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The p300, CBP, and pCAF lysine acetyltransferase (KAT) proteins have been reported to physically interact with bovine (BPV)
and human (HPV) papillomavirus E2 proteins. While overexpression of these KAT proteins enhances E2-dependent transcrip-
tion, the mechanism has not been determined. Using RNA interference (RNAI) to deplete these factors, we demonstrated that E2
transcriptional activity requires physiological levels of p300, CBP, and pCAF. Each protein appears to have a unique function in
E2-dependent transcription, since overexpression of one KAT failed to compensate for RNAi knockdown of another KAT. Using
an in vitro acetylation assay, we identified highly conserved lysines that are targeted by p300 for acetylation. The conservative
changes of lysines at positions 111 and 112 to arginine were of particular interest. The K111R and the K111R/K112R mutants
showed reduced transcriptional activity that was not responsive to p300 overexpression, while the K112R mutant retained activ-
ity. p300 and CBP were detected at the viral promoter; however, pCAF was not. We propose a model by which E2 transcriptional

activity is controlled by p300-mediated acetylation of lysine 111. This model represents a novel mechanism regulating papillo-

mavirus gene expression.

he papillomavirus E2 protein controls transcription of viral

early gene products by binding to specific DNA motifs
(ACCN6GGT) critically placed within the viral genome (1). While
viral gene expression is controlled by a variety of cellular tran-
scription factors, including TFIID, Sp1, Octl, and AP1 (2-6), ex-
pression of E2 results in increased transcriptional activation from
the bovine papillomavirus (BPV) promoter and enhancer ele-
ments containing E2 binding sites (7, 8). DNA binding activity is
conferred by the C-terminal DNA binding domain (DBD); how-
ever, the N-terminal transactivation domain (TAD) of E2 is also
necessary for specific activity (9—12). The ability of the TAD to
activate transcription in the absence of the DBD (13) indicates
that its function is at least partly mediated through complex for-
mation with cellular factors (10, 12).

Prior studies have identified E2-interacting proteins that
facilitate E2-dependent transcription; however, the precise
mechanisms through which these factors contribute to E2 ac-
tivation of the viral early promoter remain unclear. Several
reports have demonstrated that general transcription factors
TFIIB and TFIID, including the TATA binding protein (TBP)
and several TBP-associated factors, interact with E2 (14-18)
and that TFIIB and TBP can enhance transcription by E2 (3, 16,
18). Cellular coactivators such as Brd4, hBrm, Gps2 (also
known as AMF-1), and Tax1BP1 interact with E2 and enhance
E2-dependent transcriptional activation (19-24). Brd4 and
Tax1BP1 stabilize E2 protein, which partially explains how
these factors increase E2 transcriptional activity (20, 24-26).
Association with the Brm ATP-dependent chromatin remod-
eling complex enhances E2-dependent transcriptional activity
specifically on episomally maintained templates (19). E2-de-
pendent coactivation by either Tax1BP1 or Gps2 is enhanced
further through complex formation with the cellular acetyl-
transferase p300 (22, 24).

Histone acetyltransferases (HATs), also known as lysine (K)
acetyltransferases (KATs), catalyze the transfer of an acetyl group
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from acetyl coenzyme A (acetyl-CoA) molecules to the e-amino
group of lysine side chains. Each KAT is thought to recognize a
distinct molecular surface around the target lysine and not neces-
sarily a specific consensus peptide sequence (27, 28). Further spec-
ificity is conferred through the formation of higher-order com-
plexes containing one or more KATs and a variety of subunits
(28-30). Subunits commonly encode chromatin binding domains
such as bromodomains or chromodomains that recognize acety-
lated (31-33) and methylated (34, 35) lysine residues, respectively.
Through recognition of various combined modifications on his-
tone tails, acetyltransferase complexes are recruited to specific
promoter or enhancer regions where activity is required (36—40).
Acetylation of nonhistone proteins, such as transcriptional cofac-
tors, can affect substrate stability, subcellular localization, and in-
teractions with other proteins or DNA (41).

Published data reveal that p300, CBP, and the p300/CBP-
associated factor (pCAF) interact directly with E2 proteins of
BPV type 1 (BPV-1) and human papillomavirus type 16 (HPV-
16), HPV-18, HPV-11, and HPV-6b (22, 42-44). These KAT
proteins have also been demonstrated to enhance E2-depen-
dent transcription (22, 42—45). Further, p300 coexpressed with
small amounts of HPV-16 E2 enhances transcriptional activity
from the HPV-16 promoter, which is generally repressed at
higher levels of E2 (45). The E2 coactivator Gps2, which also
directly binds p300, was proposed to facilitate enhancement of
BPV-1 E2 activity by p300 (22). The KIX domain of CBP, which
is also the CREB binding region, interacts with the N-terminal
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transactivation domain of HPV-18 E2. Heterologous expres-
sion of the CBP KIX domain fused to the VP16 activation do-
main enhanced E2-dependent transcription (43). The N-ter-
minal 390 amino acids of pCAF are necessary for interaction
with HPV-6Db, -11, -16, and -18 E2 (42). Enhancement of E2-
dependent transcription by pCAF was further stimulated by
coexpression of CBP (42), suggesting that these KAT proteins
act through distinct pathways. These studies also showed that
the acetyltransferase domains of CBP and pCAF were required
for enhancement and that acetyltransferase-defective mutants
were unable to enhance E2-dependent transcription (42, 43).

The functional interaction of KATs p300, CBP, and pCAF with
E2 suggests a role for acetylation in the regulation of E2-depen-
dent transcription. This could conceptually occur through histone
alteration and subsequent chromatin remodeling, similar to the
proposed role for hBrm, and/or through posttranslational modi-
fication of lysines within E2. We have examined the role of p300,
CBP, and pCAF in E2-dependent transcription using selective
RNA interference (RNAi) depletion and explored the possibility
that E2 is a substrate for acetylation. The results shown here are
consistent with distinct roles for each KAT protein in regulating
E2 activity. We demonstrate that E2 is acetylated by p300 in vitro
and that the mutation of conserved N-terminal lysines restricts E2
activity and uncouples E2-dependent transcription from the ef-
fects of p300 overexpression. These data provide the first evidence
for the direct acetylation of E2 as a mechanism to regulate its
transcriptional activity.

MATERIALS AND METHODS

Cells and transfections. RPE-1 cells were cultured in a 1:1 mix of Dulbec-
co’s modified Eagle’s medium (DMEM) and Ham’s F-12 medium (Invit-
rogen). C33a, RKO, C127, ID13, and C127-A3 cells were cultured in
DMEM (Invitrogen). ID13 and C127-A3 cells are BPV-1-transformed cell
lines. BPV genomes in C127-A3 cells contain three mutations within the
E2 reading frame leading to increased E2 protein levels (46). All cell cul-
ture media were supplemented with penicillin-streptomycin solution (In-
vitrogen) as well as 10% fetal bovine serum (Atlas Biologicals and Sigma-
Aldrich). Transfections of all cells except C33a were performed using
Lipofectamine 2000 transfection reagent (Invitrogen) according to the
manufacturer’s specifications. All DNA, small interfering RNA (siRNA),
and transfection reagents for these experiments were diluted in Opti-
MEM serum free medium (Invitrogen) in the absence of antibiotics. The
calcium phosphate transfection method was used for experiments with
C33a cells.

Plasmids and siRNAs. pGL2-E24BS contains 4 high-affinity E2 bind-
ing sites upstream of a simian virus 40 (SV40) promoter which drives
luciferase expression (47). Expression plasmids used include pCG-E2,
pCMVB-p300, pRSV-CBP, and pCI-pCAF. All E2 mutations from lysine
to arginine (R) were generated with the Quikchange II site-directed mu-
tagenesis system according to the manufacturer’s specifications (Agilent
Technologies) using pCG-E2 as a template. The ANcol BPV-1 genome
does not express E2 due to a deletion within the E2 reading frame (48).
p300 (CAGAGCAGUCCUGGAUUAG), CBP (AAUCCACAGUACCGA
GAAAUG), and pCAF (UCGCCGUGAAGAAAGCGCA) custom siRNAs
and control predesigned siRNA (AM4635) were purchased from Ambion.

ChIP. A total of 10° C127, ID13, or C127-A3 cells were plated onto
10-cm tissue culture dishes. Cells were lysed and sonified prior to
chromatin immunoprecipitation (ChIP) as described previously (24).
Cells to be probed for endogenous protein were harvested 24 h after
plating; otherwise, cells were transfected the day after plating and har-
vested 24 h later. Immune complexes were captured using Dynabeads
(Invitrogen), and DNA was then purified using a QIAquick PCR pu-
rification kit (Qiagen) according to the manufacturer’s specifications.
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Purified samples were amplified by PCR using the following BPV-1
LCR primers: sense, AAAGTTTCCATTGCGTCTGG; antisense, GCTT
TTTATAGTTAGCTGGCTATTTT.

Purified ANcol BPV-1 DNA was quantified with an Eppendorf Mas-
tercycler using the BPV-1 LCR primers listed above. A four-point, 10-fold
dilution series was prepared from input DNA of each individual lysate for
a reference curve. Threshold cycle (C;) values for each immunoprecipi-
tated DNA sample were compared to the appropriate reference curves,
and the amount of immunoprecipitated DNA was calculated as a percent-
age of input DNA. Two-way analysis of variance (ANOVA) was per-
formed with Bonferroni’s post hoc analysis using GraphPad Prism, version
5.01.

Immunofluorescence and immunoblotting. A total of 3.5 X 10’
RKO cells or 2.5 X 10° RPE-1 cells were plated on collagen-coated cover-
slips (BD Biosciences) and transfected the following day with expression
plasmids. Twenty-four hours later, cells were fixed for 30 min with 3.7%
paraformaldehyde (Electron Microscopy Sciences), permeabilized for 10
min with 0.2% Triton X-100, and then incubated in blocking buffer (5%
normal goat serum, 1% bovine serum albumin [BSA], and 0.05% Triton
X-100 in phosphate-buffered saline [PBS]) overnight. Primary and sec-
ondary antibodies were diluted in blocking buffer and incubated on the
coverslips for 1 h at approximately 20°C. Coverslips were washed with
0.05% Triton X-100 in PBS and then mounted on glass slides using Pro-
Long Gold antifade reagent with 4’,6-diamidino-2-phenylindole (DAPI)
(Invitrogen). Cells were visualized and images collected using a Leica TSC
SP2 AOBS confocal microscope with Leica imaging software. For quanti-
fication, 50 E2-positive cells were counted per coverslip and a minimum
of 4 coverslips were counted for wild-type E2 and each mutant. Each
coverslip represents an individual experiment. Counted cells were sorted
into one of four categories, and each category was presented as a percent-
age of total cells counted.

RKO and RPE-1 cells for immunoblot analysis were plated onto six-
well dishes at the above-stated densities and transfected the following day
with expression plasmid alone or cotransfected with siRNA. Twenty-four
hours posttransfection or 48 h after siRNA transfection, cells were lysed
using 2% SDS in 50 mM Tris-HCI (pH 8.0) and 1 mM dithiothreitol
(DTT). Following protein estimation using bicinchoninic acid (BCA)
protein assay reagent (Thermo Scientific), equal amounts of protein were
loaded and separated by SDS-polyacrylamide gel electrophoresis (SDS-
PAGE). Gels were transferred to polyvinylidene fluoride (PVDF) mem-
branes (Millipore), blocked, and then probed with specific antibodies.
Signal was detected using Super Signal enhanced chemiluminescence sub-
strates (Thermo Scientific).

Antibodies used for both immunofluorescence and immunoblot ex-
periments included BPV-1 E2 B201; Santa Cruz p300 N-15 (sc-583), CBP
A-22 (s¢-369), and pCAF E-8 (sc-13124); and Sigma-Aldrich actin (A-
2668). Secondary antibodies included Alexafluor 488 and 555 (Invitro-
gen) for immunofluorescence and horseradish peroxidase conjugates
(Jackson Laboratory) for immunoblotting.

In vitro acetylation assay. Two hundred nanograms of protein sub-
strate was mixed with 50 ng of acetyltransferase in a 10-l reaction mix-
ture containing 40 mM Tris-HCI (pH 8.0), 75 mM potassium chloride
(KCl), and 10 M acetyl-CoA (Sigma-Aldrich). Each reaction was carried
out at 30°C for 1 h and terminated by adding SDS-PAGE sample buffer
and heating the samples to 95°C for 5 min. Proteins were resolved by
SDS-PAGE and transferred to a PVDF membrane, which was probed for
acetylated substrates using an anti-acetyl lysine antibody (Cell Signaling
Technology; catalog number 9441). Duplicate samples were separated by
SDS-PAGE, and protein input was visualized using Coomassie brilliant
blue R250. Substrates included BPV-1 E2 (49), p53, and histone protein
(50), which were incubated with p300, pCAF, and Gen5 (50) acetyltrans-
ferases. All proteins were purified from bacteria or baculovirus-infected
S£9 insect cells except for histone protein, which was purified from HeLa
cells.
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FIG 1 E2 transcriptional activity is dependent on physiological levels of p300, CBP, and pCAF. (A) RPE-1 cells were transfected with a luciferase reporter plasmid
containing four E2 binding sites, E2, and a control siRNA or siRNA specific for p300, CBP, or pCAF. Luciferase activity was measured 48 h posttransfection.
Results are presented as a percentage of wild-type activity with control siRNA. Student’s ¢ test was performed comparing knockdown to control. *, P < 0.05;
**, P <0.01; %%, P < 0.001. (B) Lysates from transfected cells were prepared for SDS-PAGE and immunoblotted for E2 protein. The graph represents quantified
E2 protein in the presence of the indicated siRNA. (C) Luciferase assay was performed as for panel A except that p300, CBP, and pCAF were overexpressed in the
presence of siRNA specific for p300, CBP, or pCAF. Each graph represents one transfected siRNA, and results are presented as a percentage of wild-type activity
with control siRNA. Student’s ¢ test was performed comparing HAT transfection to siRNA alone. *, P < 0.05.

Luciferase reporter assay. A total of 3.5 X 10° RKO cells or 2.5 X 10°
RPE-1 cells were plated onto six-well dishes and transfected in triplicate
the following day with pGL2-E24BS, expression plasmids, and 10 nM
siRNA as described previously (47). Cells were lysed 24 h posttransfection
or 48 h after siRNA transfection using reporter lysis buffer (Promega), and
luciferase activity was detected on an EnVision multilabel plate reader
(PerkinElmer) after addition of luciferase assay reagent or Steady-Glo
luciferase assay reagent (Promega) according to the manufacturer’s spec-
ifications. Means were averaged from at least four independent experi-
ments, and error bars in figures represent standard errors of the means
(SEM). Wild-type E2 transcriptional activation in the presence or absence
of control siRNA was set to 100%, and each experimental value was cal-
culated as a percentage of the wild type or control. A two-tailed ¢ test or
one-way ANOVA with Dunnet’s or Bonferroni’s post hoc analysis was
performed with GraphPad Prism, version 5.01.

Mass spectrometry and data analysis. Following acetylation with
p300, BPV-1 E2 protein was excised from a polyacrylamide gel stained
with Coomassie brilliant blue R250 (Fisher). The gel band was destained
and digested with trypsin, chymotrypsin, or GluC overnight at 30°C. Pep-
tides from each sample were injected onto a Symmetry C18 trapping
cartridge (Waters, Inc.) using a NanoAquity autosampler (Waters, Inc.)
and separated by in-line gradient elution onto a 75-pm (internal diame-
ter) by 10-cm column packed with a BEH 130 stationary phase (Waters).
Samples were separated using a linear gradient from 3% to 90% of solvent
B where solvent A was 2% acetonitrile and solvent B was 98% acetonitrile,
both solvents containing 0.1% formic acid and 0.01% trifluoroacetic acid.
During the gradient elution, data-dependent scans were performed with 8
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scan events per cycle consisting of one full mass spectra (MS) from m/z
400 to 2,000 followed by product ion scans (collision-induced dissocia-
tion = 35%) on the 10 most intense ions in the full scan. Precursor ions
used for product ion scans were dynamically excluded for 30 s. Proteins
were identified from the product ion spectra using SEQUEST (Thermo
Scientific) and X!Tandem search engines across the entire Swiss-Prot da-
tabase (51); the results from each search were combined using Scaffold,
version 3.00 (Proteome Software, Portland, OR).

RESULTS

E2 transcriptional activity is dependent on physiological levels
of p300, CBP, and pCAF. Transfection of expression vectors for
p300, CBP, and pCAF has been reported to increase E2-depen-
dent transcription (22, 42—44). How this occurs is not known.
To first investigate dependence on each KAT, we used RNAI to
examine the consequences of selective KAT depletion on acti-
vation of an E2-responsive luciferase reporter. BPV-1 E2 was
cotransfected with a reporter plasmid and either control siRNA
or siRNA targeting p300, CBP, or pCAF. E2 stimulated reporter
expression nearly 80-fold, which is consistent with previous
reports (47). Individual siRNA knockdown of p300, CBP, or
pCAF resulted in approximately 40 to 50% reduction of wild-
type E2 activity compared to that in samples transfected with
the scrambled siRNA (Fig. 1A). A minimum of 50% reduction
in KAT protein levels was confirmed by immunoblot analysis
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(Fig. 1B). Depletion of p300, CBP, and pCAF had no significant
effect on E2 protein levels (Fig. 1B).

These data imply that each KAT protein has a unique function
that cannot be compensated for by the remaining KAT proteins.
This was unexpected, particularly for p300 and CBP, which are
highly homologous and similar in function (52, 53). The residual
E2-dependent transcriptional activity following depletion of each
KAT might be due to the reduced but persistent levels of the tar-
geted KAT. While we considered using p300 or CBP null mouse
embryonic fibroblasts (MEFs), unrecognized compensatory
changes might make results difficult to interpret. We decided to
explore potential redundancy among p300, CBP, and pCAF by
measuring the ability of each KAT to restore E2-dependent tran-
scriptional activity following depletion of another KAT protein. In
these experiments, we observed that overexpression of pCAF was
unable to restore E2 transcriptional activity following p300 deple-
tion (Fig. 1C); however, overexpression of CBP resulted in a small
but significant increase in activity. E2-dependent transcriptional
activity following siRNA silencing of CBP or pCAF was not func-
tionally replaced through overexpression of another KAT protein
(Fig. 1C). There was an increase in E2 activity following expres-
sion of CBP in pCAF-depleted cells; however, this activity was not
significantly different from that in pCAF-depleted cells without
overexpression and was 20% lower than E2 activity in the presence
of control siRNA.

p300 and CBP interact with the BPV-1 genome. A previous
report demonstrated that the presence of E2 increased pCAF-me-
diated acetylation of histone H3 using a reporter plasmid system
(42). While this report indicates that E2 may recruit KATs, specif-
ically pCAF, to DNA containing E2 binding sites, it did not di-
rectly examine the presence of the KAT protein at the promoter.
We investigated the ability of endogenous KAT proteins to inter-
act with the BPV-1 LCR through ChIP assay. As expected, we
readily detected E2 in complex with the BPV-1 genomes present in
ID13 cells and C127-A3 cells but not in parental C127 cells that do
not contain BPV DNA (Fig. 2A). ChIP assay using p300 and CBP
antibodies revealed their interaction with the viral genomes, spe-
cifically with the LCR, in both of the BPV-transformed cell lines
(Fig. 2A). Interestingly, pCAF antibody failed to coimmunopre-
cipitate BPV-1 DNA in cross-linked lysates of ID13 or C127-A3
cells (Fig. 2A).

While it is difficult to evaluate quantitative differences between
samples using traditional PCR methods, ChIP of the viral genome
with CBP antibodies appeared to be greater with the C127-A3
cells, in which E2 protein levels are higher (Fig. 2A). To address
this observation, the ability of E2 to recruit KATs to the LCR was
investigated using a modified ChIP assay. C127 cells were trans-
fected with mutant BPV-1 genomes that do not express E2, and
the viral DNA in complex with the KAT was quantified by real-
time PCR. Following transfection of E2, the amount of viral DNA
coprecipitated by E2 antibodies increased 8-fold over background
(Fig. 2A). There was a 2-fold increase in the amount of genome
coprecipitated with CBP antibodies in E2-transfected samples
(Fig. 2B). However, no such increases were observed following
immunoprecipitation with p300 or pCAF antibodies. The amount
of pCAF associated with the genome was comparable to back-
ground levels detected following control immunoprecipitation
(Fig. 2B).

E2 is acetylated by p300. Previous reports investigating the
functional interactions between p300, CBP, and pCAF with

1500 jvi.asm.org

& -
§ &
Q N

Cc127

ID13

C127-A3

o

Percent Bound

> )y O N4 L

AR 4 N Q et
& g O @

B8 Genome Alone B3 Genome + E2

FIG 2 p300 and CBP but not pCAF interact with the BPV-1 genome. (A)
Untransfected C127, ID13, and C127-A3 cell lysates were prepared for ChIP
assay and immunoprecipitated using either a control antibody or antibodies
recognizing BPV-1 E2, p300, CBP, or pCAF. Precipitated DNA was amplified
by PCR using BPV-1 LCR primers. (B) C127 cells were transfected with ANcol
genomes in the presence or absence of BPV-1 E2. Lysates were prepared for
ChIP assay and immunoprecipitated using control antibody or antibodies di-
rected at BPV-1 E2, p300, CBP, or pCAF. Precipitated DNA was quantified
using real-time PCR. Two-way ANOVA with Bonferroni’s post hoc analysis
was performed comparing genome alone and genome plus E2 for each immu-
noprecipitation. *, P < 0.05; ***, P < 0.001.

BPV and HPV E2 proteins have focused on the effects of KAT
overexpression on E2-dependent transcriptional activation
(22, 42-45). While these reports provide evidence that these
proteins affect E2-dependent transcription, little is known
about their mechanism of action. Despite evidence that acetyl-
transferase activity is necessary for enhancement by CBP and
pCAF (42, 43), acetylation of E2 has not been reported. Previ-
ous attempts to identify acetylated BPV-1 E2 in vitro and in
cultured cells were inconsistent or unsuccessful (data not
shown) (22). These results were likely hampered by low levels
of E2 proteins being immunoblotted with insensitive anti-
acetyl lysine antibodies. We performed in vitro acetylation re-
actions using p300, pCAF, and Gen5 (a pCAF paralog) proteins
that were bacterially expressed or purified from baculovirus-
infected Sf9 cells. Purified KAT and E2 proteins were combined
in the presence of acetyl-CoA, and resulting acetylated protein
was detected by immunoblot analysis with an acetyl lysine an-
tibody. Purified histones and p53 were included as positive
controls for acetylation. Robust acetylation was detected on
histone substrates by each KAT (Fig. 3A). p300 mediated
strong acetylation of p53, while pCAF and Gen5 were much less
active (Fig. 3A). This may reflect the fact that p300 acetylates
p53 on several more lysines than does pCAF or Gen5 (54, 55) or
an epitope preference for the acetyl lysine antibody. After in-
cubation of BPV-1 E2 with p300, a strong band corresponding
to acetylated E2 was observed. Acetylation of E2 was not de-
tected in reaction mixtures containing either pCAF or Gcen5
(Fig. 3A). Autoacetylation of the short isoform of Gen5 used in
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FIG 3 E2 is acetylated by p300. (A) In vitro acetylation of p53 (top left),
purified histone (bottom left), and BPV-1 E2 (top right) proteins, using puri-
fied acetyltransferase p300, pCAF, or Gen5. Immunoblots used an anti-acetyl
lysine antibody. The higher-molecular-weight band indicated by the asterisk,
visible in p53 and BPV-1 E2 acetylation reactions, is due to autoacetylation of
truncated Gen5. Input for each substrate as well as each acetyltransferase (bot-
tom right) is presented as an identical reaction processed in parallel with the
gel stained for total protein using Coomassie brilliant blue. (B) Acetylated
peptide sequence coverage of BPV-1 E2 obtained from proteomic analysis of
digestion with chymotrypsin (underlined) and GluC (gray shading). Detected
acetylated lysine residues are in bold italic type.

this experiment is detectable in these blots at a migration
slightly slower than those of E2 and p53 (50).

Lysines in BPV-1 E2 that were targeted by p300 were identified
using a proteomic approach. BPV-1 E2 was acetylated in vitro and
digested, and the resulting peptides were analyzed by mass
spectrometry. Each peptide was compared to the entire Swiss-
Prot database and assembled using both the SEQUEST and
X!Tandem search engines. These two utilities directly compare
uninterpreted tandem mass spectra to protein databases using
different algorithms, resulting in protein identification. Acety-
lated peptides of BPV-1 E2 were not identified following tryp-
sin digestion. This is likely due to the inability of trypsin to
cleave after acetylated lysines. Analysis of BPV-1 E2 digested
with chymotrypsin yielded 97% total sequence coverage and
identified 11 acetylated lysine residues (Fig. 3B). Analysis of
GluC digestion yielded 89% sequence coverage and nine acety-
lated lysines, of which three were unique to GluC digestion
(Fig. 3B). Nine acetylated lysines were found in the N-terminal
TAD, five in the C-terminal DBD, and one in the central hinge
region. Acetylated lysines were discovered in an average of 22%
of each unique E2 peptide identified. The frequency of lysine
acetylation in each unique peptide ranged from 3% to 60%.
The low average frequency of acetylation could explain the
difficulty detecting acetylated E2 in vivo. A summary of data
compiled from chymotrypsin and GluC digests, including
SEQUEST and X!Tandem correlation scores, is presented in
Table 1.

E2 lysine mutations display transcriptional defects. We next
sought to characterize the functional significance of E2 acetylation
by p300 in vivo. Six lysines identified in the proteomic analysis
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were selected for mutation on the bases of sequence conservation
among BPV-1 and several HPV types, frequency with which
the modified lysine was identified in proteomic analysis, and
SEQUEST and X!Tandem correlation scores. Lysines 107, 111,
and 112 are part of a putative BPV-1 E2 N-terminal nuclear local-
ization signal (NLS) (56). Lysines 111 and 112 are conserved
throughout eight HPV types, including high-risk 16, 18, and 31
(Fig. 4A), and lysine 339 is a critical residue that mediates interac-
tion with E2 DNA binding sites (57). These lysines were conser-
vatively mutated to arginine to avoid effects related to variations
of residue charge. Each mutant was screened for its ability to ac-
tivate transcription from an E2-responsive reporter and for pro-
tein expression levels.

Mutation of BPV-1 E2 lysines (K) 70 and 391 to arginine (R)
resulted in transcriptional activity equivalent to that observed
with wild-type E2 in RPE-1 cells (Fig. 4B) despite protein levels
approximately 30% lower than that of the wild type (Fig. 4C).
The K107R E2 mutant protein was present at ~85% of the wild
type, with a proportional decrease in its transcriptional activity
(Fig. 4B and C). K112R E2 was present at levels similar to those
of K107R E2 and displayed comparable transcriptional activity.
This activity is not significantly different from that of wild-type
E2 in RPE-1 cells; however, when K112R is transfected into
C33a cells, the mean transcriptional activity is slightly lower
(64.5% for RPE-1 cells and 58.1% in C33a cells), resulting in a
significant difference (Fig. 4B and D). The K339R E2 mutant
was impaired in its ability to activate transcription in RPE-1
cells (Fig. 4B). This may be partially attributable to protein
levels at 45% of that of wild-type E2; however, transfection of
increasing amounts of the K339R mutant resulted in a peak of
transcriptional activity at less than 50% of that observed for
wild-type E2 (data not shown). K111R and double-mutant
K111R/K112R proteins were expressed at lower levels (Fig. 4c).

TABLE 1 Proteomic analysis of acetylated E2

Highest Highest
Residue SEQUEST XiTandem ACebiated Total — Frequencyof
Lysines  Peptides Acetylation
Score Score
4 12 33%
= 4 11 36%
g
£ 3 13 23%
[=]
5 3 11 27%
©
2 0T 3.19 6 31 19%
©
g 111 32 5 29 17%
" 2 3.19 6 29 21%
1 30 3%
[
2 1 19 5%
7 4
1= 4 14 29%
©
§ 5 23 22%
i=
£ 3 5 60%
2
a 1 5 20%
<<
=
a 8 24 33%

Both
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FIG 4 E2 lysine mutations display transcriptional defects. (A) Sequence align-
ment of the region between amino acids 106 and 119 of BPV-1 E2. Bold des-
ignates lysine (K) in sequence alignment. Alignment was prepared using the
ClustalW multiple alignment tool (73). (B) RPE-1 cells were cotransfected
with an E2-responsive luciferase reporter and wild-type E2 or one of a series of
lysine-to-arginine mutants. Luciferase activity was measured 24 h posttrans-
fection, and results are presented as a percentage of wild-type E2 activation. ¢
tests were performed comparing each mutant to wild-type E2. **, P < 0.01;
0% P < 0.0001. (C) Lysates of wild-type and mutant E2-transfected RPE-1
cells were prepared for SDS-PAGE, and immunoblot analysis was performed
to determine the steady-state protein level for each of the E2 K/R mutants (top
panel). RPE-1 cells were transfected with 3 pg of K111R, K112R, and K111R/
K112R proteins (bottom panel). (D) C33a cells were cotransfected with an
E2-responsive luciferase reporter and wild-type E2, E2 KI111R, K112R, or
K111R/K112R protein. Luciferase activity at 24 h posttransfection is presented
as a percentage of wild-type activation. ¢ tests were performed comparing each
mutant to wild-type E2. ¥, P < 0.05; ****, P < 0.0001. (E) C33a cells were
cotransfected with an E2-responsive luciferase reporter and four concentra-
tions of each E2 mutant, including 25 ng, 75 ng, 150 ng, and 300 ng. Luciferase
assay was performed as for panel D, and a dose-response curve was generated.
Each point represents a percentage of wild-type E2 activity at that concentra-
tion.

While all other E2 mutants tested precipitated the BPV genome
at levels comparable to those of wild-type E2, precipitation of
the K111R and K111R/K112R mutants with the genome was
reduced (data not shown). The K111R and K111R/K112R mu-
tants were both severely impaired in their ability to activate
transcription in RPE-1 and C33a cells (Fig. 4B and D). The
transcriptional defects of the KI111R and K111R/K112R mu-
tants were not due to reduced protein levels; transfection of
increasing amounts of either construct had no effect on tran-
scriptional activity (Fig. 4E).

E2lysines 111 and 112 are important for nuclear retention. A
region that is rich in basic amino acids in the N-terminal transac-
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tivation domain (TAD) of BPV-1 E2 has been reported to func-
tion as a NLS in the absence of the highly conserved C-terminal
NLS (56). Four of the six lysines mutated in this study are within
these two NLS sequences and prompted examination of mutant
E2 localization. The subcellular distributions of four mutants, the
K70R, K107R, K339R, and K391R mutants, were nearly indistin-
guishable from that of wild-type E2; nuclear localization was ob-
served in nearly all cases (Fig. 5A). The three remaining K111R,
K112R, and K111R/K112R mutant proteins deviated from wild-
type localization and exhibit a spectrum of subcellular distribu-
tions ranging from exclusively cytosolic to exclusively nuclear
(Fig. 5A). The severity of mislocalization, which was characterized
as the extent of observed nuclear exclusion, was different for each
mutant protein. The K112R mutant was observed to be more nu-
clear than the K111R/K112R double mutant, which was predom-
inantly cytosolic. The K111R mutant displayed an intermediate
phenotype, although its increased cytosolic localization more
closely resembled that observed for the K111R/K112R mutant
than for the K112R mutant (Fig. 5A).

Quantifying the extent of mislocalization was necessary to fully
characterize these mutants due to the spectrum of localization
patterns observed for the K111R, K112R, and K111R/K112R mu-
tants. The localization spectrum was divided into four discrete
categories. E2 mutant-expressing cells were visually inspected,
and each cell was assigned to a category according to predeter-
mined selection criteria. All three mutant proteins were consider-
ably mislocalized to the cytosol (Fig. 5B). The K111R and K111R/
K112R mutants were most commonly found to be evenly
distributed throughout both the nuclear and cytosolic compart-
ments (Fig. 5B). While the localization profile of the K111R/
K112R mutant was similar to that of the K111R mutant, it was
found to be completely excluded from the nucleus more often
than either of the other mutants (Fig. 5B; compare second and
fourth graphs). While expression of the K112R mutant resulted in
cytosolic accumulation, E2 staining was more prevalent in the
nuclear compartment (Fig. 5B). The increase in cytosolic localiza-
tion for each mutant is not due to Crm-1-mediated nuclear ex-
port; treatment of mutant-transfected cells with leptomycin B
(LMB) had no effect on the distribution of E2 mutant proteins
(data not shown).

P300 cannot enhance the transcriptional activity of E2 K111
mutants. The mechanism by which p300 enhances E2-dependent
transcription is unclear (22, 44, 45). The K111R and K111R/
K112R E2 mutants retain their overall charge but cannot be acety-
lated and were severely defective transcriptionally. The relation-
ship between K111 and p300 was further addressed in RKO cells
that do not express endogenous p300 (58). Coexpression of p300
with wild-type E2 enhanced activation of E2-dependent transcrip-
tion in RKO cells an average of 2-fold (Fig. 6). The K111R and
K111R/K112R E2 mutants showed 10 to 20% of the transcrip-
tional activity of wild-type E2, and this activity was not enhanced
by coexpression of p300 (Fig. 6).

The ability of wild-type E2 to activate transcription in RKO
cells suggests that p300-mediated acetylation of lysine 111 is
not necessary for this function. We also considered that in
these cells, the p300 paralog CBP may be compensating for the
absence of p300. Interestingly, RNAi depletion of CBP in RKO
cells dramatically reduced the activity of wild-type E2, compa-
rable to levels observed with the K111R and K111R/K112R E2
mutants (Fig. 6).

Journal of Virology


http://jvi.asm.org

>
m
N

DNA

K111R K107R K70R Wild-Type

K339R K111R/K112R K112R

K391R

E2 Acetylation and Transcription

T Wild-Type
g

o

(8]

2

©

(8]

%

g

L

o

31 K111R
§ 80

(8]

2 604

[

(8] e

% 404 E

g :

o -

o e,

9 > ™
3™ K112R
§ 80
(8]

2 60
@
(8]
%5 40-
: 3
g 204 3
5 3
o olemma LR
N Vv 5, ™
o K111R/K112R
% 804
(8]
2 60
3
(8]
% T
g 3
3 o
s F

FIG 5 E2 lysine-to arginine-mutants mislocalize. (A) RPE-1 cells plated on coverslips were transfected with wild-type E2 or lysine-to-arginine mutants.
Twenty-four hours posttransfection, cells were fixed and stained using an antibody to E2 (green), and DNA was visualized using DAPI (blue). (B) The degree of
mislocalization was scored into four categories as follows: 1, exclusively cytosolic; 2, even distribution throughout the cytosol and nucleus; 3, diffuse staining with
greater intensity in the nucleus; 4, exclusively nuclear staining. Results are presented as a percentage of total cells counted.

p300 and CBP promote E2 nuclear localization. While we
demonstrate that E2 is acetylated by p300 on K111 and K112, the
role of acetylation in the mislocalization of the E2 mutants is un-
clear. The contribution of p300 to E2 localization was investigated
in RKO cells. Expression of wild-type E2 in these p300-deficient
cells resulted in accumulation of E2 protein in the cytosol
(Fig. 7A), resembling the pattern observed for the K112R mutant
in RPE-1 cells (Fig. 5A). Transfection of p300 restored nuclear
localization of E2 (Fig. 7A). Introduction of p300 had no effect on
the cytosolic mislocalization of the K111R, K112R, and K111R/
K112R E2 mutants in RKO cells (data not shown). The reduction
of E2 transcriptional activity in RKO cells following depletion of
CBP prompted investigation into a compensatory role for this
protein in E2 nuclear localization. Following depletion of CBP,
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wild-type E2 was present diffusely throughout the cytosol and
nucleus (Fig. 7B). This phenotype was similar to that of the KI11R
mutant in RPE-1 cells (Fig. 5A).

DISCUSSION

The lysine acetyltransferases p300, CBP, and pCAF have been
reported to interact with the E2 proteins from several papillo-
maviruses (22, 42, 43). In each instance, overexpression of the
KAT protein was found to increase E2-dependent transcrip-
tion. In contrast, we used RNAI to specifically deplete p300,
CBP, and pCAF under conditions in which the other KAT pro-
teins remained present at endogenous levels. Interestingly,
knockdown of each KAT reduced E2-dependent transcrip-
tional activation. This demonstrates that the functions of the
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FIG 6 p300 does not enhance the transcriptional activity of E2 K111R mu-
tants. RKO cells were transfected with an E2-responsive luciferase reporter,
wild-type or mutant E2, and a p300 expression construct or empty vector. The
sample transfected with wild-type E2 was cotransfected with control siRNA for
comparison to the siCBP-transfected sample. Results are presented as a per-
centage of wild-type E2 activity. One-way ANOVA was performed with Bon-
ferroni’s post hoc analysis comparing all means. ***, P < 0.001. ns, not signif-
icant.

silenced KATs were not being replaced by the other nontar-
geted KAT proteins and implies that each KAT mediates non-
overlapping activities. The requisite KAT activities were then
investigated. We demonstrated that p300 and CBP are present
at the BPV-1 LCR by chromatin immunoprecipitation assay
and that CBP was enriched at the LCR in the presence of E2
about 2-fold. We suggest that E2 recruitment of CBP to the
viral promoter may serve to acetylate histones and lead to in-
creased chromatin access for the RNA polymerase complex.

Lysine acetylation of a transcription factor leading to its acti-
vation is well documented (41); however, this has not been re-
ported for any papillomavirus E2 protein. Because we were unable
to isolate a sufficient amount of BPV E2 protein for microse-
quencing from mammalian cells with replicating BPV-1 genomes,
we performed in vitro reactions using purified E2 and KAT pro-
teins. Several E2 lysine residues were found to be acetylated. To
test their biological relevance, each lysine was replaced with argi-
nine to maintain charge at each position. Mutations of K111 alone
and in combination with K112 resulted in substantial decreases in
transcriptional activation.

Several reports have described mutation of E2 at lysines 111
and 112, which are highly conserved (59-62). Replacement of
these lysines with alanines in BPV-1 E2 results in proteins that are
transcriptionally defective in several cell types (59, 61). Addition-
ally, the same mutations resulted in E2 mislocalization to the pe-
rinuclear region (59), indicating a possible deficiency in nuclear
import. The conservative substitution of BPV-1 E2 lysine 111 to
arginine reportedly results in severely impaired transcriptional
activity, and K112R mutation was shown to activate transcription
to near wild-type levels (60). These results are consistent with our
data for the K111R mutant, and while we demonstrate that K112R
mutant activity is lower than was previously shown, it is not sig-
nificantly different from that of wild-type E2 in RPE-1 cells. The
activity for the K112R mutant in C33a cells, however, is slightly
lower, resulting in a significant difference that may also be attrib-
utable to variations in activity between cell types, which we suspect
may relate to different KAT protein availability.
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FIG 7 p300 and CBP facilitate E2 nuclear retention. (A) RKO cells plated on
coverslips were transfected with wild-type E2 and a p300 expression construct
or empty vector. Twenty-four hours posttransfection, the cells were fixed and
stained using antibodies to E2 (green) and p300 (red), and DNA was visualized
using DAPI (blue). (B) RKO cells were plated on coverslips and transfected
with E2 and either control siRNA or siRNA to CBP. Forty-eight hours post-
transfection, cells were fixed and stained using antibodies to E2 (green) and
CBP (red), and DNA was visualized using DAPI (blue).
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K111R and K111R/K112R mutant proteins were expressed at
reduced levels. This likely reflects their lack of transcriptional ac-
tivity; we routinely observe that E2 stimulates its own transcrip-
tion in transient assays (63, 64). However, titration of increasing
amounts of the K111R mutant did not result in increased activa-
tion, indicating that the deficiency is not due to a dosage effect
(Fig. 4E). The reduction of transcriptional activity with K111 mu-
tation to arginine suggests that acetylation of this residue is nec-
essary for transcriptional activation.

The subcellular distribution of E2 may also be modulated
through acetylation of lysines 111 and 112. This is supported by
our finding that conservative mutation of these two residues to
arginine resulted in E2 accumulation in the cytosol. Similar cyto-
solic accumulation was observed with wild-type E2 in cells in
which p300 and CBP were absent. Our results for the K111R and
K112R mutants are consistent with previous studies examining
the localization of E2 proteins with deletions that disrupted the
N-terminal NLS including lysines 111 and 112 (56) and for mu-
tants with changes of lysine to alanine at both of these positions
(59). Incomplete inclusion or exclusion of the mutants suggests
that either inefficient nuclear import due to a weakened NLS or
passive diffusion may be responsible. A defect in Crm-1-depen-
dent nuclear export may be excluded given that LMB had no effect
on E2 mutant localization. Another possibility is that K111 acety-
lation favors E2 retention within the nucleus. Notably, it was re-
cently proposed that pCAF-mediated acetylation of lysines within
the NLS of the retinoblastoma proteins promotes its nuclear re-
tention (65). This scenario can be envisioned by the entry of E2
into a macromolecular KAT complex that prevents its loss to the
cytosol.

How E2 acetylation on K111 stimulates its transcriptional ac-
tivity requires further study. One possibility is that this creates an
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additional site for docking to the bromodomain of Brd4, which
facilitates E2-dependent transcriptional activation (20, 23, 66, 67).
While bromodomains have affinity for most acetylated lysines,
they do exhibit binding preference (68, 69). The bromodomain
interaction preference on histone H3 and H4 peptides is for di-
acetylated lysines (70, 71). This would indicate that acetylation of
a combination of K111, K112, and possibly K107 would resultin a
higher-affinity interaction. A cocrystal of the N-terminal region of
E2 with a short C-terminal peptide of Brd4 revealed the site of
their interaction to span the three alpha helices and not the K111-
containing peptide, which is at the N terminus of the beta sheet
region (66). However, HPV-11 E2 has been demonstrated to in-
teract with a region containing the second bromodomain of Brd4
in addition to the CTD (12). This supports the possibility that a
second region of E2 may also participate in this interaction. Al-
though the structures of several functional domains on Brd4, in-
cluding both bromodomains and the C-terminal domain that in-
teracts with E2, have been solved, the full-length protein structure
has not been reported.

We previously reported that the transcriptional coactivator
Gps2 is necessary for E2 transcription and directly binds to both
p300 and E2 (22). E2 association with p300 using bacterially ex-
pressed proteins was weak and barely above background (22).
Gps2 binding was mapped to residues 134 to 216 on the BPV-1 E2
TAD (47). We hypothesize that the interaction between E2 and
Gps?2 facilitates complex formation with p300, and this leads to
acetylation of lysine 111. This, in turn, may stabilize the associa-
tion of Brd4 in the transcription complex.

Here, we have outlined potential roles for the cellular acetyl-
transferases p300 and CBP in E2-dependent transcription. A spe-
cific role for pCAF in E2-dependent transcriptional control was
not identified in this study. Acetylation of E2 by pCAF or Gcen5
may occur in vivo despite our inability to detect it using the acetyl
lysine antisera in in vitro reactions. It is possible that modification
of E2 by these KATSs occurs only under specific conditions. While
data indicate that p300, CBP, and pCAF may function indepen-
dently, there does appear to be some biochemical redundancy.
The reduction in transcriptional activation in RKO cells following
CBP depletion suggests that CBP may be actively compensating
for the loss of p300 in these cells. This is also consistent with a
small but significant increase in activity following overexpression
of CBP in RPE-1 cells that are depleted of p300.

It has been reported that p300 levels are low in basal keratino-
cytes and may increase with differentiation (44). As these epithe-
lial cells transit into the suprabasal layers, increased expression of
p300 favors acetylation of p53 and induction of p21V*/“P1_me-
diated cell cycle arrest, further promoting commitment to kerati-
nocyte differentiation (72). Our results suggest that elevated p300
expression in differentiating cells could also induce K111 acetyla-
tion, thereby stimulating E2-dependent transcription. The result-
ing increase in early gene protein levels, specifically E1, could in-
duce viral DNA amplification, linking it to the differentiated
status of the infected cell. The role of K111 acetylation by p300 in
regulation of the viral replicative program is currently under ac-
tive investigation.
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