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Cell-intrinsic innate immune responses mediated by the transcription factor interferon regulatory factor 3 (IRF-3) are often vital for
early pathogen control, and effective responses in neurons may be crucial to prevent the irreversible loss of these critical central ner-
vous system cells after infection with neurotropic pathogens. To investigate this hypothesis, we used targeted molecular and genetic
approaches with cultured neurons to study cell-intrinsic host defense pathways primarily using the neurotropic alphavirus western
equine encephalitis virus (WEEV). We found that WEEV activated IRF-3-mediated neuronal innate immune pathways in a replication-
dependent manner, and abrogation of IRF-3 function enhanced virus-mediated injury by WEEV and the unrelated flavivirus St. Louis
encephalitis virus. Furthermore, IRF-3-dependent neuronal protection from virus-mediated cytopathology occurred independently of
autocrine or paracrine type I interferon activity. Despite being partially controlled by IRF-3-dependent signals, WEEV also disrupted
antiviral responses by inhibiting pattern recognition receptor pathways. This antagonist activity was mapped to the WEEV capsid
gene, which disrupted signal transduction downstream of IRF-3 activation and was independent of capsid-mediated inhibition of host
macromolecular synthesis. Overall, these results indicate that innate immune pathways have important cytoprotective activity in neu-
rons and contribute to limiting injury associated with infection by neurotropic arboviruses.

Neurotropic arthropod-borne viruses (arboviruses) preferen-
tially infect neurons of the central nervous system (CNS) and

belong to several different positive- and negative-sense RNA virus
families. Clinically relevant neurotropic arboviruses include flavi-
viruses (e.g., West Nile virus [WNV], St. Louis encephalitis virus
[SLEV], and Japanese encephalitis virus), bunyaviruses (e.g., La
Crosse virus [LACV] and California encephalitis virus) and New
World alphaviruses (e.g., eastern, western, and Venezuelan equine
encephalitis viruses [EEEV, WEEV, and VEEV, respectively]).
These pathogens cause endemic and epidemic viral encephalitis
(1) and are emerging or reemerging in many areas of the world. At
present, there are no effective treatments for these highly morbid
and potentially lethal viral infections (2).

Cell-intrinsic innate immune responses are essential for patho-
gen control and cell survival after infection (3–8), and an effective
response in neurons may be crucial to prevent irreversible loss of
critical CNS neurons following neurotropic arbovirus infection.
Innate immune responses are activated by pattern recognition
receptors (PRRs) such as the transmembrane Toll-like receptors
(TLR) and the cytoplasmic receptors retinoic acid inducible gene
I (RIG-I) and melanoma differentiation-associated gene 5
(MDA5) (9). These receptors bind ligands containing pathogen-
associated molecular patterns (PAMPs) such as modified carbo-
hydrate, lipid, or nucleic acid structures (10, 11). Receptor ligation
induces signal transduction cascades that result in the activation
of the central PRR pathway transcription factors NF-�B, inter-
feron regulatory factor 3 (IRF-3), and IRF-7 and the production of
type I interferons (IFNs), proinflammatory cytokines, and other
cellular factors that contribute to an antiviral microenvironment
(11). In addition, PRR signaling is important for activating adap-
tive immune responses, which are required for clearance of many

viral infections (12, 13). Thus, PRR-mediated pathways play a
pivotal role in controlling viral infections, although the full com-
plement of innate immune response functions has not been de-
fined and remains an active area of investigation.

Due to differential pathway component expression, ligand
specificity, and pathogen-mediated antagonism, PRRs respond to
viral infections in a pathogen-specific manner (9, 14). Moreover,
cell type-specific differences in PRR pathway responses are well
documented and underscore the importance of studying innate
immunity in key targeted cell types (15, 16). For example, plasma-
cytoid dendritic cells preferentially utilize TLR7, TLR9, and IRF-7
for innate recognition and signaling, whereas fibroblasts and con-
ventional dendritic cells require RIG-I-like receptors and the
IRF-3 pathway (17, 18). Within the CNS, IRF-3�/� cortical neu-
rons differ in their basal expression of PRR components and re-
sponses to WNV compared to IRF-3�/� myeloid cells (3). In ad-
dition, the host defense response to WNV in cortical neurons is
more dependent upon IRF-3 and IRF-7 than is the case for my-
eloid cells (6). These results suggest that neurons may have re-
stricted innate immune capabilities, perhaps due in part to their
unique and crucial physiologic functions and irreplaceable nature.

Neuronal innate immune function and its impact on neu-
rotropic virus pathogenesis have not been fully defined, but im-
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portant observations have been made. We and others have dem-
onstrated that neurons possess active antiviral PRR pathways
mediated by the receptors TLR3, RIG-I, and MDA5, which can
activate NF-�B and IRF-3 and induce type I IFN production (19–
25). In addition, neurons produce type I IFNs in response to in-
fection by several neurotropic viruses (3, 5, 25–28), and WNV
replication is enhanced in cortical neurons isolated from IPS-
1�/�, TLR3�/�, IRF-3�/�, and IRF-7�/� mice (3–6, 29). Further-
more, IRF-3�/� mice are more susceptible to intracranial but not
intravenous inoculation of herpes simplex virus (HSV) (30), and
humans deficient in TLR3 are predisposed to HSV encephalitis
(31). Together, these observations provide strong evidence that
neurons possess active and functional PRR-mediated pathways,
which may be a critical determinant in neurotropic virus patho-
genesis.

In this report, we used targeted genetic approaches in neurons
derived from multiple sources to study PRR pathway activation
and function in response to neurotropic arbovirus infection. In
response to WEEV and SLEV infection, neurons activated an IRF-
3-dependent prosurvival pathway, which was independent of type
I IFN activity. Furthermore, PRR-mediated innate immune path-
way signaling in neurons could be inhibited by WEEV capsid pro-
tein in a manner that was downstream of IRF-3 activation and
independent of host translational shutoff. These results demon-
strate that neurons have functional and beneficial innate immune
pathways that are capable of responding to neurotropic viral in-
fections yet remain susceptible to virus-encoded countermea-
sures, and they also identify key cellular determinants that may be
exploited in the development of more efficacious vaccines and
antiviral therapeutics.

MATERIALS AND METHODS
Mice. Wild-type C57BL/6 mice were obtained commercially (Jackson
Laboratories, Bar Harbor, ME). IRF-3�/� and IFNAR�/� mice were ob-
tained originally from T. Taniguchi (Tokyo, Japan) and J. Sprent (Scripps
Institute, San Diego, CA), respectively, and backcrossed onto a C57BL/6
background. All mice were genotyped and bred in animal facilities of
Washington University School of Medicine, and experiments were ap-
proved and performed in accordance with Washington University animal
study guidelines.

Plasmids. The dominant negative (DN), superactive (SA), and wild-
type overexpression plasmids pDN-IRF-3(�N), pSA-IRF-3(S396D),
pSA-TRIF(�C), and pMDA5 and the secreted alkaline phosphatase
(SEAP) promoter-reporter plasmids pISRE-SEAP and pNF�B-SEAP
(ISRE is interferon-stimulated response element) were purchased from
InvivoGen (San Diego, CA). The hemagglutinin (HA)-tagged �-galacto-
sidase expression control plasmid pCMV-LacZ, also referred to as pIVT-
LacZ, has been previously described (32). The WEEV replicon plasmid
bearing a yellow fluorescent protein (YFP)-tagged, truncated capsid
(pRep-YFP) has been previously described (33). WEEV and WNV protein
expression plasmids were generated by inserting individual PCR-ampli-
fied viral genes initially into pMT/V5-HisA (Invitrogen, Carlsbad, CA)
and subsequent subcloning into the final constitutive expression vector
pCMV-TnT (Promega, Madison, WI). WEEV structural and nonstruc-
tural genes were amplified from the full-length cDNA clone pWE2000
(34), and WNV genes were amplified from the cDNA nonstructural protein
clone pc-WNV (provided by Richard Kinney, CDC, Atlanta, GA). Primer
sequences and detailed cloning procedures are available upon request.

Antibodies and reagents. Antibodies against the HA epitope tag, glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH), IRF-3, MDA5, and
WEEV have been previously described (24, 34, 35). Antibodies against
actin and the V5 epitope tag were purchased from Sigma-Aldrich (St.
Louis, MO), and antibodies against TRIF were generously provided by

Marc Hershenson (University of Michigan, Ann Arbor, MI). Neutralizing
antisera against mouse type I IFNs were purchased from PBL Biomedical
Laboratories (Piscataway, NJ). All secondary antibodies for immunoblot-
ting were purchased from Jackson ImmunoResearch (West Grove, PA).

Recombinant human IFN-�-A/D, human tumor necrosis factor
(TNF)-�, and poly(I-C) have been previously described (24). Mouse IFN-
�/� was obtained from the Biodefense and Emerging Infections (BEI)
Research Resources Repository (Manassas, VA).

Viruses. The Cba 87 strain of WEEV was generated from the cDNA
clone pWE2000 as previously described (34). For infection of primary
rodent neurons and human embryonic stem cell (hESC)-derived neu-
rons, we used sucrose gradient-purified WEEV. Vero cells were infected
with WEEV at a low multiplicity of infection (MOI), harvested 48 h later,
and centrifuged at 1,000 � g for 5 min to pellet cellular debris, and virions
were precipitated from precleared tissue culture supernatant by addition
of polyethylene glycol and sodium chloride to 7% and 2.3% final concen-
trations, respectively, and gentle stirring overnight at 4°C. Virions were
recovered by centrifugation at 3,500 � g for 20 min, resuspended in
Hanks’ balanced salt solution (HBSS), loaded onto 15 to 45% linear su-
crose step gradients, and centrifuged at 40,000 � g for 90 min. Visible
virion bands were collected, diluted in HBSS, pelleted at 35,000 � g for 60
min, resuspended in HBSS, and stored at �80°C in single-use aliquots. To
inactivate WEEV, we exposed culture supernatants or purified virions to
UV light for 15 min on ice using a Spectrolinker cross-linker (Spectronics
Corporation, Westbury, NY), which reproducibly blocked the propaga-
tion of infectious virions in Vero cells. Virus titers were determined by
plaque assay on Vero cell monolayers as previously described (34).

SLEV strain TBH-23 and LACV strain LACV/human/1960 were obtained
from Robert Tesh (University of Texas Medical Branch, Galveston, TX) and
were propagated in Vero cells. Green fluorescent protein (GFP)-tagged Sen-
dai virus (SeV) was obtained from Valery Grdzelishvili (University of North
Carolina at Charlotte, Charlotte, NC) and has been previously described (24).
All experiments with infectious WEEV or SLEV were performed under bio-
safety level 3 (BSL3) conditions in accordance with University of Michigan
Institutional Biosafety Committee and CDC/NIH guidelines.

Cell culture. Human neuroblastoma [BE(2)-C], differentiated BE(2)-
C/m, baby hamster kidney (BHK-21), and African green monkey kidney
(Vero) cells were cultured as previously described (24, 34). BHK-21 cells
stably expressing bacteriophage T7 RNA polymerase (BSR-T7 cells) (33)
were cultured in Dulbecco’s modified Eagle medium containing 10% fetal
bovine serum, 0.1 mM nonessential amino acids, 10 U per ml penicillin,
and 10 �g per ml streptomycin. BE(2)-C/m cells were transfected using
Lipofectamine 2000 (Invitrogen) according to the manufacturer’s in-
structions except that 25% of the recommended amount of DNA was
used, which routinely resulted in 60 to 70% transfection efficiency (data
not shown). BHK-21 and BSR-T7 cells were transfected using TransIT
LT-1 (Mirus, Madison, WI) as previously described (33).

Primary rat cortical neurons were isolated and cultured as previously
described (24). For primary mouse cortical neurons, cortices from em-
bryonic day 15 mice were dissociated and cultured as described for rat
cortical neurons (24) except that cells were plated at a density of 5 � 105

per cm2 on poly-D-lysine- and laminin-coated plates and washed once 3 h
after plating and medium was replenished every 1 to 2 days until cells were
used for experiments after 10 to 12 days in culture. Cultured neurons were
highly susceptible to glutamate-induced excitotoxicity (data not shown),
a characteristic of differentiated cortical neurons (36).

Differentiated human neurons were derived from the NIH-ap-
proved hESC line H7 (WiCell, Madison, WI) through the sequential
development of embryoid bodies, neuroepithelial rosettes, neuropro-
genitor cells, and differentiated neurons based on modified proce-
dures of previously published techniques (37–39) (J. Farmer and D.
Miller, unpublished results).

Cell viability, SEAP assays, immunoblotting, and immunofluores-
cence microscopy analyses. Cell viability was determined by a 3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay as
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previously described (34) or a luminescent ATP assay (ATPlite; PerkinElmer,
Waltham, MA) according to the manufacturer’s instructions. SEAP assays,
immunoblotting, and immunofluorescence microscopy were performed as
previously described (24, 33, 34), except that immunofluorescence images
were obtained with a Nikon Eclipse Ti microscope and images were processed
with Nikon NIS Elements and Adobe Photoshop software.

RT-PCR analysis. Reverse transcription-PCR (RT-PCR) was per-
formed as previously described (24, 33). For quantitative RT-PCR (qRT-
PCR) analyses we normalized threshold values to 18S rRNA levels and
determined fold increases using threshold cycle (��CT) calculations. RT-
PCR primer sequences are shown in Table 1.

Protein synthesis and metabolic labeling. We used metabolic incor-
poration of 35S-labeled methionine and cysteine to measure total protein
synthesis. Control and WEEV-infected cells were incubated with 50 �Ci
per ml PRO-MIX 35S-cell labeling mix (Amersham) for 30 min, washed
with Tris-buffered saline containing 100 �g cycloheximide per ml, and
lysed in SDS-PAGE sample buffer. Samples were separated by electropho-
resis, and gels were fixed in a solution containing 25% methanol and 7%
acetic acid, impregnated with 1 M sodium salicylate, dried under vacuum,
and exposed to film at �80°C. Digitized images of radiolabeled protein
bands were quantitated by densitometry as described previously (34).

Statistical analysis. We used a two-tailed Student’s t test assuming
unequal variances and considered a P value of �0.05 as statistically sig-
nificant. Unless otherwise indicated, results are representative of at least
three independent experiments, where quantitative data represent the
mean 	 standard error of the mean (SEM).

RESULTS
WEEV replication induces IFN-� transcription in neurons. The
activation of innate immune pathways and transcriptional up-
regulation of type I IFN and other antiviral genes is a common
characteristic of many viral infections. However, the full breadth
of cell types that can activate these pathways, the individual viruses
that efficiently stimulate them, and the viral-mediated counter-
measures to antagonize their effects are not fully known. We have
recently demonstrated that human neuronal cells possess func-
tional innate immune pathways activated by several PRRs in re-
sponse to both synthetic ligands and the potent innate immune
system activator SeV (24). To examine this in the context of a
more physiologically relevant neurotropic virus, we examined

IFN-� transcriptional responses of cultured neuronal cells after
infection with WEEV, a highly pathogenic and neurotropic alpha-
virus (Fig. 1). Both SeV and WEEV infection induced IFN-�
mRNA accumulation in BE(2)-C/m cells (Fig. 1, left bars), which
are differentiated human neuroblastoma cells with morphological
and biochemical characteristics of mature human neurons in cul-
ture and have been used previously to study cellular responses to
WEEV infection (34). Furthermore, UV-inactivated WEEV failed
to potently stimulate IFN-� transcription in BE(2)-C/m cells (Fig.
1, black bar), suggesting that viral replication was required for full
innate immune system activation. To examine whether WEEV
infection upregulated IFN-� transcription in other neuronal cells,
we also infected hESC-derived and primary rat cortical neurons
with SeV or WEEV and measured IFN-� mRNA levels by qRT-
PCR. Both SeV and WEEV induced IFN-� transcription in hESC-
derived neurons (Fig. 1, middle bars) and primary rat cortical
neurons (Fig. 1, right bars). Together, these results suggested that
active WEEV infection induced an innate immune response in
CNS neurons.

IRF-3 mediates a neuronal cytoprotective response against
WEEV infection. The transcription factor IRF-3 is a central reg-
ulator of virus-induced innate immune system activation (11).
Thus, we examined whether disruption of IRF-3 function in
BE(2)-C/m neuronal cells would alter responses to WEEV infec-
tion (Fig. 2 and 3). We ectopically and stably expressed an IRF-3
dominant negative (dnIRF-3) mutant that lacks a DNA binding
domain such that it competes for activation signals but does not
induce transcription. This dnIRF-3 mutant potently suppresses
PRR-mediated pathway activation induced by poly(I-C) and SeV
in BE(2)-C/m cells (24). Expression of dnIRF-3 decreased the
IFN-� transcriptional response to WEEV infection by 
90%
compared to control BE(2)-C/m cells transfected with empty vec-
tor (Fig. 2A). We also examined the effects of dnIRF-3 expression
on WEEV-induced cytopathic effect (CPE) and infectious virion
production in BE(2)-C/m cells. Virus-induced CPE is a hallmark
of alphavirus infection in most cultured mammalian cells, includ-
ing neurons, where the intensity of CPE often depends on cellular

FIG 1 WEEV infection induces IFN-� transcription in cultured neurons.
BE(2)-C/m cells, hESC-derived neurons, or primary rat cortical neurons were
infected with SeV, infectious WEEV, or UV-inactivated WEEV, and IFN-�
transcript levels were assessed via qRT-PCR. WEEV was used at an MOI of 1
for both BE(2)-C/m and primary rat neurons and an MOI of 0.1 for hESC-
derived neurons, and qRT-PCR was done at 20 to 24 hpi. **, P � 0.005.

TABLE 1 RT-PCR primer sequences

Target Primer ID Sequence (5= to 3=)
18S rRNA rRNA-F CTTAGAGGGACAAGTGGCG

rRNA-R ACGCTGAGCCAGTCAGTGTA

Human IFN-� hIFN�-F TGGGAGGATTCTGCATTACC
hIFN�-R CAGCATCTGCTGGTTGAAGA

Mouse IFN-� mIFN�-F GCAGCTCCAGTTCCGACAAAG
mIFN�-R GACCACCATCCAGGCATAGC

ISG15 hISG15-F GCGGGCTGGAGGGTGTG
hISG15-R CCGCAGGCGCAGATTCAT

OASL hOASL-F CTGTTGCTATGACAACAGGGAG
hOASL-R CACGATGAGGTTGAAATCTGG

Viperin hRSAD2-F CGCCACAAAGAAGTGTCCTGC
hRSAD2-R CTACACCAACATCCAGGATGGACT

WEEV envelope
glycoprotein 1

WEEV E1-F TACGGGCACATCCCTATCTC
WEEV E1-R GTCGCTTCCTTCAAAACAGC
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differentiation (34, 40). Functional disruption of IRF-3 rendered
BE(2)-C/m cells more susceptible to WEEV-induced CPE (Fig.
2B) and also increased infectious virus production by �5- to 10-
fold (Fig. 2C).

We further analyzed IRF-3-mediated protective responses in
BE(2)-C/m cells, and the potential effects of viral inoculum on
these responses, by infecting empty vector- or dnIRF-3-expressing
cells with WEEV at various MOIs and analyzing the temporal

pattern of cell survival over 72 h (Fig. 3A). At 12 hours postinfec-
tion (hpi) there was minimal WEEV-induced CPE in both empty
vector- and dnIRF-3-expressing cells regardless of viral inoculum,
despite the fact that 
95% of cells in both groups infected with an
MOI of 10 had detectable WEEV antigens at this time point (Fig.
3B). At lower inocula the percentage of WEEV-infected cells at 12
hpi decreased as expected but did not differ between empty vec-
tor- and dnIRF-3-expressing cells. Virus-induced CPE rapidly

FIG 2 IRF-3 mediates IFN-� transcriptional induction, enhances neuronal survival, and suppresses infectious virion production in BE(2)-C/m cells in response
to WEEV infection. (A) BE(2)-C/m cells stably expressing control vector or dnIRF-3 construct were mock infected or infected with WEEV at an MOI of 1 for 20
h, and IFN-� transcript levels were measured by qRT-PCR. (B and C) BE(2)-C/m cells expressing the vectors described in panel A were infected with WEEV at
the indicated MOI and both the percent viability relative to mock-infected controls (B) and infectious viral titers in tissue culture supernatants (C) were measured
at 48 hpi. Similar differences in viral titers were seen when tissue culture supernatants were examined at 20 hpi (data not shown).

FIG 3 IRF-3 enhances neuronal survival in BE(2)-C/m cells in response to WEEV infection irrespective of viral inoculum. (A) BE(2)-C/m cells stably expressing
control vector or dnIRF-3 construct were infected with WEEV at the indicated MOI and percent viability relative to mock-infected controls was measured from
12 to 72 hpi. *, P � 0.05; **, P � 0.005 (compared to WEEV-infected cells expressing control vector at the corresponding time point). (B) Immunofluorescence
microscopy images of BE(2)-C/m cells stably expressing control vector (upper images) or dnIRF-3 construct (lower images) infected with WEEV at the indicated
MOI and analyzed at 12 hpi. Representative overlaid images from one of two independent experiments are shown, where blue indicates 4=,6-diamidino-2-
phenylindole (DAPI)-stained nuclei and green indicates WEEV-infected cells. We quantitated the percentage of infected cells by analyzing four separate fields
obtained at �20 magnification, which corresponded to enumerating �250 cells per group. Values in the upper left corners indicate means 	 standard deviations
(SD) of the percentage of cells positive for WEEV antigens. Scale bars, 25 �m.
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progressed in dnIRF-3-expressing cells such that a significant dif-
ference in viability compared to that of control cells was evident at
both 24 and 48 hpi, whereas virus-induced cell death was virtually
complete by 72 hpi in both groups (Fig. 3A). We cannot exclude
the possibility that more rapid viral spread in culture due to en-
hanced infectious virus production in dnIRF-3-expressing cells
(Fig. 2C) was responsible for the observed increase in CPE at lower
MOIs. However, the results under high-MOI conditions, in which
essentially all cells were infected (Fig. 3B), indicated that a cell
intrinsic neuronal response mediated by IRF-3 was responsible for
the cytoprotective effect.

In addition to loss-of-function studies with dnIRF-3, we con-
ducted gain-of-function studies with ectopic expression of either
wild-type or constitutively active IRF-3 in BE(2)-C/m cells.
WEEV-mediated CPE and infectious viral titers were markedly
suppressed in cells expressing either construct (data not shown).
However, subsequent analyses revealed that ectopic expression of
either wild-type or constitutively active IRF-3 in BE(2)-C/m cells
resulted in the production of type I IFNs prior to infection, and we
have previously demonstrated that exogenous type I IFNs have
potent cytoprotective and antiviral effects in BE(2)-C/m cells (34).
Thus, we could not reliably interpret the gain-of-function studies
with respect to cell intrinsic innate immune responses.

To provide additional validation of IRF-3-mediated responses
to WEEV infection in CNS neurons, we used primary cortical
neurons derived from wild-type and IRF-3�/� mice (Fig. 4). The
absence of IRF-3 reduced but did not eliminate WEEV-induced
IFN-� transcriptional upregulation in cultured mouse neurons
(Fig. 4A), suggesting that rodent neurons possess both IRF-3-de-
pendent and -independent pathways to activate IFN-� transcrip-
tion in response to neurotropic alphavirus infection, consistent
with previous results obtained using WNV (3). The absence of
IRF-3 also increased the susceptibility of mouse neurons to
WEEV-mediated CPE (Fig. 4B), consistent with results using
dnIRF-3 expression in human BE(2)-C/m neuronal cells (Fig. 2B
and 3A). However, virus titers were not significantly increased in
neuronal cultures from IRF-3�/� mice (Fig. 4C), in contrast to
results with human neuronal cells (Fig. 2C), suggesting a potential
species-specific difference in neuronal responses or a distinct ef-
fect of primary versus immortalized cells. Nevertheless, these re-
sults indicated that IRF-3 mediated a cytoprotective response in
cultured neurons infected with WEEV. We chose to focus subse-
quent studies primarily on this prosurvival response since it was
observed with both primary rodent cortical neurons and human
neuronal cells derived from an immortalized cell line. Further-
more, the ability of CNS neurons to survive viral infection, even in
the absence of complete pathogen clearance, may represent an
important component of the physiological response of these vital
cells to infection with neurotropic viruses.

IRF-3 mediates a neuronal cytoprotective response against
neurotropic flavivirus but not bunyavirus infection. We evalu-
ated whether the IRF-3-dependent cytoprotective response of cul-
tured neurons was restricted to alphaviruses or extended to other
neurotropic viruses. For these experiments we used LACV, a
bunyavirus that is the most common cause of pediatric arboviral
encephalitis in the United States (41), and SLEV, a neurotropic
flavivirus responsible for both endemic and epidemic cases of
arboviral encephalitis in the United States (42). We initially exam-
ined the IFN-� transcriptional response to LACV or SLEV infec-
tion in BE(2)-C/m cells by semiquantitative RT-PCR (Fig. 5A). In

control cells transfected with empty vector, both viruses induced
IFN-� mRNA transcription, although the level of induction was
lower in response to infection with LACV (Fig. 5A, lanes 4 to 6)
compared to that with SLEV (Fig. 5A, lanes 7 to 9). Disruption of
IRF-3 function via expression of dnIRF-3 inhibited SLEV-in-
duced IFN-� mRNA accumulation by �10-fold (Fig. 5A, lanes 16
to 18), whereas a less prominent reduction was observed in LACV-
induced IFN-� mRNA accumulation (Fig. 5A, lanes 13 to 15). We
also examined the impact of dnIRF-3 expression on virus-induced
CPE and found similar differential effects. Neuronal cells express-
ing dnIRF-3 were significantly more susceptible to SLEV-medi-
ated CPE (Fig. 5B) but not to LACV-mediated CPE (Fig. 5C),
regardless of viral inoculum. These results suggested that IRF-3

FIG 4 IRF-3 mediates IFN-� transcriptional induction and enhances neuro-
nal survival in primary mouse cortical neurons. (A) Primary cortical neurons
derived from wild-type (wt) C57BL/6 (lanes 1 to 6) and IRF-3�/� (lanes 7 to
12) mice were either mock infected (lanes 1 to 3 and 7 to 9) or infected with
WEEV at an MOI of 1 (lanes 4 to 6 and 10 to 12), and IFN-�, WEEV E1, and
rRNA transcript levels were assayed by semiquantitative RT-PCR at 20 hpi.
Adjacent lanes for individual samples represent results using 10-fold dilutions
of cDNA. (B and C) Primary cortical neurons derived from wt C57BL/6 or
IRF-3�/� mice were infected with WEEV at the indicated MOI, and the per-
centages of viability relative to mock-infected controls (B) and infectious viral
titers in supernatants (C) were measured at 48 hpi. Viral titers also were mea-
sured at 8 and 20 hpi and showed no difference between wt and IRF-3�/�

neurons for an MOI of either 1 or 0.01 (data not shown). *, P � 0.05.
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was important for the neuronal cytoprotective response to some,
but not all, neurotropic arboviruses.

Neuronal IRF-3-dependent cytoprotective response is inde-
pendent of type I IFN autocrine or paracrine signaling. The ob-
servation that a dnIRF-3 mutant lacking a DNA binding domain
enhanced WEEV-mediated CPE in BE(2)-C/m neuronal cells sug-
gested that IRF-3-dependent transcriptional activity was involved
in the cytoprotective response. One explanation for this observa-
tion is that WEEV might induce type I IFN production and secre-
tion in BE(2)-C/m cells, thereby initiating an autocrine or para-
crine antiviral and prosurvival pathway. Although WEEV
infection induced IFN-� transcription in BE(2)-C/m cells (Fig. 1),
and these cells are capable of synthesizing and secreting IFN-� in
response to artificial PRR ligands (24), we have previously shown
that neutralizing antibodies against type I IFNs do not impact
WEEV-induced CPE (34). Furthermore, WEEV infection did not
activate an IFN-�-dependent ISRE reporter, and we have not de-
tected any measurable secreted type I IFNs in supernatants of
infected neuronal cells (data not shown). To provide definitive
genetic validation of these results, we prepared primary cortical

neuron cultures from mice lacking the type I IFN receptor
(IFNAR�/�) and control mice. Whereas control cultures pre-
treated with type I IFNs showed the expected protective effects in
neurons derived from wild-type mice, there were no differences in
WEEV-induced CPE between untreated neurons isolated from
wild-type and IFNAR�/� mice irrespective of virus inoculum
(Fig. 6). Taken together, these data indicated that the IRF-3-de-
pendent neuronal cytoprotective response to WEEV infection was
independent of autocrine or paracrine type I IFN signaling.

WEEV infection inhibits poly(I-C)-induced activation of
PRR pathways in neurons. PRR pathway activation in neurons
can occur rapidly after PAMP ligand-receptor interaction, as we
have previously observed IFN-� mRNA induction within 5 h of
poly(I-C) stimulation (24). Although we observed IFN-� mRNA
induction after WEEV infection (Fig. 1), we noted in initial time
course experiments a delay of 10 h or more between WEEV infec-
tion and IFN-� gene induction (data not shown), despite readily
detected virus replication by 6 hpi (34). This suggested that WEEV
might actively antagonize PRR pathway signaling, similar to sev-
eral other viruses (14, 43, 44). To test this hypothesis, we examined
the impact of WEEV infection on poly(I-C)-induced gene activa-
tion in BE(2)-C/m cells (Fig. 7). We measured the activation of
either ISRE promoter-driven (Fig. 7A) or NF-�B promoter-
driven (Fig. 7B) reporter genes, used either extracellular or trans-
fected poly(I-C) to stimulate surface or cytosolic PRRs, respec-
tively, and altered the sequence of WEEV infection and artificial
ligand stimulation. We also assessed cell viability to account for
possible virus-induced CPE, although there is typically only mild
cell death at the 16-to-20-hpi time point used for analysis in these
assays (34). WEEV infection at an MOI of 1 suppressed both ex-
tracellular and transfected poly(I-C)-induced ISRE activation in
BE(2)-C/m cells, and the level of suppression was increased if cells
were infected 1.5 h prior to poly(I-C) stimulation (Fig. 7A, left
graph) in comparison to infection 3 h after stimulation (Fig. 7A,
right graph). This suppression was likely due to disruption of
poly(I-C)-stimulated IFN-� induction, as WEEV infection did
not suppress exogenous type I IFN-mediated ISRE activation.
Similar results were obtained with the NF-�B reporter-expressing
cells (Fig. 7B), although virus infection also suppressed TNF-�-
stimulated reporter gene activation, suggesting that WEEV may
inhibit multiple signaling pathways or a component shared be-

FIG 5 IRF-3 mediates IFN-� transcriptional induction and enhances neuro-
nal survival in BE(2)-C/m cells in response to SLEV but not LACV infection.
(A) BE(2)-C/m cells stably transfected with empty vector (lanes 1 to 9) or a
constitutively active dnIRF-3 expression plasmid (lanes 10 to 18) were mock
infected (lanes 1 to 3 and 10 to 12) or infected with LACV (lanes 4 to 6 and 13
to 15) or SLEV at an MOI of 1 (lanes 7–9 and 16 –18), and IFN-� and rRNA
transcript levels were assayed by semiquantitative RT-PCR at 20 hpi. Adjacent
lanes for individual samples represent results using 10-fold dilutions of cDNA.
(B and C) BE(2)-C/m cells stably transfected with empty control vector (closed
symbols) or a dnIRF-3 construct (open symbols) were infected with SLEV (B)
or LACV (C) at the indicated MOI, and viability relative to mock-infected
controls was measured from 12 to 72 hpi. *, P � 0.05; **, P � 0.005 (compared
to virus-infected cells expressing control vector at the corresponding time
point).

FIG 6 Neuronal prosurvival responses to WEEV are independent of type I IFN
autocrine or paracrine activity. Cortical neurons from wt C57BL/6 or IFNAR�/�

mice were mock treated or stimulated with 100 U/ml of mouse IFN-�/� for 24 h
and infected with WEEV at the indicated MOI, and cell viability relative to mock-
infected controls was assessed 48 hpi. *, P � 0.05.
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tween TNF-� receptor and PRR pathways but not present in the
IFNAR signaling pathway.

We also assessed WEEV-mediated inhibition of PRR pathway
activation by directly examining IFN-� mRNA induction by semi-
quantitative RT-PCR after extracellular and transfected poly(I-C)
stimulation (Fig. 7C). As a control, we measured mRNA produc-
tion of the IFN-stimulated genes ISG15 and OASL, which are in-
duced by both IRF-3-dependent PRR signaling and IFNAR signal-
ing (45). Consistent with the reporter gene experiments described
above, at an MOI of 1 WEEV infection 3 h prior to ligand stimu-
lation suppressed poly(I-C)-induced IFN-�, ISG15, and OASL

mRNA upregulation (Fig. 7C, group 3) but not exogenous type I
IFN-induced ISG15 or OASL mRNA upregulation (Fig. 7C, group
2). Similar results were obtained with additional IFN-stimulated
genes, including MxB and Rsad2/viperin (data not shown). We
further analyzed and quantitated the impact of WEEV infection
on poly(I-C)- and type I IFN-induced gene transcription by qRT-
PCR (Fig. 7D). For these experiments we also used an MOI of 10 to
ensure that the majority of cells were infected (Fig. 3B). WEEV
infection reduced poly(I-C)-induced IFN-� mRNA upregulation
by 
95% but had no significant effect on type I IFN-induced
ISG15, OASL, or viperin mRNA upregulation (Fig. 7D). We con-

FIG 7 WEEV infection inhibits neuronal PRR pathway activity. (A) BE(2)-C/m ISRE promoter-reporter cells were infected with WEEV at an MOI of 1 for 1.5
h and subsequently treated with the indicated stimulus (left graph) or pretreated with the indicated stimulus for 3 h prior to infection with WEEV (right graph),
and both reporter activity and viability were assessed relative to mock-infected controls at 16 to 20 hpi. We used 100 U/ml IFN-�/�-A/D, 50 �g/ml extracellular
poly(I-C) (pIC), and 500 ng/ml transfected poly(I-C) (T-pIC) for stimulation. *, P � 0.05 compared to appropriate mock-infected control. (B) BE(2)-C/m
NF-�B promoter-reporter cells were treated and analyzed as described above for panel A except that 25 ng/ml TNF-� was used instead of IFN-�/�-A/D. (C)
BE(2)-C/m cells were mock infected (upper gel in each gene-specific group) or infected with WEEV at an MOI of 1 for 3 h (lower gel in each gene-specific group)
and treated with the indicated stimulus, and transcripts for the indicated genes were analyzed by semiquantitative RT-PCR 4 h after stimulation. Adjacent lanes
for individual samples represent results using 10-fold dilutions of cDNA. (D) BE(2)-C/m cells were infected and stimulated as described in panel B except that
WEEV was used at an MOI of 10 and gene transcripts were analyzed by qRT-PCR 4 h after stimulation. **, P � 0.0001.
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cluded from these results that WEEV infection suppressed PRR-
mediated signal transduction in BE(2)-C/m neuronal cells with-
out globally inhibiting cell signaling pathways.

WEEV capsid protein suppresses PRR pathways. Alphavi-
ruses encode seven major proteins: three structural proteins, in-
cluding the capsid and two envelope glycoproteins designated E1
and E2, and four nonstructural proteins designated nsP1 through
nsP4 (46). To determine which viral protein(s) contributed to
WEEV-mediated suppression of PRR pathway signaling, we
cloned the entire structural region (C-E) and individual capsid
(C), nsP1, nsP2, and nsP3 genes into cytomegalovirus (CMV)
promoter-driven plasmids for transient expression in mammalian
cells. Of note, we were unable to express full-length WEEV nsP4 as
an isolated protein, possibly because of its short half-life and rel-
ative instability in cells (46). We subsequently transiently trans-
fected these viral genes into BE(2)-C/m cell lines expressing ISRE-
and NF-�B-promoter reporter genes and measured reporter gene
activity after poly(I-C) or control stimulation (Fig. 8). As controls, we
cloned and expressed the WNV NS1 and NS2A proteins, which have
previously been shown to suppress PRR pathway activation (47, 48).

Ectopic expression of WEEV capsid and complete structural

genes suppressed transfected poly(I-C)-induced ISRE reporter
gene activation, whereas expression of WEEV nsP1, nsP2, or nsP3
had no effect (Fig. 8A). Although the magnitude of suppression
was only 30 to 50%, it was consistent with that seen with the
positive controls WNV NS1 and NS2A. Expression of the entire
WEEV structural genes, and to a lesser extent the individual capsid
gene, also suppressed extracellular poly(I-C)-induced responses,
whereas no suppression with this ligand was seen with WNV NS1
or NS2A or any of the WEEV nonstructural proteins. None of the
constructs suppressed exogenous type I IFN-induced ISRE activa-
tion, consistent with the infection experiments described above
(Fig. 7). We conducted similar experiments using BE(2)-C/m cells
that contained an NF-�B promoter-driven reporter gene, and we
found that ectopic expression of WEEV capsid or the complete
structural gene cassette, as well as the controls WNV NS1 and
NS2A, suppressed extracellular poly(I-C)-induced reporter gene
activation, whereas WEEV nsP1, nsP2, and nsP3 had no signifi-
cant effect (Fig. 8B). In contrast to the ISRE-reporter gene exper-
iments, ectopic expression of WEEV capsid or complete structural
genes also suppressed TNF-�-induced NF-�B-reporter gene acti-
vation, which was consistent with infection experiments (Fig. 7B).

FIG 8 WEEV structural proteins inhibit PRR signaling in neuronal cells. (A) BE(2)-C/m ISRE promoter-reporter cells were cotransfected with a control
HA-tagged �-galactosidase (�-gal) expression vector and a second vector encoding the indicated WNV (NS1, NS2A) or WEEV (capsid [C], capsid-envelope
[C-E], nsP1, nsP2, or nsP3) genes. Cells were subsequently stimulated 48 h after transfection with 100 U/ml IFN-�-A/D, 50 �g/ml extracellular poly(I-C) (pIC),
or 700 ng/ml transfected poly(I-C) (T-pIC), and reporter gene activity was measured 24 h after stimulation. Results are expressed relative to cells cotransfected
with empty vector (dashed line). We observed no significant cytotoxicity from transient overexpression of any viral gene, as assessed by MTT assay (data not
shown). *, P � 0.05; **, P � 0.005. (B) BE(2)-C/m NF-�B promoter-reporter cells were transfected and stimulated as described above for panel A except that 25
ng/ml TNF-� was used instead of IFN-�-A/D. (C) Lysates from BE(2)-C/m cells transfected with WNV (lanes 2 and 3) or WEEV (lanes 4 to 6) nonstructural
protein expression vectors as described for panels A and B were analyzed by immunoblotting for HA-tagged �-gal, V5-tagged viral proteins, and GAPDH as a
loading control. Note the cross-reactivity of the V5 antibody with an �50-kDa protein in all samples. MW, molecular weight (in thousands). (D) Lysates from
BHK-21 cells (left blots) or BHK-21 cells stably expressing bacteriophage T7 RNA polymerase (BHK-21/T7; right blots) cotransfected with a control HA-tagged
�-gal expression vector and a second vector encoding WEEV capsid (Cap; lanes 2 and 6), capsid-envelope (Cap-Env; lanes 3 and 7), or T7 promoter-driven
capsid/YFP chimera WEEV replicon (Rep-YFP; lanes 4 and 8) were analyzed by immunoblotting for WEEV capsid, HA-tagged �-gal, and actin as a loading
control.
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It was unclear why WNV NS1 and NS2A, in contrast to WEEV
structural genes, showed differential suppressive effects on ISRE
promoter activity between extracellular and transfected poly(I-C)
delivery (Fig. 8A), whereas proteins from both viruses suppressed
extracellular poly(I-C)-induced NF-�B activation (Fig. 8B). Pos-
sibly, the mechanisms by which WNV NS1 or NS2A and WEEV
capsid suppress PRR-mediated innate immune pathways are dif-
ferent.

To confirm these findings, we verified protein expression by
immunoblotting for the C-terminal V5 epitope tag that was used
in the plasmid design. We established that WNV NS1 and NS2A
and WEEV nsP1, nsP2, and nsP3 were all expressed in transiently
transfected BE(2)-C/m cells and that expression levels did not
correlate with suppression of poly(I-C)-induced responses (Fig.
8C). The WEEV capsid and complete structural protein expres-
sion constructs did not contain a V5 epitope tag, and we were
unable to detect native capsid or envelope proteins using com-
mercially available antibodies against WEEV, although RT-PCR
readily demonstrated mRNA production (data not shown). The
inability to detect capsid protein by immunoblotting was likely
due to low-level expression in BE(2)-C/m cells, as we routinely
obtained 60 to 70% transfection efficiency with BE(2)-C/m cells
and we could readily detect capsid protein using the same reagents
in lysates from BHK-21 cells transiently transfected with the indi-

vidual WEEV capsid protein (Fig. 8D, lane 2) or the entire WEEV
structural region (Fig. 8D, lane 3). To validate the specificity of
WEEV capsid immunoblotting, we used lysates from cells trans-
fected with a plasmid encoding a T7 promoter-driven WEEV rep-
licon that produces a chimeric and truncated capsid-YFP protein
during active viral RNA replication (33). As expected, this trun-
cated capsid was detected with the anti-capsid antibodies only in
BHK-21 cells that expressed bacteriophage T7 RNA polymerase
(Fig. 8D, compare lanes 4 and 8). Combined with the reporter
gene experiments described above, these results suggested that
WEEV capsid protein inhibited PRR-mediated signaling path-
ways in human neuronal cells.

One potential confounding factor with the viral protein ex-
pression studies is that the capsid proteins of the related neu-
rotropic alphaviruses VEEV and EEEV suppress host gene tran-
scription and translation (49–51). However, WEEV capsid
protein did not globally inhibit host signal transduction and gene
expression as measured by transcription and reporter gene assays
(Fig. 7). Nevertheless, to directly assess the impact of WEEV in-
fection on host gene expression, we examined the kinetics of virus-
mediated host translational suppression using metabolic labeling
with [35S]methionine-cysteine in cells infected with WEEV at an
MOI of 10 (Fig. 9). As a control, we used BHK-21 cells, which
show prominent New and Old World alphavirus-mediated inhi-

FIG 9 WEEV-mediated suppression of host translation is reduced in neuronal cells. (A) Control BHK-21 (upper images) or BE(2)-C/m (lower images) were
infected with WEEV at an MOI of 10 and analyzed by immunofluorescence microscopy at the indicated times postinfection. Representative overlaid images from
one of two independent experiments are shown, where blue indicates DAPI-stained nuclei and green indicates WEEV-infected cells. Scale bars, 25 �m. (B)
Control BHK-21 (lanes 1 to 6) or BE(2)-C/m (lanes 7 to 10) were infected with WEEV at an MOI of 10 and labeled with 50 �Ci/ml [35S]methionine-cysteine for
30 min prior to harvesting at 3, 6, 9, and 12 hpi, and lysates were analyzed by SDS-PAGE and fluorography. Mock-infected (lane 1) and cycloheximide-treated
(lane 2) BHK-21 cells are shown as representative controls. Molecular weight (MW) markers (in thousands) are shown on the left, and presumptive WEEV capsid
protein is indicated by the arrow. (C) Translation of the cellular protein at �45 kDa, marked by the asterisk in panel B, was quantitated by densitometry for
BHK-21 and BE(2)-C/m cells, and results are expressed as the percentage of uninfected control cells.
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bition of host translation (51, 52). Immunofluorescence micros-
copy showed no qualitative differences in the temporal appear-
ance of WEEV antigen-positive cells between BHK-21 and BE(2)-
C/m cells (Fig. 9A), suggesting similar initial permissiveness to a
high MOI inoculum. As expected, WEEV infection rapidly sup-
pressed host translation in BHK-21 cells, as cellular protein syn-
thesis was reduced by 
80% at 12 hpi (Fig. 9C, closed symbols)
and viral capsid protein synthesis was readily apparent (Fig. 9B,
lanes 3 to 6). In contrast, translation in BE(2)-C/m cells was less
susceptible to WEEV inhibition, as cellular protein synthesis was
suppressed by �40% at 12 hpi (Fig. 9C, open symbols) and accu-
mulation of viral capsid protein was less prominent (Fig. 9B, lanes
7 to 10). More importantly, WEEV infection suppressed cellular
translation in BE(2)-C/m cells by only 15 to 25% at 6 to 9 hpi (Fig.
9C), whereas it potently suppressed antiviral PRR signaling at 7
hpi (Fig. 7D). Thus, WEEV-mediated host translational inhibi-
tion was delayed compared to PRR pathway inhibition and un-
likely to explain the suppressive effects of WEEV capsid on innate
immune system activation.

WEEV capsid protein inhibits antiviral PRR signaling down-
stream of IRF-3 activation in neurons. Viruses antagonize innate
immune responses through several different mechanisms, includ-
ing sequestration or degradation of PRRs or signal transduction
components and shielding viral PAMPs from detection (43, 44).
To examine the mechanism(s) by which WEEV capsid protein
inhibits antiviral PRR signaling in neurons, we conducted epista-
sis experiments to assess the level at which suppression occurred
(Fig. 10). To initiate signaling at discrete levels within the PRR
pathway we transfected ISRE reporter-bearing BE(2)-C/m cells
with vectors expressing a constitutively active TLR adapter mole-
cule, TRIF (saTRIF), the cytosolic PRR MDA5, or a constitutively
active downstream transcription factor, IRF-3 (saIRF-3). These
vectors were cotransfected with either an empty vector control,
dnIRF-3 control, or expression vectors encoding WEEV nsP1,
capsid, or complete structural genes, and PRR pathway activation
was measured as autocrine or paracrine type I IFN-mediated ISRE
activity (Fig. 10A). Ectopic expression of dnIRF-3 suppressed
ISRE reporter gene activity stimulated by adapter protein saTRIF
and the PRR MDA5 but had no effect on reporter activity stimu-
lated by saIRF-3, confirming that this constitutively active tran-
scription factor did not require upstream PRR pathway signals for
activation. In contrast, WEEV capsid and structural gene expres-
sion inhibited saTRIF-, MDA5-, and saIRF-3-mediated activation
of ISRE reporter gene activation, whereas WEEV nsP1 expression
had no effect in these assays, consistent with poly(I-C)-induced
responses (Fig. 8A).

The ability of WEEV to inhibit host protein expression (Fig. 9),
possibly via capsid-mediated suppression similar to that of VEEV
and EEEV (49–51), represented a potential confounding factor in
the epistasis experiments. To examine the impact of WEEV capsid
on host-dependent expression of plasmid-encoded PRR compo-
nents, we performed immunoblotting experiments (Fig. 10B). Ex-
pression of WEEV capsid and the entire structural region reduced
vector-mediated saTRIF, MDA5, and saIRF-3 expression to vari-
ous levels, but this suppression did not correlate with the level of
ISRE reporter gene suppression. For example, transfection of
WEEV capsid gene reduced exogenous saTRIF, MDA5, and
saIRF-3 levels by �80%, 50%, and 10%, respectively (Fig. 10B,
lanes 8 to 10, compared to control lanes 2 to 4), but reduced ISRE
reporter gene activity by �80% for all three samples (Fig. 10A).

Results with the WEEV structural gene cassette showed a similar
lack of correlation, where exogenous saTRIF, MDA5, and saIRF-3
levels were reduced by �45%, 5%, and �1%, respectively (Fig.
10B, lanes 11 to 13 compared to control lanes 2 to 4), but reduced
ISRE reporter gene activity by �50%, 80%, and 40% for the cor-
responding samples (Fig. 10A). Taken together, these results sug-
gested that WEEV capsid protein suppressed PRR pathway signal-
ing downstream of IRF-3 activation and that this inhibitory
activity was independent of global suppression of host gene and
protein expression.

DISCUSSION

In this report we examined the functional impact of IRF-3-depen-
dent innate immune pathways in neuronal cells infected with
globally relevant arboviruses. We drew five main conclusions
from these studies. First, WEEV activated neuronal PRR pathways
in a replication- and IRF-3-dependent manner. Second, IRF-3
mediated a neuronal cytoprotective response that was active
against some (e.g., WEEV and SLEV) but not all neurotropic
arboviruses. Third, IRF-3-dependent cytoprotective responses in
neurons were largely independent of autocrine or paracrine type I
IFN activity. Fourth, WEEV potently inhibited innate immune sig-
naling in neurons. Fifth, the inhibition of innate immune signaling
was mediated by WEEV capsid, which suppressed signal transduc-

FIG 10 WEEV structural proteins inhibit neuronal antiviral PRR signaling in
neurons at a step downstream of IRF-3 activation. (A) BE(2)-C/m ISRE pro-
moter-reporter cells were cotransfected with a control HA-tagged �-galacto-
sidase (�-gal) expression vector, a second vector containing no insert (empty
vector control) or encoding a dominant negative IRF-3 (dnIRF-3) or the
WEEV nsP1, capsid (Cap), or capsid-envelope (Cap-Env) protein, and a third
vector encoding the indicated superactive (sa) or wild-type PRR-pathway
component. Reporter gene activity was measured 48 h after transfection, and
results are expressed relative to empty vector transfected controls (dashed
line). *, P � 0.05. (B) Lysates from the transfected cells described in panel A
were analyzed by immunoblotting for TRIF, MDA5, IRF-3, HA-tagged �-gal,
and GAPDH as a loading control.
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tion downstream of IRF-3 activation and appeared to be independent
of capsid-mediated inhibition of host macromolecular synthesis.
These results highlight the interplay between the neuronal innate im-
mune response and neurotropic arboviruses and identify a novel
IRF-3-dependent cytoprotective response in neurons.

Innate immune responses mediated by the transcription factor
IRF-3 have multiple functions in the control of viral infections.
One example is the suppression of viral replication through the
activation of antiviral genes such as PKR, OAS, or Rsad2/viperin,
either through direct transcriptional regulation or indirectly via
induction of type I IFNs (53–55). Although we observed an IRF-
3-dependent decrease in virion production with WEEV-infected
BE(2)-C/m human neuronal cells, we saw no impact of IRF-3 on
virus production in primary mouse cortical neurons. This may
represent a species-specific difference or, alternatively, a disparity
between primary and immortalized cells. Regardless, in both types
of neurons we saw consistent IRF-3-dependent cytoprotective ef-
fects after WEEV infection irrespective of viral inoculum. How-
ever, this effect was not universal for all arboviruses tested, as
IRF-3 also protected against SLEV- but not LACV-mediated CPE,
suggesting that complex and poorly defined interactions between
virus and host cells ultimately control the neuronal response to
infection. An IRF-3-dependent prosurvival activity in neurons has
potential physiologic importance, as mature CNS neurons are
largely irreplaceable. Thus, an innate immune response in neu-
rons may require a balance between promoting cell survival and
limiting virus replication, albeit incompletely. Such a balanced
response may not be necessary for cells that can be readily re-
placed, as rapid cell death may be a primary mechanism to prevent
virus spread. Indeed, IRF-3-dependent proapoptotic responses in
nonneuronal cells have been described after infection with several
RNA and DNA viruses (56–59).

The mechanism(s) whereby an IRF-3-mediated type I IFN-
independent response triggered by WEEV or SLEV infection
promotes neuronal survival is unknown. IRF-3 modulates the
expression of a wide variety of cellular genes in addition to type
I IFNs (45), and preliminary studies have identified several
candidate IRF-3-dependent genes induced by WEEV infection
that have been associated with resistance to neurotropic arbo-
virus-mediated CPE, including MxA and OASL (D. Peltier, J.
Farmer, and D. Miller, unpublished data). An alternative can-
didate is IFIT1, which was recently shown to affect neuronal
survival after WNV infection (60) and can also suppress alpha-
virus replication (55). Innate immune responses triggered by
PRR ligation often involve multiple and complex overlapping
pathways that control hundreds of genes (11), and therefore
the result of enhanced cell survival is unlikely to be due to a
single or even small subset of cellular genes. An additional
signaling pathway that has previously been associated with en-
hanced cell survival after virus infection is NF-�B activation,
which induces protective antiapoptotic activity in many cell
types (61) and may mediate neurogenesis (62) and protection
of neurons from ischemia (63, 64). We have previously dem-
onstrated that differentiated BE(2)-C/m human neuronal cells
activate NF-�B in response to poly(I-C) or SeV stimulation
(24). Studies are in progress to further define the roles of NF-
�B-mediated responses and their interactions with IRF-3-me-
diated responses in promoting neuronal survival after infec-
tion with WEEV and other neurotropic arboviruses.

The observation that replication-competent WEEV was neces-

sary to induce IRF-3-mediated responses suggested that viral RNA
replication in the cytoplasm was an important trigger of PRR ac-
tivation in neuronal cells. Human neurons possess functional
TLR3, MDA5, and RIG-I receptors (19–25), although the recep-
tors responsible for the IRF-3-dependent responses we observed
are currently unknown. There are limited published studies of
PRR activation by New World alphaviruses (e.g., WEEV, EEEV, or
VEEV), although Old World alphaviruses (e.g., chikungunya or
Sindbis viruses) can activate MDA5 or RIG-I and require the PRR
adapter IPS-I (65–68). Studies with WNV suggest that multiple
PRRs contribute to activating cell-intrinsic host defense responses
to neurotropic arboviruses, potentially in a cell type-specific man-
ner (3–6, 29). Preliminary studies suggest that both MDA5 and
RIG-I contribute to neuronal innate immune responses after
WEEV infection in cultured cells (D. Peltier and D. Miller, unpub-
lished data), but definitive results to implicate specific PRR path-
ways after infection with WEEV or other neurotropic arboviruses
await detailed in vivo studies with neuron-specific conditional
knockout mice.

Most successful viruses possess targeted or global countermea-
sures to prevent innate immune pathway activation that allow
them to efficiently replicate, avoid detection, and disseminate (14,
43, 44). A strategy of host transcriptional or translational shutoff is
employed by several viruses and includes the activity of the NSs
protein of bunyaviruses (69) and the nsP2 protein of Old World
alphaviruses (51). The New World encephalitic alphaviruses
VEEV and EEEV also globally suppress host RNA transcription
and translation, although this effect is mediated by the capsid
protein rather than nsP2 (49–51) and may involve disruption of
nuclear translocation (70, 71). We also mapped the viral antago-
nism of IRF-3 to the capsid protein of WEEV, although our ecto-
pic expression experiments do not fully exclude a potential con-
tributory role of viral nonstructural proteins in IRF-3 antagonism
in the context of replication-competent virus. In addition, our
results differed somewhat from published studies with other al-
phaviruses, as we observed no significant suppression of type I
IFN-mediated ISG induction with WEEV infection, even under
high-inoculum conditions where virtually all cells were infected.
In contrast, VEE, Sindbis, and chikungunya viruses all suppress
the type I IFN-Jak-STAT pathway (72–75). These discrepancies
may reflect true biological differences between viral countermea-
sures of New and Old World alphaviruses, at least for Sindbis and
chikungunya virus, or may be due in part to methodological dif-
ferences, such as the use of replicons (73, 75) or nonneuronal cells
(72–74), whereas we focused primarily on neuronal cells, replica-
tion-competent infectious virus, and exogenous plasmid-directed
expression of specific viral proteins. However, direct comparison
with one published study can be made that suggests potential in-
trinsic differences between WEEV and VEEV. Yin et al. showed
that VEEV infection of primary mouse cortical neurons potently
inhibited IFN-�/�-induced ISG upregulation, which was attrib-
uted to VEEV structural proteins as GFP-expressing replicons did
not display similar inhibitory activity (75). We did not examine
the effect of WEEV infection or exogenous capsid expression on
individual steps in the type IFN signaling pathway, and thus we
cannot exclude a direct impact of WEEV on specific signaling
events such as STAT1/2 phosphorylation or nuclear translocation,
as demonstrated for VEEV (75). However, our results suggest that
any such inhibitory activity, even if present, had negligible func-
tional impact on ISG induction in cultured neuronal cells. One
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intriguing yet speculative hypothesis is that WEEV capsid disrupts
nuclear translocation of activated IRF-3, in a manner analogous to
the proposed mechanism by which VEEV capsid protein sup-
presses host gene expression (70, 71), albeit with potentially more
nuclear transport selectivity. Detailed studies to examine the un-
derlying mechanism(s) responsible for WEEV capsid-mediated
suppression of innate immune responses are currently in progress
to directly test this hypothesis.

In summary, we have identified a cell-intrinsic innate immune
response mediated by IRF-3 that promotes cell survival in neurons
infected with WEEV as well as another neurotropic arbovirus,
SLEV. The conclusions that WEEV both induces and suppresses
IRF-3-dependent responses in neurons appear contradictory, but
they may simply represent the ongoing struggle between cellular
innate immune responses and virus-directed countermeasures.
Although WEEV replication induced IRF-3-dependent responses,
IFN-� mRNA induction in infected neurons was delayed in com-
parison to poly(I-C)-stimulated responses. Furthermore, neuro-
nal cytoprotective responses eventually failed, even with low MOI
inocula and in IRF-3-competent cells, suggesting that WEEV-di-
rected countermeasures are sufficient to overcome neuronal in-
nate immune responses, at least within isolated in vitro experi-
mental conditions. Our studies suggest that therapeutics designed
to modulate IRF-3 function or directly target viral countermea-
sures may augment cytoprotective responses, prolong neuronal
survival, and potentially allow the full activation of virus-clearing
adaptive immune responses (12).
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