. cholerae
�lacZ strain by allelic exchange between the chr and gal loci. All of the
constructs were confirmed by DNA sequencing.

TABLE 1 Bacterial strains and plasmids used in this study

Strain or plasmid Relevant genotype Source or reference

Vibrio cholerae strains
C6706 str2 E1 Tor Smr Laboratory collection
KSK262 C6706 str2 �lacZ3 3
FCM274 KSK262 �breR1 This work
FCM158 KSK262 PbreR-lacZ1 17
FCM191 FCM158 �breR1 17
FCM313 KSK262 PbreR-lacZ1 A-50G/A-44G This work
FCM315 FCM274 PbreR-lacZ1 A-50G/A-44G This work
FCM345 KSK262 PbreAB-lacZ1 This work
FCM321 FCM274 PbreAB-lacZ1 This work
FCM291 KSK262 PbreAB-lacZ1 A-223G/T-220C/A-217G This work
FCM293 FCM274 PbreAB-lacZ1 A-223G/T-220C/A-217G This work
FCM295 KSK262 PbreAB-lacZ1 A-52G/T-49C/A-46G This work
FCM297 FCM274 PbreAB-lacZ1 A-52G/T-49C/A-46G This work
FCM301 KSK262 PbreAB-lacZ1 A-223G/T-220C/A-217G A-52G/T-49C/A-46G This work
FCM303 FCM274 PbreAB-lacZ1 A-223G/T-220C/A-217G A-52G/T-49C/A-46G This work

Plasmids
pKAS154 pKAS32 derivative, Kanr 27
pGKK346 lacZ in pGKK344 17
pFC3 pKAS154, �braR1 This work
pFC31 pKAS154, 235 bp harboring the R site This work
pFC29 pKAS154, 230 bp harboring the ABd site This work
pFC30 pKAS154, 246 bp harboring the ABp site This work
pFC27 PbreR-lacZ1 in pGKK346 This work
pFC42 PbreR-lacZ1 A-50G/A-44G in pGKK346 This work
pFC43 PbreAB-lacZ1 in pGKK346 This work
pFC38 PbreAB-lacZ1 A-223G/T-220C/A-217G in pGKK346 This work
pFC39 PbreAB-lacZ1 A-52G/T-49C/A-46G in pGKK346 This work
pFC40 PbreAB-lacZ1 A-223G/T-220C/A-217G A-52G/T-49C/A-46G in pGKK346 pFC42 This work
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�-Galactosidase assays. Different V. cholerae strains harboring the
wild-type or mutated PbreR-lacZ or PbreAB-lacZ transcriptional fusion were
grown for 15 h in LB medium at 37°C with aeration. The cultures were
then diluted 100-fold into LB medium with or without crude bile (0.4%)
and were grown at 37°C with aeration until the OD600 of the culture had
reached 0.8 to 1.0. �-Galactosidase assays were carried out as previously
described (26).

EMSA. The R3, R4, R5, and R6 fragments were amplified from C6706
str2 using primers pairs FC35 and TR3N1, FC18F and TR3N1, FC39 and
FC41, and FC40 and FC41, respectively. The AB3, AB4, AB5, AB6, AB7,

AB8, AB9, AB10, AB11, and AB12 fragments were amplified from C6706
str2 using primer pairs FC30 and FC25, FC31 and FC25, FC13F and FC46,
FC13F and FC45, FC13F and FC36, FC24 and FC26, FC24 and FC27,
FC31 and FC37, FC31 and FC47, and FC48 and FC37, respectively. Fol-
lowing amplification, these fragments were 3= end labeled with digoxige-
nin (DIG) as previously described (29). The wild-type R1, AB1, and AB2
fragments were amplified from C6706 str2 using the DIG-labeled primer
pairs FC7DIG and FC8DIG, FC3DIG and FC4DIG, and FC1DIG and
FC2DIG, respectively. The mutated R1, AB1, and AB2 fragments were
amplified from pFC42, pFC39, and pFC38, respectively, using FC7DIG
and FC8DIG, FC3DIG and FC4DIG, and FC1DIG and FC2DIG, respec-
tively. All of the fragments, including those amplified with DIG-labeled
primers, were gel purified as previously described (29). Binding reactions
were performed using formerly purified BreR-His6 (17) with different
fragments in the presence of the nonspecific competitor poly(dI-dC), fol-
lowed by electrophoresis in 6% polyacrylamide gels as previously de-
scribed (22). The DNA was transferred, probed, and detected as previ-
ously described (30).

DNase I footprinting. DNA fragments for footprinting assays were
amplified from C6706 str2 by PCR. A 230-bp fragment carrying the ABd

binding site was amplified using FC42F with FC42R, a 246-bp fragment
harboring ABp was amplified using FC43F with FC43R, and a 235-bp
fragment containing the R binding site was amplified using FC44F with
FC44R. These fragments were ligated into pBluescript (Stratagene), gen-
erating pFC29, pFC30, and pFC31, respectively. For coding strand label-
ing, the inserts were excised with XbaI and EcoRI. For noncoding strand
labeling, the inserts were excised with BamHI and HindIII. The fragments
were gel purified (Qiagen), treated with shrimp alkaline phosphatase
(NEB), and then end labeled with [�-33P]ATP (3,000 Ci/mmol; NEN)
using T4 polynucleotide kinase (Amersham Biosciences). Single end-la-
beled fragments were obtained by digestion with BamHI (coding strands)
and EcoRI (noncoding strands). Binding reactions of BreR to the radio-
labeled fragments were performed using the binding conditions defined
above for EMSA. After incubation, the fragments were treated with vari-
ous DNase I (Ambion) concentrations and loaded onto 6% acrylamide
sequencing gels as previously described (29). The gels were dried and
visualized by autoradiography.

Colonization assays. The infant mouse competition assays were per-
formed essentially as previously described (31). Suckling CD-1 mice (3 to
5 days old; Charles River) were inoculated orally, and the total CFU were
obtained from the small intestine of four to six mice after 24 h by plating
intestinal homogenates on streptomycin X-Gal plates.

RESULTS
BreR binds to a single site between �55 and �24 in the breR
promoter. To learn more about BreR regulation at the breR pro-
moter, we sought to identify the DNA elements involved in BreR
binding. Regulators belonging to the TetR family usually bind as
homodimers to regions of complete or partial dyad symmetry
(32). BreR was previously shown to bind to the breR promoter
fragment R1 (�102 to 131) (17). In order to determine which
region(s) of the breR promoter is critical for BreR binding, the R1
fragment was examined for the presence of regions of dyad sym-
metry using the Vienna RNA Secondary Structure Prediction pro-
gram (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). Figure 1A
shows, with arrows, putative regions of dyad symmetry in the R1
fragment (ds1, ds2, and ds3) as predicted by the Vienna program
and in a size range typical of regulatory protein binding sites.
Based on these predictions, we generated various fragments to
delineate the minimal segments containing regions of dyad sym-
metry that are essential for BreR binding at the breR promoter
(Fig. 1A).

To localize the BreR binding site at the breR promoter, EMSAs
were performed using the R3 (�55 to �131), R4 (�77 to �60),

TABLE 2 Primers used in this study

Name Nucleotide sequence (5= to 3=)
FC13F GATCGGGATCCCGTAAGCAATCTCGCTACTG
FC18F GATCGGAATTCACCATGAAACTCAGTGAGCAAAA
FC24 AGCAGACACTCAGATTATCG
FC25 CGATAATCTGAGTGTCTGCT
FC26 TGTACGAATCCCCATGCCTT
FC27 GTGGTTAACTTGTCGCGCAT
FC30 GATTTAATGGTGTCTACACG
FC31 AGGTGCCGCTCAAAGATACG
FC35 GCACAAAGTAAACTCGTTGG
FC36 GCTTTCTCCTTTTGGGTTGAGCAG
FC37 CTTGAGTAATGATAAAAAGTAAAC
FC39 GGCGATAATACCTTTATTTTTAG
FC40 CGTTGGTGTACTTTTTTGTGCGTCG
FC41 TTTTGCTCACTGAGTTTCAT
FC42F GATCGGGATCCAGCACTGGAAACTACAGGTAAG
FC42R GATCGGAATTCAGCGAGTTACCAATTGGGTTTCG
FC43F GATCGGGATCCTCTGGTTGAAGCACTCTCTG
FC43R GATCGGAATTCGTACGAATCCCCATGCCTTTG
FC44F GATCGGGATCCGCTTCAATCAGCGCCAACCG
FC44R GATCGGAATTCATACTTGGGGAGCAATGAATCTG
FC45 TCTTGGTTTAACATGCTTTCTCC
FC46 CGTATCTTTGAGCGGCACCTG
FC47 CTTTCGGGTGTACATTTGTG
FC48 GAACTGCTCAACCCAAAAGG
FC68 GATCGTCTAGACGATTGAATCGACGTTGATCCCTTG
FC69 GATCGTCTAGAGATCCATATTCGCTGCATGG
FC70 GATCGTCTAGACGTAAGCAATCTCGCTACTG
FC71 GATCGTCTAGAGAAGGATTCATAGTGTGTTG
FC1DIG /5DigN/CGTAAGCAATCTCGCTACTGGCCTGCACC

TTTG
FC2DIG /5DigN/CGATAATCTGAGTGTCTGCTCAGCGAGTTA
FC3DIG /5DigN/AGCAGACACTCAGATTATCGATAGAATAAA
C4DIG /5DigN/GAAGGATTCATAGTGTGTTGCTCCTCAATT
FC7DIG /5DigN/TTTCTGATCCCTGAATGCCATTTTGAGGCG
FC8DIG /5DigN/GATCCATATTCGCTGCATGGAATCCAA

ACTG
FCmut2-Sap GATCGGCTCTTCGCTCGTTGGTGTACTTTTTTG
FCmut3-Sap GATCGGCTCTTCGGGTCTAGCACGCTTTCTCCTT

TTGGGTTGAG
FCmut4-Sap GATCGGCTCTTCGACCAAGAGTTTAGTTTTCAGG
FCmut5-Sap GATCGGCTCTTCGGGGCGTGCACTTGTGTTGGG

CTTTTTATTCTATCG
FCmut6-Sap GATCGGCTCTTCGCCCGAAAGTTTACTTTTTATC

ATTACTCAAG
FCmut11-Sap GATCGGCTCTTCGGAGCTTACTCTGTGCTAAAA

ATAAAGGTATTATCG
TR3B GATCGGGATCCTAATCGCGGCAACCCAGCCAA
TR3E GATCGGAATTCCGATTGAATCGACGTTGATCC
TR3N1 GATCGGCGGCCGCGATCCATATTCGCTGCATGGA
TR3N2 GATCGGCGGCCGCAAAGCCTTAGAGGCTAACGGAT
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and R5 (�41 to �60) fragments containing various regions of
dyad symmetry (Fig. 1B). Increasing amounts of BreR caused a
shift of the R3 and R4 fragments but not of the R5 fragment (Fig.
1B), indicating that the region from �55 to �41 containing the
upstream halves of regions of dyad symmetry ds2 and ds3 is crit-
ical for BreR binding (Fig. 1).

DNase I footprinting analyses were performed to further local-
ize the BreR binding site(s) in the breR promoter. BreR was incu-
bated with a 235-bp radioactively labeled fragment extending
from positions �158 to �81. This fragment showed a single re-
gion of strong protection, indicating that a single site is necessary
for BreR protection at the breR promoter (Fig. 2A). On the coding
strand, this site extended from positions �51 to �24 (Fig. 2A). On
the noncoding strand, the protected region extended from �28 to
�55 (Fig. 2A). Further examination of the protected region re-
vealed the presence of a region of partial dyad symmetry (contain-
ing 2 mismatches) that consists of 9-bp half sites (Fig. 2B, indi-
cated by gray arrows) separated by a 6-bp spacer. These results
show that BreR DNase I protection overlaps both ds2 and ds3
regions of dyad symmetry and indicate that BreR directly re-
presses breR expression by interacting with a binding site that
overlaps the breR �35 region. The BreR binding site at the breR
promoter will be referred to here as the R binding site.

BreR binds to a proximal (�56 and �26) and a distal (�228
to �196) site in the breAB promoter. In a previous study, a breAB
promoter region (�382 to �131) utilized for the lacZ transcrip-
tional fusions was divided into two fragments, an �230-bp frag-
ment named AB1 (�95 to �132) and an �300-bp fragment
named AB2 (�382 to �76) (17). It was shown by EMSA that BreR
binds to the AB1 and AB2 fragments, indicating that BreR binds at
two independent binding sites at the breAB promoter (17). To
further define the binding sites for each of the individual frag-
ments, a series of breAB promoter fragments (distal fragments

included AB3 [�297 to �76], AB4 [�198 to �76], AB5 [�382 to
�179], AB6 [�382 to �210], and AB7 [�382 to �224]; proximal
fragments included AB8 [�95 to �79], AB9 [�95 to �10], AB10
[�198 to �15], and AB11 [�198 to �38]) were used in gel mo-
bility shift assays with increasing amounts of purified BreR (Fig.
3A and B). For the distal region, BreR bound to AB3 and AB5 but
not AB4, AB6, or AB7 (Fig. 3B). This suggests that a region from
�210 to �179 is critical for binding. For the proximal region, we
observed that BreR bound to AB8, AB9, and AB10 but not AB11
(Fig. 3B). This result indicates that a region from �38 to �15 is
critical for binding. As a whole, these binding patterns suggest that
the regions from �95 to �15, containing ds11 and ds12, and from
�297 to �179, containing ds5, ds6, and ds7, are critical for BreR
binding to the proximal and distal sites, respectively (Fig. 3A and
B). These data confirm our previous findings and establish that in
EMSAs BreR binds the breAB promoter at both a proximal
(named ABp) and a distal (named ABd) site with respect to the �1
position. Additionally, we generated the AB12 fragment contain-
ing both the ABp and the ABd binding sites. When the AB12 frag-
ment was incubated with BreR, a double shift was observed at a
low BreR concentration (50 ng), with the lower band having a
much greater intensity than the upper band (Fig. 3B, second lane).
At a higher BreR concentration (250 ng), the intensity of the upper
band was significantly increased (Fig. 3B, third lane), supporting
the hypothesis that BreR recognizes two independent sites present
at the breAB promoter.

DNase I footprinting was used to further map the BreR binding
sites within the breAB promoter using a 230-bp (�327 to �97)
and a 246-bp (�167 to �78) radioactively labeled fragment con-
taining the individual ABd and ABp sites, respectively. BreR pro-
tected a single region from DNase I digestion on each fragment
(Fig. 4A and B). The ABd binding site extends from �224 to �196
and from �201 to �228 on the coding and noncoding strands,

FIG 1 Mapping of the BreR binding site within the breR promoter region using EMSA and dyad symmetry prediction. (A) Schematic representation of the R1
fragment showing the regions of dyad symmetry predicted by the Vienna program. Putative regions of dyad symmetry (ds1, ds2, and ds3) are indicated by gray
or black arrows. Various DNA fragments (R3, R4, and R5) used for EMSA are shown by gray boxes. The transcriptional start site is indicated by a black arrow.
The ATG start codon and putative �35 and �10 regions are also shown. (B) EMSA showing BreR binding to breR promoter region fragments R3, R4, and R5.
In each panel, 10 ng DIG-dUTP-labeled DNA was incubated with 0 (first lane), 50 (second lane) or 250 ng (third lane) of purified BreR-His6 prior to
electrophoresis.
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respectively (Fig. 4A). DNase I hypersensitivity in the presence of
BreR was observed at position �195 in the noncoding strand (Fig.
4A). The ABd site contains a region of dyad symmetry that has a
total of 10 mismatches and consists of 9-bp half sites separated by
6 bp (Fig. 4C, indicated by gray arrows).

The ABp binding site was located 141 bp downstream of the
ABd site, and it extends from positions �54 to �26 and from �30
to �56 on the coding and noncoding strands, respectively (Fig. 4B).
The ABp site overlaps the �35 region, similar to the R site at the
breR promoter (Fig. 2 and 4), and contains a region of dyad sym-
metry that has a total of 4 mismatches and consists of 9-bp half
sites separated by 6 bp (Fig. 4C, indicated by gray arrows). These
results show that the ABp site contains the region of dyad symme-
try ds11 predicted by the Vienna program (Fig. 3A), and the ABd

site contains the regions ds6 and ds7. Additionally, they suggest
that BreR represses breAB expression by interacting with the ABp

site that overlaps the �35 region and the ABd site located 141 bp
upstream of the ABp site.

Identification of conserved base pairs within the R, ABp, and
ABd binding sites. To determine if a BreR recognition consensus
sequence could be discerned, we compared the BreR binding sites
at the breR and breAB promoters. Sequence alignment of the pro-
tected nucleotides of the coding and noncoding strands of the R,
ABp, and ABd sites was performed using DNASTAR software. Us-
ing a cutoff of 5/6 residue identity in any given position as con-
sensus (Fig. 5A, shaded in gray tones), an 18-bp region of dyad
symmetry separated by 6 bp (AANGTANAC-N6-GTNTACNTT)
was found within the protected regions (Fig. 5A). Of these 18 bp,

6 are 100% conserved in the three binding sites (Fig. 5A, shaded in
dark gray).

Mutations at the R, ABp, and ABd binding sites prevent BreR
binding in vitro. The nucleotides identified in the binding site
alignment that were 100% conserved (Fig. 5A, shaded in dark
gray) were then mutated to investigate their importance for BreR
binding at the R, ABp, and ABd binding sites. Two of the six con-
served nucleotides were within the �35 consensus region in the
breR and breAB promoters (Fig. 5A, boxed nucleotides). In order
to maintain the integrity of the �35 region, mutations were only
made in the conserved base pairs located in the half site upstream
of the �35 site (Fig. 5A, shaded in dark gray and highlighted in
boldface). The A residues at positions �50 and �44 were changed
to G residues (A-50G/A-44G; named Rmut) within the breR pro-
moter (Fig. 5A, shaded in dark gray and highlighted in boldface,
and B, highlighted in boldface). Base pair substitutions within the
breAB promoter were performed in the ABp (A-52G/T-49C/A-
46G; named ABpmut) and ABd (A-223G/T-220C/A-217G; named
ABdmut) binding sites (Fig. 5A, shaded in dark gray and high-
lighted in boldface, and B, highlighted in boldface). The muta-
tions were incorporated into the wild-type R1 (�102 to �131),
AB1 (�95 to �132), and AB2 (�382 to �76) fragments that BreR
is capable of binding as previously determined by EMSA (17). The
A-50G/A-44G changes in the R1 fragment (breR promoter) pre-
vented BreR binding at both small (50 ng) and large (250 ng)
amounts of BreR (Fig. 6A, lanes 5 and 6), whereas the same
amounts of protein were capable of shifting the wild-type frag-
ment (Fig. 6A, lanes 2 and 3). These results establish that the base

FIG 2 DNase I protection of the breR promoter by BreR. (A) The coding and noncoding strands of the 33P-end-labeled fragment from positions �158 to �81
were incubated with a 1:200 dilution of DNase I and no protein (NP; lanes 1 and 5), �150 ng BreR and a 1:200 DNase I dilution (lane 2) or a 1:400 DNase I
dilution (lane 3), �300 ng BreR and a 1:200 dilution of DNase I (lane 4), and a G�A sequencing reaction (lane 6). The region of protection by BreR is indicated
with a black bar. (B) Double-stranded DNA sequence showing the BreR-protected region at the breR promoter. The protected region for both strands is shaded
in gray, and the endpoints of the protection above and below the shaded regions are labeled (�55 to �24). A region with partial dyad symmetry, involved in DNA
binding, is indicated by gray arrows. The transcriptional start site (�1) (17) and putative �35 and �10 regions are highlighted in boldface and are underlined.
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pair substitutions at the R site are important for BreR binding at
this site in vitro. At the breAB promoter, the A-52G/T-49C/A-46G
mutations in the ABp site prevented BreR from binding to the AB1
fragment at small and large protein amounts (Fig. 7A, lanes 5 and
6) that were able to shift the wild-type AB1 fragment (Fig. 7A,
lanes 2 and 3). The A-223G/T-220C/A-217G changes within the
ABd site also prevented BreR from binding to the AB2 fragment at
small and large protein amounts (Fig. 7A, lanes 11 and 12), while
the same amounts of BreR could bind the wild-type AB2 fragment
(Fig. 7A, lanes 8 and 9). These data suggest that the mutations at
the ABp and ABd sites are important for BreR binding in vitro.
Further analysis of BreR binding at the wild-type AB1 and AB2
fragments indicates that 250 ng of BreR fully shifted the AB1 frag-
ment, containing the ABp site, compared to a partial shift of the
AB2 fragment, containing the ABd site (Fig. 7A). This is also ob-
served with the wild-type AB3 and AB6 fragments (Fig. 2C). These

results suggest that, in vitro, BreR affinity for the ABd site is lower
than the affinity for the ABp site.

Mutations within the R binding site affect BreR repression of
the breR promoter in vivo. To further investigate if the A-50G/A-
44G changes that prevent BreR binding to the R1 fragment in vitro
affected autoregulation in vivo, these mutations were introduced
into a PbreR-lacZ transcriptional fusion. BreR repression of the
breR promoter was assessed in wild-type and �breR strains har-
boring a PbreR-lacZ fusion at the lacZ locus carrying the wild-type
or mutated promoters. It has previously been reported that ex-
pression of breR is induced in response to bile and that deletion of
BreR increases PbreR-lacZ expression in the absence and presence
of bile compared to the response of the wild type, suggesting that
expression of breR is obtained by BreR derepression (17). Simi-
larly, the mutations that disrupt BreR binding also caused dere-
pression of PbreR-lacZ in the absence and presence of bile. The

FIG 3 Mapping of the distal and proximal BreR binding sites at the breAB promoter region using a series of DNA fragments. (A) Schematic representation of the
ABd (�382 to �76) and ABp (�95 to �132) fragments. Putative regions of dyad symmetry (ds4, ds5, ds6, ds7, ds8, ds9, ds10, ds11, ds12, ds13, ds14, and ds15)
predicted by the Vienna program are indicated by gray or black arrows. Various DNA fragments (AB3, AB4, AB5, AB6, AB7, AB8, AB9, AB10, AB11, and AB12)
used for EMSA are shown by gray boxes. The transcriptional start site is indicated by a black arrow. The ATG start codon and putative �35 and �10 regions are
also shown. (B) EMSA showing BreR binding to promoter region fragments. In each panel, 10 ng DIG-dUTP-labeled DNA was incubated with 0 (first lane), 50
(second lane), or 250 ng (third lane) of BreR-His6 prior to electrophoresis.
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A-50G/A-44G mutations increased PbreR-lacZ expression 9.5- and
2-fold in the absence and presence of bile, respectively, compared
to the wild type (Fig. 6B). Deletion of breR in the presence of these
mutations did not further derepress PbreR-lacZ expression, sug-
gesting that these mutations cause a loss of BreR repression. This
expression was not as high as that of the breR mutation, suggesting
that these mutations alter basal expression by RNA polymerase.
These data establish that repression of breR expression results
from BreR binding to the R binding site (region from �50 to
�24), and that conserved nucleotides A-50, A-44, or both are
essential for BreR repression.

Mutations only in the ABp binding site affect BreR binding to
the breAB promoter in vivo. To determine if the mutations af-
fecting BreR binding to the ABp and ABd sites in vitro alter BreR
repression of breAB in vivo, the A-52G/T-49C/A-46G and -223G/
T-220C/A-217G mutations were introduced into a PbreAB-lacZ

transcriptional fusion. The influence of the mutations on BreR-
mediated repression of breAB expression was determined using
wild-type and �breR strains harboring PbreAB-lacZ fusions carry-
ing the wild-type or mutated promoters. As shown previously
(17), Fig. 7B confirms that PbreAB-lacZ expression is higher in the
presence of bile and that deletion of breR causes increased PbreAB-
lacZ expression in the absence and presence of bile. Expression
from the fusion containing the substitutions at the ABp region
(A-52G/T-49C/A-46G [ABpmut]) showed a 19.7-fold increase in
the absence of bile and a 1.8-fold increase in the presence of bile
compared to the wild type, indicating a critical role for the ABp

binding site in vivo (Fig. 7B). Introduction of the breR mutation
into this background did not further derepress PbreAB-lacZ expres-
sion, suggesting that the mutations in the ABp site cause a loss of
BreR repression (Fig. 7B). The mutations at the ABp site did not
increase PbreAB-lacZ expression to the levels observed in the �breR

FIG 4 DNase I footprinting analyses for BreR at the breAB promoter. The coding and noncoding strands of two radioactively 33P-end-labeled fragments of 230
bp (�327 to �97) (A) and 246 bp (�167 to �78) (B) were incubated with a 1:200 dilution of DNase I and no protein (NP; lanes 1 and 5), �150 ng BreR and a
1:200 DNase I dilution (lane 2) or a 1:400 DNase I dilution (lane 3), �300 ng BreR and a 1:200 dilution of DNase I (lane 4), and a G�A sequencing reaction (lane
6). The region of protection by BreR and a region of hypersensitivity induced by BreR are indicated by thick black lines and a black arrow, respectively. (C)
Double-stranded DNA sequence of the breAB promoter. BreR-protected regions are shaded in gray for both strands. Regions of partial dyad symmetry, involved
in DNA binding, are shown for the ABd and ABp binding sites with gray arrows. The transcriptional start site (�1) (17), ATG start codon, and putative �35
and �10 regions are highlighted in boldface and are underlined.
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strain, suggesting that these mutations alter basal expression. Ex-
pression from the PbreAB-lacZ fusion containing the mutations in
the ABd region (A-223G/T-220C/A-217G [ABdmut]) in the wild-
type and �breR backgrounds was similar to that of the wild-type
promoter lacZ fusion grown with or without bile in the wild-type
and �breR strains (Fig. 7B). These results suggest that disruption
of BreR binding at this site does not influence the repression of
PbreAB-lacZ expression by BreR in vivo. A PbreAB-lacZ fusion con-
taining mutations at both the ABp and ABd regions was also de-
fective for binding, and lacZ expression was similar to that ob-
tained with the promoter lacZ fusion carrying the mutations in the
ABp site (Fig. 7B). These results indicate that BreR represses breAB
expression in vivo by binding exclusively to the ABp binding site
(region from �54 to �26), and that binding at this region can be
disrupted by a 3-bp change at positions �52, �49, and �46.

Deletion of breR does not affect colonization in the infant
mouse model. It has previously been shown that in the absence of
BreR, the breAB genes are overexpressed (17) and there is more
resistance to cholate when this strain is grown in liquid media
compared to that of the wild type (data not shown). To determine
if BreR plays a role in an in vivo infection model, the �breR mutant
was competed against a wild-type strain in the infant mouse col-
onization model. The �breR mutant was not reduced in coloniza-
tion compared to the wild type (data not shown). These results
indicate that BreR does not play a role in intestinal colonization in
this model, and this may be attributed to the fact that the infant
mouse does not produce bile.

DISCUSSION

The TetR regulator, BreR, and the efflux system BreAB have been
identified as being important in the response of V. cholerae to bile
(17). The work presented here begins to define the regulatory
mechanisms employed by BreR to regulate the expression of the
breR gene and the breAB operon.

Since most of the TetR family regulators bind to their binding
sites (complete or partial regions of dyad symmetry) as dimers
(32), we initially searched for regions of dyad symmetry present at
the breR and breAB promoters using a program that predicts RNA
secondary structures. EMSA studies using these predictions fol-
lowed by DNase I footprinting showed that BreR binds at the breR
promoter (R binding site) at a unique region from position �55 to
�24 and binds to the breAB promoter at two independent sites, a
proximal site (ABp) located at �56 to �26 and a distal site (ABd)
located at �228 to �196. A DNase I hypersensitive site was in-
duced by BreR at the ABd binding site (Fig. 4A), indicating a
change in DNA conformation upon BreR binding. When the cod-
ing and noncoding sequences of these binding sites were aligned,
the analysis revealed that BreR recognizes the consensus sequence
AANGTANAC-N6-GTNTACNTT. This sequence contains 18
conserved base pairs that are symmetrical, suggesting that BreR
binds as a homodimer, as has been shown for other TetR family
repressors (32).

In order to genetically determine if the consensus site defined
requirements for BreR binding, substitutions were performed on
consensus base pairs that were 100% conserved. Introduction of
the A-50G/A-44G base pair mutations into the breR promoter
completely abolished BreR binding to the breR promoter and pre-
vented transcriptional repression by BreR. These data established
that BreR binds the breR promoter region at a position that over-

FIG 5 BreR binding consensus sequence. (A) Sequence alignment of the cod-
ing and noncoding strands of the R, ABp, and ABd binding sites. Conserved
base pairs are shaded in gray tones. Base pairs selected for substitution are
shaded in dark gray and are highlighted in boldface. The �35 regions at the R
and ABp sites are underlined, and the consensus region is also shown. Boxes
indicate conserved nucleotides within the �35 region of the R and AB pro-
moters. (B) Schematic representation of the bases selected for substitutions
(A-50 and A-44 in the R site, A-52, T-49, and A-46 in the ABp site, and A-223,
T-220, and A-217 in the ABd site). Each mutated base is in boldface. The
position number is shown above, and the base to which it was changed is
shown below.

FIG 6 Mutational analysis of the R binding site at the breR promoter. (A) BreR
binding to the wild-type and mutated (Rmut) R1 fragment. EMSA was per-
formed using DIG-dUTP-labeled DNA (10 ng) incubated with 0 (lanes 1 and
4), 50 (lanes 2 and 5), or 250 ng (lanes 3 and 6) of BreR-His6 prior to electro-
phoresis. (B) Expression of the PbreR-lacZ fusion carrying the wild-type or
mutated promoter in different strain backgrounds. �-Galactosidase activity
was measured by growing the strains in the absence or presence of 0.4% bile in
LB at 37°C until the optical density at 600 nm of the cultures had reached 0.8 to
1.0. Results are from three independent experiments. Error bars indicate stan-
dard deviations.
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laps the �35 consensus site. Mutations at the ABp site (A-52G/T-
49C/A-46G) inhibited BreR binding to this site and eliminated
repression at the breAB promoter. The base pair changes at the
ABd site (A-223G/T-220C/A-217G) prevented BreR binding to
ABd; however, they did not prevent breAB transcriptional repres-
sion by BreR, suggesting that the ABd site does not play a key role
in BreR repression in vivo. A possible explanation for why the ABd

site did not show a role in vivo is based on the position of this site.
The ABd site is located 158 bp upstream of the �35 consensus
region, suggesting that although BreR can bind to the ABd site, it is
excessively distant in order to interfere with RNA polymerase
binding. Another explanation could be based on the sequence of
the ABd binding site. While the R and ABp sites display a high
degree of sequence similarity to the BreR consensus sequence (Fig.
5), the ABd site exhibits four mismatches (Fig. 5). This observation
suggests that even though BreR can bind to the ABd site in vitro,
this interaction is of low affinity compared to those of the other
BreR binding sites. This is supported by the fact that 250 ng of
BreR protein completely shifted the wild-type AB1 fragment (�95
to �132) compared to a lower percentage of shift for the wild-type
AB2 fragment (�382 to �76) (Fig. 7A) (17). Overall, it appears
that BreR represses breAB expression by binding at a single site
(ABp) in the breAB promoter that overlaps the �35 region. More-
over, the mutations generated at the R and ABp sites abolish BreR
binding (Fig. 2B and 4C), suggesting that these base pairs play an
important role in BreR binding.

Double or triple mutations in the dyad symmetry of the R and
ABp binding sites in the wild-type and �breR backgrounds signif-
icantly reduced the level of BreR binding, resulting in overexpres-
sion of the mutated PbreR-lacZ and PbreAB-lacZ fusions in vivo.

However, overexpression from these promoters was not as high as
the overexpression from the �breR strain harboring either PbreR-
lacZ or PbreAB-lacZ wild-type lacZ transcriptional fusions (Fig. 6B
and 7B). A partial overexpression could be attributed to the fact
that the mutations were localized 9 to 15 bp upstream of the �35
region, and they could affect expression by influencing RNA poly-
merase interaction with the DNA or alter the binding site of an
unknown activator. Another possible explanation arises when
comparing the shift of the Rmut and ABpmut fragments induced
by addition of large amounts of BreR (250 ng) (Fig. 6A and 7A).
The comparison shows that there is a slight but detectable shift
with both mutated probes in the presence of 250 ng of BreR, sug-
gesting that the mutations do not abolish BreR binding com-
pletely. This also could take place in vivo, explaining the expres-
sion levels of the mutated PbreR-lacZ and PbreAB-lacZ (Fig. 6A
and 7A).

A number of TetR regulators, such as VceR (33, 34), CmeR
(22), MexL (35), MexZ (36), TtgV (37), LmrA (25), TtgR (38),
QacR (39), MtrR (40), and TcmR (41), also repress the expression
of genes encoding efflux pumps by binding to complete or partial
regions of dyad symmetry within the promoter region of their
target genes (18, 32). Some of the operator sequences overlap both
the �35 and �10 consensus sites (35–38, 40, 41), whereas others
overlap only the �10 (25, 33, 39) or the �35 region (22), indicat-
ing that they most probably block RNA polymerase binding. The
location of the R and ABp binding sites, overlapping the �35 re-
gion at the breR and breAB promoters, respectively, is consistent
with the role of BreR as a negative regulator and shows a binding
pattern shared by other TetR repressors. It is most likely that BreR

FIG 7 Mutational analysis of the ABp and ABd binding sites at the breAB promoter. (A) Binding of BreR to the wild-type and mutated (ABpmut and ABdmut)
ABp and ABd fragments. EMSA was performed using DIG-dUTP-labeled DNA (10 ng) incubated with 0 (lanes 1, 4, 7, and 10), 50 (lanes 2, 5, 8, and 11), or 250
ng (lanes 3, 6, 9, and 12) of BreR-His6 prior to electrophoresis. (B) Influence of base pair mutations in PbreAB-lacZ expression in various strain backgrounds.
�-Galactosidase activity was measured as described for Fig. 6.
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inhibits initiation of transcription by physically preventing RNA
polymerase access to the breR and breAB promoter region.

Since the expression of breR and breAB is controlled by bile, we
propose the following regulation model. In the absence of bile,
BreR binds to the consensus sequence AANGTANAC-N6-GTNT
ACNTT overlapping the �35 region of the breR and breAB pro-
moters. As a result, BreR inhibits initiation of transcription by
blocking RNA polymerase binding and maybe binding of an acti-
vator. In the presence of bile, V. cholerae has to be able to resist its
bactericidal effect, therefore it utilizes bile as a signal to turn on the
breAB resistance genes. In addition, breR expression is also turned
on to tightly control breAB expression to prevent extrusion of vital
cellular metabolites and loss of membrane potential. We have pre-
viously proposed that certain bile salts (cholate, deoxycholate,
and/or glycodeoxycholate) bind BreR, inducing a conformational
change that disrupts its interaction with DNA (17), identified here
as the R and ABp binding sites. As a consequence, expression of
breAB takes place and the toxic compounds are extruded out of
the cell, upon which BreR is available to rapidly repress breAB gene
expression and prevent further extrusion of critical metabolites or
loss of membrane potential.
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