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St. Louis encephalitis virus (SLEV) is a mosquito-borne flavivirus responsible for several human encephalitis outbreaks over the
last 80 years. Mature flavivirus virions are coated with dimeric envelope (E) proteins that mediate attachment and fusion with
host cells. E is a class II fusion protein, the hallmark of which is a distinct dimer-to-trimer rearrangement that occurs upon en-
dosomal acidification and insertion of hydrophobic fusion peptides into the endosomal membrane. Herein, we report the crystal
structure of SLEV E in the posfusion trimer conformation. The structure revealed specific features that differentiate SLEV E
from trimers of related flavi- and alphaviruses. SLEV E fusion loops have distinct intermediate spacing such that they are posi-
tioned further apart than previously observed in flaviviruses but closer together than Semliki Forest virus, an alphavirus. Do-
mains II and III (DII and DIII) of SLEV E also adopt different angles relative to DI, which suggests that the DI-DII joint may ac-
commodate spheroidal motions. However, trimer interfaces are well conserved among flaviviruses, so it is likely the differences
observed represent structural features specific to SLEV function. Analysis of surface potentials revealed a basic platform under-
neath flavivirus fusion loops that may interact with the anionic lipid head groups found in membranes. Taken together, these
results highlight variations in E structure and assembly that may direct virus-specific interactions with host determinants to in-
fluence pathogenesis.

St. Louis encephalitis virus (SLEV) was first discovered as the
agent responsible for over 1,000 cases of encephalitis during a

1933 summer outbreak in St. Louis, MO (1, 2). Additional epi-
demics have occurred from 1964 to 2006 in the Americas, ranging
from the United States (3–5) to Argentina and Brazil (6–8). How-
ever, reported infections have declined significantly in the United
States since West Nile virus (WNV) emerged in 1999 (9), suggest-
ing WNV has since outcompeted SLEV in North America. SLEV
naturally cycles between Culex, Aedes, Anopheles, and Theobaldia
genera (10, 11) mosquitoes and passerine birds, but humans may
also become infected as “dead end” hosts through mosquito bites.

SLEV is a member of the Flavivirus genus of the Flaviviridae
family. Other flaviviruses known to infect humans include dengue
virus (DENV), Japanese encephalitis virus (JEV), and tick-borne
encephalitis virus (TBEV). Each flavivirus is classified into a sero-
complex with its own distinct tropism and pathogenesis, based on
cross-neutralization tests (12, 13). More specifically, when poly-
sera harvested from an animal infected with one virus neutralizes
a different virus in vitro, the two are said to belong to the same
serocomplex. SLEV, JEV, and WNV are members of the JEV se-
rocomplex, while DENV and TBEV each represent prototypical
members of other prominent serocomplexes. JEV serocomplex
viruses are transmitted by mosquitoes and often cause asymptom-
atic infections, but severe cases can result in nausea, fever, and
meningoencephalitis (14). TBEV, Langat virus, and Powassan vi-
rus make up the TBEV serocomplex and are transmitted by hard
ticks. These viruses cause symptoms similar to those of the JEV
serocomplex but spread to secondary tissue more slowly and are
more frequently associated with severe symptoms (15). The
DENV serocomplex contains 4 serotypes (DENV1 to -4) of mos-
quito-borne viruses. Infection with any DENV serotype can cause
headaches, muscle pain, skin rash, and hemorrhagic fever.

The flavivirus virion is enveloped, and its surface is decorated
with 180 transmembrane envelope (E) proteins (16, 17) that me-
diate cellular attachment and fusion with host membranes. Flavi-

virus E, along with the alphavirus E1 protein, represent class II
viral fusion proteins based on their activation mechanisms and
three-dimensional structures (18–20). Features that define class II
proteins are a requisite dimer-to-trimer rearrangement prior to
fusion and a distinct �-strand-rich, 3-domain architecture (18–
20). The SLEV E ectodomain is 68% identical to serocomplex-
related JEV E but only 46% and 40% identical to those of DENV2
and TBEV, viruses from different serocomplexes. Alphavirus E1,
however, shares no appreciable sequence identity to SLEV E or
any other flavivirus E protein. Despite differences in their amino
acid sequences and arrangements on the viral particle, the struc-
tures of E and E1 are remarkably similar (16, 21–25). The conser-
vation of three domains has been well documented in crystal
structures of flavivirus E ectodomains from TBEV (24), DENV
(26), JEV (27), and WNV (28, 29), as well as alphavirus E1 from
Semliki Forest virus (SFV) (25) and Chikungunya virus (CHIKV)
(30). Domain I (DI) is a �-barrel, DII is formed from two discon-
tinuous loops that protrude from DI, and DIII is an Ig-like sand-
wich positioned on the opposite side of DI from DII. Antibodies
that neutralize SLEV (31, 32), WNV (33–39), DENV (40–43), and
JEV (44, 45) have been mapped to epitopes on all three domains.
These antibodies can inhibit both attachment to cells and fusion in
the endosome (46–48).

Cryo-electron microscopy (cryo-EM) reconstructions of ma-
ture WNV (17) and DENV (16) revealed antiparallel E ho-
modimers arranged with icosahedral symmetry on the surface of
the mature virion. This head-to-tail arrangement results in burial
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of the hydrophobic fusion loop at the dimer interface to prevent
premature insertion into host membranes. Upon internalization,
the acidic pH of the endosome disrupts the E dimers and trans-
forms them into a fusogenic state (49, 50). E inserts its fusion
loops into the endosomal membrane and collapses into a com-
pact, trimeric conformation that forms when DIII swings in an arc
to pack against DI beneath DII (21, 23, 49, 51–53). Alphavirus E1
forms heterodimers with chaperone protein E2 but dissociates
and undergoes a similar conformational change when acidified in
the late endosome (54). In either case, this transition is believed to
provide the energy to fuse viral and host membranes, releasing the
nucleocapsid into the cyotsol.

We previously established that prefusion E proteins of the JEV
serocomplex have distinct biophysical characteristics, such as a
small dimer interface and diminished dimerization propensity
(27, 29). We therefore determined the crystal structure of acidified
SLEV E to examine the structure and assembly of the trimeric,
postfusion conformation. SLEV E served as a representative of the
JEV serocomplex for comparative analysis with class II fusion pro-
teins from DENV and TBEV serocomplexes and the distantly re-
lated alphavirus SFV. SLEV E did not crystallize in the prefusion
conformation, so we utilized the structure of serocomplex-related
JEV E as a model to evaluate probable differences between pre-
and postfusion SLEV E. Our analyses revealed that postfusion
envelopes possess a series of well-conserved trimer contacts yet
exhibit substantial differences in domain orientation, fusion loop
spacing, and electrostatic surface potential. These biophysical
properties may influence pathogenesis by modulating interac-
tions with environmental factors, such as the specific fusion pH or
host membrane composition.

MATERIALS AND METHODS
Cloning, expression, and purification of SLEV E. Residues 1 to 407 of the
SLEV E ectodomain (strain MS1-7) were cloned into the pET21a(�) ex-
pression vector. The vector was transformed into Escherichia coli BL21-
CodonPlus-DE3(RIL) cells. An individual colony was used to inoculate
four 10-ml starter cultures that were transferred to 4 liters of methionine-
deficient medium (Athena Enzyme Systems). Cultures were grown at
37°C until reaching an optical density (OD) of 0.6. Upon reaching this
OD, cultures were supplemented with 0.5 g feedback inhibition stock (0.1
g L-lysine, 0.1 g L-threonine, 0.1 g L-phenylalanine, 0.05 g L-leucine,0.05 g
L-isoleucine, 0.05 g L-valine, and 0.05 g L-selenomethionine) to prevent
synthesis of methionine and initiate incorporation of selenomethionine
(protocol adapted from that described by Stols et al. [55]). At 15 min after
addition of this stock, 1 ml of 1 M isopropyl �-D-1-thiogalactopyranoside
(IPTG) was added to each 1-liter culture to induce protein expression.
After 6 h, cultures were harvested and cells were pelleted. Cells were sol-
ubilized in solution buffer (50 mM Tris [pH 8.0], 25% sucrose, 10 mM
dithiothreitol [DTT]), and an equal amount of lysis buffer (50 mM Tris
[pH 8.0], 1% Triton X-100, 100 mM NaCl, 10 mM DTT) was added.
Lysozyme was added to a final concentration of 0.8 mg/ml, and the mix-
ture was sonicated to disrupt cellular membranes. This solution was then
centrifuged at 10,000 rpm to pellet inclusion bodies. The inclusion bodies
were washed 3 times with wash buffer (50 mM Tris [pH 8.0], 0.5% Triton
X-100, 100 mM NaCl, 1 mM DTT) and sonicated after each wash. Finally,
the mixtures were washed in buffer without Triton X-100 and then solu-
bilized in 6 M guanidine-HCl, 10 mM Tris (pH 8.0), and 20 mM �-mer-
captoethanol. Aliquots of this solution were added dropwise to a reservoir
of refolding buffer containing 400 mM nondetergent sulfobetaine 201
(NDSB-201), 100 mM Tris (pH 8.0), 0.5 mM oxidized glutathione, and 5
mM reduced glutathione and allowed to fold overnight. Protein was then
concentrated using an Amicon 400 concentrator with 30-kDa cutoff

membrane and purified by size exclusion chromatography (SEC) and
anion-exchange chromatography.

Crystallization. Purified, soluble SLEV E was dialyzed into a buffer
containing 0.05 M acetate (pH 5.5) and 10 mM sodium chloride and
crystallized by hanging drop vapor diffusion at 20°C. Each drop was a
mixture of 0.5 �l of protein solution at a 5-mg/ml concentration and 0.5
�l of mother liquor containing 0.1 M acetate (pH 5.5), 3% polyethylene
glycol 8000 (PEG 8000), and 2% ethylene glycol. Diffraction quality crys-
tals grew in 3 to 7 days. Crystals were rapidly dragged through a drop of
25% ethylene glycol for cryoprotection prior to cooling in liquid nitrogen.
Data were collected at the APS (advanced photon source) 19-ID beamline
and processed, integrated, and scaled using HKL2000 (56). SLEV E crys-
tallized in space group I23, with unit cell dimensions of a � b � c � 177.5
and � � � � � � 90°.

Structure determination. A model of SLEV E in the postfusion con-
formation was utilized to solve the structure by molecular replacement
(MR). This model was generated with the Phyre2 server (57) by threading
the SLEV E sequence onto DI and DIII of DENV2 E in the postfusion
trimer conformation (PDB ID 1OK8) and onto DII of JEV E (PDB ID
3P54). MR was performed with the PHENIX program (58). Refinement
was carried out by using a variety of approaches. PHENIX refine was used
to perform rigid body refinement of the three domains, followed by po-
sitional refinement incorporating secondary structure restraints, simu-
lated annealing, and TLS (translation liberation screw) refinement (59)
using three groups and B-factor refinement. The resultant partial model
was used to carry out a combination of MR and selenomethionine single
anomalous dispersion (MRSAD) phasing in the PHENIX Autosol pro-
gram (58, 60). The improved maps generated by the incorporation of the
experimental phase allowed for model building in Coot (61) with the
assistance of B-factor sharpening using a value of 15Å2. Additional rounds
of positional and B-factor refinement were performed using the jelly body
function of refmac5 (62) or with PHENIX refine (58). The final structure
had an Rwork of 22.2% and Rfree of 26.7% and contained ectodomain
residues 2 to 145 and 163 to 404 of the 407 total encompassed by the
construct.

Structural analysis. Anomalous difference peaks were generated with
PHENIX Autosol (58) and the CCP4 Fast Fourier transform (FFT) algo-
rithm (63). First, SAD phasing was carried out in Autosol in the absence of
a partial model to avoid model bias. Next, this solution and the SLEV E
model were used as inputs for the CCP4 FFT to generate a map for use in
visualization software. The resultant density was visualized in Pymol (64)
at a contour level of 4.5�. Interatomic distances between fusion loops
were measured in Pymol. The PISA Web server (65) was utilized to deter-
mine the buried surface area and contacts between E protomers. ClustalW
was used to align flavivirus E sequences (66). To determine angles between
DI and DII or DIII, entire E proteins from DENV1, DENV2, TBEV, and
SFV were superimposed onto SLEV DI by secondary structure matching
in Coot (61). Next, artificial models of each E protein were generated by
superimposing DI, DII, and DIII individually onto SLEV E to create a
reference structure. The angles between DI and DII or DI and DIII of the
native structure versus the reference structure were then calculated with
Dyndom (63, 67). Electrostatic surface potentials were determined by
using PDB2PQR (68, 69) to generate PQR files with protonation states
assigned at pH 6.0 for use in the APBS (70) plugin for Pymol and visual-
ized over a range of �3 kT/e to �3kT/e.

Protein structure accession number. The coordinates for the protein
structure have been deposited in the Protein Data Bank and assigned PDB
ID number 4FG0.

RESULTS
SLEV E structure. A selenomethionine (SeMet)-substituted SLEV
E ectodomain from strain MS1-7 lacking the C-terminal stem
region was overexpressed as bacterial inclusion bodies. These in-
clusion bodies were solubilized and oxidatively refolded to allow
for proper disulfide formation. This strategy was employed be-
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cause initial crystals of SLEV E diffracted poorly, and so the exper-
imental phase information gained through this incorporation
could be used to validate the structure through the identification
of anomalous SeMet peaks in the electron density maps. Purified
SLEV E crystallized in cubic space group I23, and phase was de-
termined using a combination of MR and SAD data. There was
one E monomer per asymmetric unit, but application of cubic

symmetry generated the postfusion trimer (Fig. 1A). The struc-
ture was refined at 3.9-Å resolution with an Rwork of 22.2% and
Rfree of 26.7% (Table 1), and it included ectodomain residues 2 to
145 and 163 to 404. Residues 146 to 162 of the loop between the Eo

and Fo strands were disordered, as has been observed in other
postfusion E structures (23, 51, 52).

SLEV E adopted the three-domain architecture characteristic

FIG 1 Structure and assembly of SLEV E. SLEV E has the 3-domain architecture characteristic of class II viral fusion proteins. (A) The SLEV E postfusion trimer
was generated through application of cubic symmetry and is displayed in a cartoon representation. DI, DII, and DIII are colored red, yellow, and blue in one E
subunit, and the symmetry mates are colored gray and wheat, respectively. (B) Ribbon representation of one protomer of the SLEV E fusogenic trimer with DI,
DII, and DIII, shown in red, yellow, and blue, respectively. Selenomethionine side chains are displayed in stick representation, and anomalous peaks generated
from experimental phasing are shown in a mesh representation contoured at 4.5�. C. The MR SAD electron density map is displayed as a blue mesh over an entire
SLEV E monomer contoured at 1.5�. The inset is a zoom box of the fusion loop with side chains displayed in stick representation. Well-resolved residues Arg99,
Trp103, and the disulfide formed by Cys78 and Cys105 are labeled.
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of class II viral fusion proteins (Fig. 1A). DI is a �-barrel composed
of 8 strands, and DII is formed from two extended loops that
protrude from DI. DII contains a long �-sheet made up of strands
in both portions of this discontinuous domain that supports the
fusion loop. At the opposite end of DI is a flexible linker that
connects to DIII, a 7-stranded �-sandwich similar to the classical
Ig fold. Since the structure was determined at low resolution,
anomalous peaks generated through SAD phasing in the absence
of a model were used for validation. Each of the 7 SLEV E sel-
enomethionine residues localized to the density at these peaks
(Fig. 1B), confirming the sequence register and accuracy of the
model. The electron density map generated from the MR SAD
phasing also corresponded well to the main chain and most side
chains of the model, including those of the functionally important
fusion loop region (Fig. 1C).

Differences in JEV serocomplex E structures. Crystal struc-
tures of JEV serocomplex E proteins from SLEV, WNV, and JEV
provided a detailed structural perspective of the viral life cycle.
While it would have been ideal to compare the pre- and postfusion
conformations from SLEV E, extensive trials only yielded diffract-
ing crystals of the postfusion trimer. In the absence of such a
structure, we believe monomeric and prefusion E proteins from
related serocomplex members WNV and JEV provided a suitable
basis for comparison. WNV E crystallized in an unusual monomer
conformation that may represent a structural transition that oc-
curs during maturation or acidification. The WNV E proteins
assembled in a perpendicular lattice with fusion loops buried in
the same pocket they occupy in the mature dimer (29). JEV E
formed the antiparallel prefusion dimer observed in cryo-EM
structures of mature virions, with fusion loops buried in a cavity
formed by DI and DIII of the opposing subunit (27). SLEV E, on
the other hand, crystallized as a postfusion trimer (Fig. 2A). In this
conformation, DIII swings 63° toward DI relative to its equivalent

position in the JEV E dimer. This reorientation causes it to interact
with its parent DI, instead of DII of a neighboring protomer.

Several loops that protrude from the DI �-barrel toward DIII
have specific conformations that accommodate the pre- or post-
fusion DI-DIII linker. The JEV prefusion linker lies between the
Co-Do and Go-Ho strands (labeled as in Fig. 2B) and emerges from
DI as an essentially linear peptide. In the postfusion structure, this
peptide kinks at residues D291/K292 and threads back toward DI
between the Ao-Bo and Co-Do loops (Fig. 2B). The position of the
prefusion linker results in a shift of the Go-Ho loop outward from
the DI core relative to the postfusion structure. However, the post-
fusion DI Ao-Bo and Co-Do loops are splayed apart to permit this
alternate trajectory.

Trimer packing and assembly. Comparison of trimer and
dimer contacts from a variety of flavivirus E structures revealed
two unique interfaces, with the exception of a few overlapping
residues near the fusion loop (Fig. 3B). Thus, the chemical
changes induced by the acidic pH of the endosome enable the
formation of entirely new interfaces. SLEV E trimers are stabilized
by a series of interactions involving all three domains. The lateral
edge of DI from one protomer packs into a groove formed by DI
and DIII of its neighbor to secure the base of the trimer (Fig. 3A).
Additionally, the edge of DII contacts residues of an adjacent DII
near the DI-DII joint and beneath the fusion loop. SLEV trimers
were generated by application of 3-fold crystallographic symme-
try, so that the two interfaces were identical on each protomer.

We previously reported that JEV E possesses substantially less
buried surface area than other dimeric E structures and does not
favor dimerization at prefusion (neutral) pH, as evaluated by mul-
tiangle light scattering (27). SLEV E and WNV E also did not
dimerize under these conditions, suggesting that the icosahedral
assembly of JEV serocomplex dimers is stabilized by lateral con-
tacts present in mature virions. We therefore compared contact
residues and the buried surface area of SLEV E relative to
DENV1/2 and TBEV to investigate serocomplex-specific features
of postfusion trimer structure and stability. While JEV E dimers
buried 	50% less surface area than DENV or TBEV E, the exten-
sive SLEV E trimer interface buried 2,100 Å2, 	10% more than
DENV1/2 E and the same amount as TBEV E or SFV E1 (Table 2).

Class II trimer relative domain orientations. Class II enve-
lope proteins are comprised of three rigid domains linked by two
joints (24, 30, 71, 72). These flexible regions connect the central DI
to DII on one side and DIII on the other. Conformational changes
borne out of twisting or bending of domains about these residues
are vital to many stages of the flavivirus life cycle. SLEV DI was
used as a reference for structural alignments to compare relative
domain orientations in postfusion envelope structures from
TBEV, DENV1, DENV2, and SFV (Fig. 4A).

The angles relating DI-DII and DI-DIII varied considerably
among the trimeric structures. DII from DENV1 and DENV2 ad-
opted similar conformations, shifted 	11° relative to SLEV DII
(Table 2). TBEV and SFV exhibited 	9 to 10° differences in the
DI-DII angle relative to SLEV but are tilted in a different direction
than those of DENV1/2 (Fig. 4A; Table 2). When viewing the
fusion loops from a top-down perspective, DII does not appear to
have crystallized in positions along a single trajectory but instead
pivots about DI (Fig. 4B). These variable DII angles suggest that
the DI-DII joint operates like a ball and socket rather than a hinge.

The relative positions of DIII vary over an even larger range
than those of DII. DENV1 and DENV2 DIII are tilted 6.5° and 2.5°

TABLE 1 Data collection and refinement statistics

Data parameter Statistic(s) or value(s)

Space group I23
Cell dimensions a � b � c � 177.5 Å,

� � � � � � 90.00°
Resolution (Å) 50.0–3.90 Å (4.04–3.90 Å)a

Completeness (%) 98.9 (99.5)a

Redundancy 22.1 (22.6)
I/� 30.4 (6.2)
R-merge (I) (%) 11 (7.3)
Refinement

Resolution (Å) 34.8–3.90 Å (4.14–3.90 Å)a

No. of Rwork reflectionsb (F 
 0) 8,555 (1,228)a

No. of Rfree reflections 847 (132)
Rwork 0.222 (0.285)
Rfree 0.267 (0.333)

SLEV E residues (no. of atoms) 384 (2,944)
Mean isotropic B-value (Å2) 152.6
RMSD bond length (Å) 0.002
RMSD bond angle (°) 0.52
Estimated coordinate error 1.01
Ramachandran outliers, favored,

allowed (%)
0.00, 92.4, 7.6

Rotamer outliers (%) 0.00
a Values in parentheses are for data in the highest-resolution shell.
b Statistics are as defined in the Phenix program.
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in comparison to that of SLEV, while TBEV DIII is rotated 16.5° in
this same direction about DI (Fig. 4A). SFV DIII was rotated 65°
relative to SLEV DIII, representing a dramatic difference in the
conformation of postfusion alphavirus versus flavivirus enve-
lopes. This twisting of DIII alters the overall trimer geometry,
interaction surface with DI, and potentially the direction the
stem-loop projects from its C terminus.

Fusion loop separation. The different DI-DII angles and
trimer assemblies observed among flavi- and alphavirus envelopes
alter the distance between fusion loops. SFV E1 fusion peptides are
positioned 47 Å apart and adopt an uncoiled conformation struc-
turally distinct from those of the flaviviruses (Fig. 5). A length of
26 Å separates the loops of DENV1, DENV2, and TBEV E, while
SLEV E fusion loops are situated at an intermediate distance of 35
Å (Fig. 5; Table 2). Trimer interfaces are well conserved in these E

proteins, so this variable fusion loop spacing can be attributed to
changes in DII tertiary structure and pivot positions about DI. It
should be noted that the recombinant SLEV E is selenomethio-
nine substituted, but any perturbations due to this incorporation will
be local and unlikely to result in changes in domain orientation.

Trimer electrostatics. To investigate electrostatic features of E
trimers that may contribute to structural changes or interactions
with host determinants, we visualized the surfaces on postfusion E
or E1 from DENV1, DENV2, TBEV, SLEV, and SFV. Protonation
states were assigned at pH 6.0 to estimate the acidic environment
of the endosome. In the flavivirus trimers, uncharged crowns of
fusion loops lie atop a basically charged platform (Fig. 6A to D).
Given that the fusion loops project into the hydrophobic portion
of the bilayer, it seems reasonable to propose that the basic plat-
form stabilizes the membrane-trimer complex by interacting with

FIG 2 Structural differences between JEV serocomplex E proteins. (A) WNV, JEV, and SLEV E represent monomeric, dimeric, and trimeric assemblies of JEV
serocomplex E proteins. DI, DII, and DIII are shown in red, yellow, and blue, respectively. The second protomer of the JEV dimer is shown in gray, and the second
and third protomers of the SLEV E trimer are shown in gray and wheat. A curved arrow in the middle JEV panel highlights the shift in DIII position that leads
to the trimeric structure in the SLEV panel on the right. (B) Structural differences in prefusion JEV E compared to postfusion SLEV E are highlighted in the 4
panels. Regions of DI with substantial structural differences are shown in teal in the prefusion structure and magenta in the postfusion structure. The specific
structural region highlighted is indicated in the text below each panel.
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negatively charged lipid head groups. An acidic ridge of DII was
also visible between SLEV E protomers. Repulsive forces exerted at
this interface could serve to distort these domains (Fig. 6D) and
position the fusion loops further apart than those of DENV1/2 or
TBEV. An acidic patch is also present on the interior face of SFV
fusion loops facing the central axis (Fig. 6E). These regions may
repulse one another to splay fusion loops apart in the flower-like
arrangement observed in the SFV trimer (21).

DISCUSSION

The crystal structure of SLEV E revealed distinct biochemical fea-
tures that may influence the interaction of JEV serocomplex vi-

TABLE 2 Comparisons of trimer structures and assemblies

Virus (trimer)

Distance
between
fusion
loops (Å)

DI-DII angle
(°) relative to
SLEV E

DI-DIII angle
(°) relative to
SLEV E

Buried
surface
area (Å2)a

SLEV (4FG0) 35 2,103
DENV1 (3G7T) 27 10.7 2.5 1,893
DENV2 (1OK8) 26 10.8 6.8 1,968
TBEV (1URZ) 26 8.7 16.1 2,105*
SFV (1RER) 47 9.9 65.2 2,139*
a *, the buried surface area was averaged over each trimer subunit.

FIG 3 Conservation of flavivirus E trimer interfaces. (A) The left panel displays trimer interface 1, formed by two E protomers. Residues contacted by the
cartoon representation are highlighted on the surface-rendered protein. Green residues represent contacts exclusive to the surface-rendered protein,
while cyan residues are contacts in both molecules at the interface. The third E protomer that does not make contacts at the highlighted interface is shown
as a transparent mesh envelope. (B) The right panel displays trimer interface 2. Contacts in both molecules in this panel are also cyan, while residues
exclusive to the surface-rendered protein are shown in gray. The protomer that does not make contacts at this interface is also shown in mesh
representation. (C) A ClustalW sequence alignment of SLEV, DENV1, DENV2, and TBEV E. SLEV E domains I, II, and III are shown in red, yellow, and
blue, respectively. The SLEV E secondary structure is displayed above the sequence with a straight line for coils/loops, arrows for strands, and cylinders
for helices. Contact residues are highlighted in the same color scheme described for panels A and B. For JEV, DENV2, and TBEV E proteins with dimeric
structures available, the dimer contacts are underlined in black.
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ruses with host determinants, and therefore pathogenesis. In our
analyses, SLEV E served as a basis for a structural comparison
between all postfusion class II structures. Domains II and III of
these envelope proteins are able to accommodate a range of ori-
entations while remaining part of the trimeric assembly. Addi-
tionally, orientation of these domains contributed to variations of
distances between the triangular crowns of fusion loops. Fusion
loops of SLEV E were separated by an intermediate length com-
pared to the tight spacing of DENV1, DENV2, and TBEV E or the
wide set loops of SFV. Models of flavivirus fusion propose that the
stem region truncated in recombinant E lies between trimers and
splays them apart so that they reach an alphavirus-like conforma-
tion (23, 51, 73, 74). Recombinant SLEV E does not contain this
stem, but it crystallized with wider spacing than other E trimers.
This fusion loop separation could thus represent a characteristic
feature of SLEV E or the JEV serocomplex.

Despite variations in relative domain positions, trimeric SLEV,
DENV1, DENV2, and TBEV E proteins interact through at a series
of structurally conserved positions (Fig. 3B). Prefusion dimers
also assemble by forming contacts at conserved positions, but the
dimer interface is generally smaller and appears to vary over a
larger range. Also, SLEV E was previously found to dimerize less
readily than DENV2 E (27), an observation that suggests the forces
governing dimer and trimer assembly are not necessarily corre-
lated. Trimer interfaces have similar buried surface area values,

from 1,850 to 2,100 Å2, while dimers buried at 840 to 1,930 Å2.
This wide range of calculated dimer surface area values may be
explained by the presence of additional lateral interactions present
outside the dimer interface in mature virions. On the other hand,
the more conserved trimer interfaces may be necessary to rigidify
E to allow for efficient fusion.

Ultimately, the functional reason fusion loops are exposed
atop the E trimer is to drive interactions with the host lipid bilayer
and merge it with that of the virion. This role led to the hypothesis
that lipids or detergents would be required for trimer formation,
and so the initial crystallization of postfusion E proteins from
DENV2 (23) and TBEV E (51, 75) was carried out by purifying
trimeric E complexes in detergents to simulate their membrane
environment. However, our SLEV E (pH 5.5) structure and a pre-
vious structure of DENV1 E (pH 6.5) (52) have now been crystal-
lized in the postfusion state without detergent, indicating that
high protein concentration and an acidic environment are suffi-
cient for trimerization. Interestingly, crystals grown in the absence
of detergent (SLEV E,, 3.9 Å; DENV1 E, 3.5Å) have so far dif-
fracted to lower resolutions than those crystallized in the presence
of detergent (DENV2 E, 2.0 Å; TBEV E, 2.7 Å). Since weak diffrac-
tion is often a result of molecular motion or vibration, it is possible
that detergents enhance trimer stability but are not an absolute
requirement.

Biochemical features of class II envelope proteins may be finely

FIG 4 Relative domain orientations of class II trimers. (A) DI of E or E1 proteins in the postfusion conformation was aligned to SLEV DI, and the angles
between DI-DII and DI-DIII were measured. A cartoon describing shifts in the position of DII and DIII is displayed (left). Alignments are displayed as
ribbons, with DI of each envelope shown in gray and SLEV E DII and DIII shown in magenta. DENV1 (lime), DENV2 (green), and TBEV (cyan) E or SFV
E1 (orange) are superimposed onto SLEV E. (B) A top-down view of the fusion loops emphasizes the different relative positions of each DII (colored as
for panel A).
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tuned for interaction with environmental conditions, such as spe-
cific lipid compositions of membranes or pH values. Such inter-
actions can direct viruses to certain host cells or cellular compart-
ments. For example, alphavirus SFV requires cholesterol and

sphingolipids for efficient fusion (76, 77), while fusion of flavivi-
ruses DENV2 and DENV4 is dependent upon anionic lipids bis-
(monoacylglycero)phosphate and phosphatidylserine, which are
found only in the late endosome (78). Analysis of trimer surface

FIG 5 Fusion loop separation. Fusion loops are shown in green with side chain sticks, and the conserved glycine used as a reference point for distance
measurement across loops is shown in magenta (top row). Postfusion trimers from TBEV, DENV2, SLEV, and SFV are displayed in cartoon representation;
DENV1 loops were equivalently spaced to DENV2 but are not shown. DI, DII, DIII, and the fusion loop of one E subunit are shown in red, yellow, blue, and green,
respectively (bottom row). The second and third protomers are shown in gray and wheat.

FIG 6 Trimer electrostatics. TBEV, DENV1, DENV2, SLEV (E) and SFV (E1) envelope surface representations are colored based on surface potential, with red as
negative potentia and blue as positive. The top panel is a top-down view of the fusion loops, and the bottom panel is a side view. SLEV and SFV have regions of negative
charge that may be relevant to trimer structure or assembly (circled in black). The basic platform beneath flavivirus fusion loops is also labeled in panel D.
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potentials revealed that DENV2 has a basic platform beneath its
fusion loops, providing a possible means for its interaction with
anionic lipids. Sphingolipids are also negatively charged, but it is
less clear how they could interact with basic regions on SFV E1.
Alpha- and flaviviruses also vary in pH requirements for efficient
fusion, ranging from pH of 	6.2 (TBEV and SFV) (79, 80) to 	6.8
(DENV2) (81). It has been reported that flaviviruses with in-
creased thermostability more efficiently infect certain hosts (82),
and so it is conceivable that changes in optimal fusion pH might
similarly affect transmission or tropism.

Comparative analysis of envelope structures from several viral
serocomplexes and families provides valuable insights toward the
understanding of class II fusion. The structure of SLEV E high-
lights several emerging serocomplex-specific structural features of
E proteins. An understanding of the unique properties of these
proteins should pave the way for structure-based experiments to
illuminate the biochemical basis for flavivirus interactions with
host determinants.
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