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States
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The glucagon-like peptides (GLP-1 and GLP-2) are processed from
the proglucagon polypeptide and secreted in equimolar amounts
but have opposite effects on chylomicron (CM) production, with
GLP-1 significantly reducing and GLP-2 increasing postprandial
chylomicronemia. In the current study, we evaluated the apparent
paradoxical roles of GLP-1 and GLP-2 under physiological con-
ditions in the Syrian golden hamster, a model with close similarity
to humans in terms of lipoprotein metabolism. A short (30-min)
intravenous infusion of GLP-2 resulted in a marked increase in
postprandial apolipoprotein B48 (apoB48) and triglyceride (TG)
levels in the TG-rich lipoprotein (TRL) fraction, whereas GLP-1
infusion decreased lipid absorption and levels of TRL-TG and
apoB48. GLP-1 and GLP-2 coinfusion resulted in net increased lipid
absorption and an increase in TRL-TG and apoB48. However,
prolonged (120-min) coinfusion of GLP-1 and GLP-2 decreased
postprandial lipemia. Blocking dipeptidyl peptidase-4 activity
resulted in decreased postprandial lipemia. Interestingly, fructose-
fed, insulin-resistant hamsters showed a more pronounced response,
including possible hypersensitivity to GLP-2 or reduced sensi-
tivity to GLP-1. In conclusion, under normal physiological con-
ditions, the actions of GLP-2 predominate; however, when GLP-1
activity is sustained, the hypolipidemic action of GLP-1 predom-
inates. Pharmacological inhibition of GLP-1 degradation tips the
balance toward an inhibitory effect on intestinal production of
atherogenic CM particles. Diabetes 62:373-381, 2013

he prevalence of obesity and the metabolic syn-
drome has become a major health concern
worldwide, and the health risks associated with
dyslipidemia are well known (1). More recently,
attention has been drawn to the role of postprandial
hyperlipidemia as a risk factor for cardiovascular disease
(2) and the metabolic syndrome (3). Apolipoprotein B48
(apoB48) is the primary structural component of the tri-
glyceride (TG)-rich chylomicrons (CMs) secreted by the
intestine, and excess apoB48 secretion has been associated
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with the formation of atherosclerotic plaques (2). Addi-
tionally, postprandial hyperlipidemia has been shown to be
an important facet of the metabolic dyslipidemia asso-
ciated with insulin resistance (3), principally due to in-
testinal apoB48 overproduction (4,5). Little is known of
the hormonal and metabolic factors regulating intestinal
lipid handling and CM production, although insulin action
has been shown to inhibit the release of apoB48 (6). More
recently we have demonstrated the ability of the gut-derived
peptides, glucagon-like peptides 1 and 2 (GLP-1 and GLP-2),
to regulate intestinally derived CM production (7,8). GLP-1
and GLP-2 are gut peptides secreted by ileal enteroendocrine
L cells in response to dietary nutrients, particularly glucose
and fatty acids (9). They are produced from the proglucagon
gene and, as such, are cosecreted in equimolar quantities.
Despite the similarities in their production and release, they
have been shown to have opposing effects, particularly on
intestinal lipid packaging (7,8).

GLP-1 promotes insulin secretion in a glucose-dependent
manner and preserves pancreatic -cell function (10). In
addition to its proinsulinemic effects, GLP-1 has been
shown to have extrapancreatic effects when administered
systemically. GLP-1 slows gastric emptying and induces an
anoretic effect (11). In addition, GLP-1 decreases post-
prandial intestinal CM production as shown by the re-
duction of apoB48 and TG in the TG-rich lipoprotein (TRL)
fractions (8). Despite these beneficial effects, the presence
of GLP-1 in the plasma is short lived as it is rapidly de-
graded by the enzyme dipeptidyl peptidase-4 (DPP-4).
GLP-1 has a half-life of 1-2 min (12), with only 25% of
newly secreted hormone leaving the gut intact (13,14). Due
to the potential therapeutic nature of GLP-1, drug treat-
ments have focused on preventing this rapid degradation.
Inhibition of DPP-4 activity has been shown to lower
fasting and postprandial glycemia and is a major drug
target in patients with type 2 diabetes (15).

Conversely, GLP-2 activates the GLP-2 receptor (GLP-
2R), a G protein—coupled receptor that is located on
enteroendocrine cells (16), enteric neurons (17), subepi-
thelial myofibroblasts (18), and neurons located in the
central nervous system (19). GLP-2 activity has been
shown to enhance hexose transport through upregulation
of sodium-dependent glucose transporter-1 (20) and glu-
cose transporter-2 (21) in the brush border membrane.
GLP-2 has also recently been found to induce pronounced
stimulatory effects on intestinal lipid uptake. Acute GLP-2
treatment enhances lipid uptake in healthy humans (22).
An interesting observation considering that long-chain
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GLP-1 AND GLP-2 MODULATE POSTPRANDIAL LIPEMIA

fatty acids stimulate the secretion of proglucagon-derived
peptides from the gut (23), implying that there may be a
feedback loop involving the proglucagon peptides and in-
testinal lipid uptake.

More recent studies from our laboratory have evaluated
the specific effects of GLP-1 and GLP-2 on intestinal
function, particularly focusing on fatty acid uptake and li-
poprotein secretion. We have shown that acutely adminis-
tered GLP-2 not only promoted triolein uptake but also
increased secretion of TG-rich, apoB48-containing CM par-
ticles (7). This was found to be a CD36-dependent process
(7). In contrast to these findings, we have shown that
chronic DPP-4 inhibition reduced diet-induced dyslipidemia
and postprandial production of TG-rich, apoB48-containing
CM particles (8). These effects were likely due to the
increased presence of GLP-1, as acute treatment with
GLP-1 could induce similar effects (8). As such, we have
shown that, although GLP-1 and GLP-2 are secreted from
the same stimuli at the same time in equimolar amounts,
they exert opposing effects on CM production with GLP-1
inhibiting postprandial lipemia and GLP-2 promoting lipid
absorption and postprandial CM production. In the cur-
rent study, we investigated the interactions between
GLP-1 and GLP-2 under physiological conditions in the
regulation of intestinal lipid absorption and lipoprotein
metabolism.

RESEARCH DESIGN AND METHODS

Animals and diets. Male Syrian golden hamsters (Mesocricetus auratus)
weighing 110 g were purchased from Charles River (Montreal, QC, Canada)
and maintained under controlled environmental conditions (temperature;
humidity and airflow condition; 12-h light-dark cycle). After a 1-week accli-
matization period, the hamsters were fed ad libitum with a standard chow diet
or a fructose-enriched pelleted hamster diet containing 60% fructose and 20%
casein (Dyets, Bethlehem, PA) for 10 days to induce insulin resistance (24). All
animal protocols were approved by the Animal Ethics Committee of the
Hospital for Sick Children, University of Toronto.

Determination of TRL apoB48 secretion in vivo. Hamsters were anes-
thetized using isoflurane and were cannulated with a silastic catheter (VWR)
inserted into the right jugular vein, exteriorized at the back of the neck, filled
with heparinized saline (40 IU/mL), and sealed. Animals were allowed to re-
cover for 24 h and then were fasted for 16 h. Baseline blood samples (400 p.L)
were collected into lithium heparin—coated tubes (BD, Franklin Lakes, NJ)
from the jugular catheter. Hamsters were then given a 200-pL olive oil load via
oral gavage, followed by a 30-min intravenous infusion of vehicle (VEH)
(PBS), GLP-1 (20 pmol/kg body weight/min), GLP-2 (20 pmol/kg body weight/
min), or both GLP-1 and GLP-2. The GLP-1 and GLP-2 dosing protocols were
designed to ensure that GLP-1 and GLP-2 reached physiological concen-
trations after 30 min of infusion. Twenty minutes postgavage, Pluronic F-127
(20% in saline, 0.5 g/kg body weight) was injected intraperitoneally to inhibit
lipoprotein catabolism and uptake. Blood (400 L) was sampled at 30-min
intervals until 120 min postgavage. The oral gavage, peptide administration,
Pluronic injection, and blood collection were all performed on conscious
animals.

Isolation of TRL. To isolate the TRL fraction of the plasma, blood samples
were first centrifuged for 15 min at 4°C at 5,000 rpm to separate the plasma
layer. The plasma was supplemented with a cocktail of protease inhibitors
(Roche Diagnostics, Mannheim, Germany), and 150 pL were overlaid with 4
mL potassium bromide solution (density 1.006 g/mL) in an ultracentrifuge.
This was centrifuged for 70 min at 35,000 rpm at 10°C using an SW55Ti rotor
(Beckman Coulter, Mississauga, ON, Canada). The top 300 nL was collected
as the TRL fraction (Svedberg floatation rate >400).

Chemiluminescent immunoblotting. The apoB48 immunoblotting was per-
formed on TRL fractions by SDS-PAGE analysis as previously described (7).
Determination of triolein absorption in vivo. Hamsters were catheterized
as described above and received an oral gavage of 3 nCi [9,10-3H(N)]triolein
mixed with 200 pL olive oil. Hamsters were then infused (intravenous) with
GLP-1, GLP-2, or both as described above. Four hundred microliters of blood
was sampled from the jugular catheter into heparinized tubes at 30, 60, 90, and
120 min. The activity of tritium in 20 pL of plasma was determined by scin-
tillation counting in triplicate.
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Plasma measurements. Plasma and TRL triacylglycerol and cholesterol levels
were determined by an enzymatic-based colorimetric assay (Randox, Crumlin,
U.K.). Plasma GLP-1 levels were determined using GLP-1 (Active 7-36) ELISA
(Alpco, Salem, NH). To prevent degradation of GLP-1 in blood samples, blood
was treated with the DPP-4 inhibitor sitagliptin (20 wmol) immediately after
collection.

Statistical analysis. Results were expressed as mean = SEM. The statistical
analyses were performed using two-way ANOVA with the Bonferroni post-test
as indicated in the text and figure legends. All statistical analyses were per-
formed using GraphPad Prism.

RESULTS

Acute coinfusion of GLP-1 and GLP-2 results in
GLP-2-dominant effects on intestinal lipoprotein
production. To assess the relative contributions of GLP-
1 and GLP-2 on the regulation of intestinal lipid metabo-
lism and CM production in vivo, we intravenously infused
VEH, GLP-1, GLP-2, or both GLP-1 and GLP-2 in chow-fed
hamsters for 30 min to achieve prolonged peak levels of
these peptides in all groups. All experiments were per-
formed postprandially after a fat load and injection of
poloxamer to block CM clearance (thus, plasma and
TRL lipid levels reflect the rate of entry of apoB48 TG and
cholesterol secretion into plasma). Physiological levels
were determined based on plasma GLP-1 levels observed
after oral fat load. Vehicle-treated hamsters had baseline
GLP-1 levels of 0.25 pmol that peaked 30 min after fat load
to 1.2 pmol. GLP-1-infused (20 pmol/kg body weight/min)
hamsters reached a peak of 3.6 pmol at 30 min, but GLP-1
levels then decreased to the 2.9-0.92-pmol range for the
remainder of the infusion. This infusion rate was selected
because it maintained plasma GLP-2 levels at those seen
postprandially in control animals. Intestinal fatty-acid ab-
sorption was measured in hamsters challenged with an
oral fat load that contained 3 wCi of [9,10-°H(N)]triolein.
By 90 min postgavage, there was a twofold increase in the
entry of °H radioactivity into the plasma of GLP-1/GLP-2—
and GLP-2-treated hamsters (Fig. 1B), whereas GLP-1 in-
fusion caused a significant decrease in triolein absorption
by 120 min postgavage.

As we have demonstrated previously (7), GLP-2 showed
a stimulatory effect on CM production, whereas GLP-1 ex-
erted a suppressive effect. The circulating TRL-apoB48 was
increased twofold after the 30-min intravenous infusion of
GLP-2 and decreased 1.5-fold 60 min post—fat load in GLP-
1-treated hamsters. Coinfusion of GLP-1 and GLP-2 resulted
in a 1.5-fold increase in TRL-apoB48 compared with VEH-
treated hamsters (Fig. 1C). The amounts of TG and cho-
lesterol in plasma and TRL fractions 120 min after the fat
load were significantly increased (P < 0.05) in GLP-2— and
GLP-1/GLP-2—treated hamsters. Conversely, TG and cho-
lesterol were lower (P < 0.05) in GLP-1-treated hamsters
versus control animals in both TRL and whole plasma. This
was likely due to a significant lowering of the entry of
apoB48 TG and cholesterol secretion into plasma, as CM
clearance was blocked with poloxamer (Fig. 1D-G).
Prolonged coadministration of GLP-1 and GLP-2 results
in GLP-l1-dominant effects on intestinal lipoprotein
production. Since it is known that GLP-1 is more rapidly
degraded than GLP-2, we evaluated whether the above
observations were related to the more rapid degradation of
circulating GLP-1. To overcome this confounding factor,
we performed constant infusion of GLP-1, GLP-2, or GLP-1
and GLP-2 throughout the entire 120-min procedure. In-
fusion of GLP-2 resulted in a 1.5-fold increase in apoB48
levels in the TRL at 90 and 120 min after fat load (compared
with VEH-treated animals). In contrast, GLP-1-treated
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FIG. 1. Short-term (30-min) coinfusion of GLP-1 and GLP-2 results in increased postprandial lipemia. A: Chow-fed hamsters received an oral fat
load followed by a 30-min infusion (intravenous) of either VEH, GLP-1, GLP-2, or GLP-1 and GLP-2; poloxamer was given 20 min post—fat load
(intraperitoneal) and blood was collected at 30, 60, 90, and 120 min after the fat load. B: Intestinal fatty-acid absorption was assessed using
radiolabeled triolein; graph shows accumulation of radioactivity in plasma. C: A representative blot is shown of TRL-apoB48 along with a graph of
apoB48 levels as quantified by densitometry. Plasma (D) and TRL-TG (E) levels were assessed as well as plasma (F) and TRL-cholesterol (G)
levels. Each graph represents the mean = SEM at each time point for the given parameter. Calculated slopes are shown within each graph (n = 4-5;
*P < 0.05 vs. GLP-1, #P < 0.05 vs. GLP-2, P < 0.05 vs. GLP-1 + GLP-2).

animals exhibited a 1.5-fold decrease versus VEH-treated
animals. Coinfusion of GLP-1/GLP-2 for 120 min had a
drastically different effect on intestinal CM production
compared with 30 min coinfusion. CM production was
significantly decreased compared with VEH-treated animals
after 90 and 120 min (P < 0.05) coinfusion of GLP-1/GLP-2,
as shown by the decrease in TRL-apoB48 (Fig. 2B). In
agreement with the TRL-apoB48 data, TRL-TG and TRL-
cholesterol were higher in GLP-2-treated hamsters at 90
and 120 min postgavage (P < 0.05); conversely, the rate of
entry of TRL-TG levels into plasma was decreased in GLP-
1-infused hamsters (P < 0.05). TRL-TG and TRL-cholesterol
accumulation declined when both peptides were infused at
the same time compared with VEH-treated hamsters (Fig.
2D and F). Plasma TG accumulation was modestly but not
significantly lower with GLP-1 infusion and GLP-1/GLP-2
coinfusion when compared with VEH-treated animals (Fig.
2C). This suggested that, when circulating GLP-1 levels are
maintained, GLP-1 effects on intestinal CM and lipid pro-
duction predominate.

Sitagliptin treatment enhances the GLP-1 effects after
30 min of intravenous coinfusion. Since it is known that
the activity of DPP4 is primarily responsible for the rapid
degradation of GLP-1, using the drug sitagliptin we assessed
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how inhibition of DPP-4 activity affects the interaction be-
tween GLP-1 and GLP-2 and their respective effects on in-
testinal CM production. TRL-apoB48, TG, and cholesterol
were significantly increased at 90 and 120 min postgavage in
GLP-2-treated hamsters. In contrast, GLP-1 reduced these
parameters at the same time points postgavage. Interest-
ingly, after sitagliptin treatment, coinfusion of GLP-1 and
GLP-2 for 30 min showed decreases in intestinal CM pro-
duction similar to those seen with GLP-1 alone (Fig. 3B-F)).
Our data support the notion that increased GLP-1 activity
achieved via DPP-4 inhibition is likely to be responsible for
the reduced circulating TRL-TG, TRL-cholesterol, and in-
testinal CM production observed after sitagliptin adminis-
tration. Moreover, the inhibition of DPP-4 activity may
contribute to enhanced GLP-1 action, which is consistent
with the lowered postprandial circulating levels of TG,
cholesterol-rich TRL-apoB48, and CM-apoB48, as shown in
GLP-1 + GLP-2-treated hamsters compared with control.

GLP-1 and GLP-2 modulation of intestinal TRL-TG
excursion during a 6-h fat feeding period. As has been
shown by Yoder et al. (25), although GLP-1 and GLP-2 are
primarily secreted from L cells in the ileum, the secretion
of endogenous GLP-1 resulting from fat load occurs within
30 min of lipid ingestion and reaches its peak by 1 h (with
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FIG. 2. Long-term (120-min) coinfusion of GLP-1 and GLP-2 results in decreased postprandial lipemia. A: Chow-fed hamsters received an oral fat

load followed by a 120-min infusion (intravenous) of either VEH, GLP-1,

GLP-2, or GLP-1 and GLP-2; poloxamer was given 20 min post-fat load

(intraperitoneal). Plasma was collected at 30, 60, 90, and 120 min post-fat load to assess TRL-apoB48. B: A representative blot of apoB48 is shown
along with a graph of apoB48 levels quantified by densitometry. Plasma (C), TRL-TG (D), and TRL-cholesterol (E) levels were also quantified.
Each graph represents the mean = SEM at each time point for the given parameter. Calculated slopes are shown within each graph (n = 4-5; *P <

0.05 vs. GLP-1, #P < 0.05 vs. GLP-2, *P < 0.05 vs. GLP-1 + GLP-2).

the exception of very high doses of around 3—4 kcal, which
peak at 2 h post-lipid load). Additionally, they found that
Ilymph flow and lymphatic TG levels for lower levels of
lipid dosing reach a peak within 1 h, decrease by 2 h, and
at 3 h start to stabilize in accordance with the release of
endogenous GLP-1. This indicates that the 2-h time frame
used in the current study is appropriate to mimic the early
stages of absorption seen with oral fat load. Nevertheless,
we also performed experiments using an extended (6-h)
fat absorption protocol to evaluate how GLPs can affect
postprandial lipemia in a more physiologically relevant
timeline. After a 30-min infusion of GLP-1, GLP-2, or both,
hamsters were given a fat load and TRL-TG accumulation
was monitored at 2, 4, and 6 h. Post-fat load TRL-TG
excursions (Supplementary Fig. 1A4) showed strikingly
similar trends from 0 to 6 h when compared with the
previous 2-h data. GLP-2 caused a significant increase in
TRL-TG accumulation over the 6-h fat feeding period,
whereas GLP-1 caused a decreasing trend; however, this
did not reach statistical significance. The combination of
both GLPs led to an effect similar to GLP-2, as previously
observed over 2 h of fat feeding. We suspected that the
lack of a prolonged GLP-1 effect was due to peptide deg-
radation as we use native GLP-1 in these studies. To con-
firm whether GLP-1 degradation was a factor, we repeated
the experiment in animals treated with sitagliptin, a DPP-4
inhibitor. As can be observed in Supplementary Fig. 1B,
the stabilization of GLP-1 activity with sitagliptin led to
a more pronounced inhibition of TRL-TG accumulation in
plasma. These results further support the notion that when
GLP-1 degradation is blocked, GLP-1’s effect predominates
and leads to significant inhibition of CM production even
up to 6 h post—fat load.
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GLP-1 and GLP-2 coinfusion in a hamster model of
diet-induced insulin resistance. We next examined the
effects of GLP-1 and GLP-2 coinfusion in an animal model of
insulin resistance and postprandial dyslipidemia, the fructose-
fed (FF) hamster (24). As we have shown previously, fruc-
tose feeding resulted in increased TRL-TG and apoB48
production compared with chow-fed controls starting as
early as 30 min post—fat load (P < 0.05) (data not shown).
TRL-apoB48 and TG levels were elevated in FF hamsters
after 30 min intravenous infusion of VEH and GLP-2 and
coinfusion of GLP-1/GLP-2. All three treatments showed si-
milar increases in these parameters (Fig. 4B-D). Interest-
ingly, GLP-1 alone was still able to significantly decrease the
above parameters compared with VEH-treated hamsters
(Fig. 4B-D). Total plasma and TRL-cholesterol levels were
the same in all groups of treated animals during the course of
the experiment (Fig. 4F and F). Similar to chow-fed ham-
sters, coinfusion of GLP-1/GLP-2 in FF hamsters resulted in
an increase in apoB48 and TG levels (both TRL and plasma);
however, unlike in chow-fed hamsters, this effect is seen as
early as 30 min following treatment in FF hamsters, indica-
ting that this model induces a more pronounced response
with coinfusion and possible hypersensitivity to GLP-2
stimulation or reduced sensitivity to GLP-1 stimulation. This
observation is based on the decline in apoB48 levels with
GLP-1 infusion in chow-fed hamsters (Fig. 1) and the absence
of this decline during GLP-1 infusion in FF hamsters (Fig. 4).
GLP-1 effect increases in response to oral glucose
load in chow-fed hamsters. GLP-1 augments insulin se-
cretion after oral intake of glucose (26) via glucose-sensing
mechanisms that increase the GLP-1 release from gut en-
docrine L cells (27). To test the oral glucose response in
GLP-1/GLP-2 coinfusion on intestinal lipid metabolism and
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FIG. 3. Inhibition of DPP-4 augments GLP-1 action, resulting in decreased postprandial lipemia in GLP-1/GLP-2—coinfused hamsters. A: Chow-fed
hamsters received treatment with the DPP-4 inhibitor sitagliptin (intraperitoneal) 30 min prior to experiments, and then received an oral fat load
followed by a 30-min intravenous infusion of either VEH, GLP-1, GLP-2, or GLP-1 and GLP-2; poloxamer was administered 20 min post—fat load
(intraperitoneal). Blood was collected at 30, 60, 90, and 120 min to assess lipemia. B: A representative blot of TRL-apoB48 is shown along with
a graph showing quantification of apoB48. Plasma (C) and TRL-TG (D) levels and plasma (F ) and TRL-cholesterol (F') levels were quantified and
represented in graphs (n = 4-5). Each graph represents the mean = SEM at each time point for the given parameter. Calculated slopes are shown
within each graph (n = 4-5; *P < 0.05 vs. GLP-1, #P < 0.05 vs. GLP-2, *P < 0.05 vs. GLP-1 + GLP-2).

CM production, chow-fed hamsters received glucose (1 mg/kg)
plus 200 pL olive oil by oral gavage, followed by a 30-min
intravenous infusion of VEH, GLP-1, GLP-2, or both GLP-1/
GLP-2. The rate of entry of TRL-apoB48, TRL-TG, and TRL-
cholesterol into plasma significantly decreased by 90 and
120 min post—fat load in GLP-1-treated hamsters (P < 0.05).
Moreover, although the GLP-2 infusion did cause increases
in these parameters, they were not as pronounced as those
seen without glucose pretreatment (data not shown).
Coinfusion of both peptides showed similar TG and apoB48
levels as those achieved in VEH-treated hamsters (Fig. 58—
D). GLP-1 infusion lowered total plasma and TRL-cholesterol
by 120 min postgavage, and a slight increase in total cho-
lesterol by 120 min postgavage was observed in GLP-2—
treated hamsters (Fig. 5E and F). These data suggest that
the GLP-1 effect is potentiated with oral glucose gavage
enhancing the GLP-1-mediated inhibition of CM release.

DISCUSSION

Previous findings from our group and others indicate that
two gut peptides that are cosecreted in equimolar amounts
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paradoxically have completely opposite acute effects on
intestinal apoB48 secretion. GLP-2 increases both apoB48
particle number and size (7), whereas GLP-1 appears to
completely blunt apoB48 particle secretion (8). In the
current study, we confirmed our previously published
results but also observed that the net effect of GLP-1/GLP-2
coinfusion is enhanced postprandial TG secretion; al-
though this enhancement is dampened during an extended
coinfusion. Moreover, the inhibitory effect of GLP-1 on CM
secretion becomes more evident when DPP-4 is inhibited
or in the presence of glycemia but is less apparent in insulin-
resistant FF' hamsters.

Given that GLP-1 and GLP-2 are secreted in equimolar
amounts, it may be expected that their net physiological
effect in vivo would be no change in postprandial lipemia.
It is important to consider that the GLP-2R is not expressed
by the absorptive enterocytes (28), meaning that GLP-2’s
hyperlipidemic action proceeds indirectly; hence, GLP-2
stimulates a GLP-2R—positive cell to secrete factors that
stimulate the absorptive enterocyte, providing an opportu-
nity for amplification of the GLP-2 signal in the intestine. In
contrast, such biological amplification does not occur when
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FIG. 4. Effects of GLP-1 and GLP-2 coinfusion on postprandial lipemia in FF insulin-resistant hamsters. A: Hamsters were fed for 2 weeks with
a high-fructose diet to induce insulin resistance and then received an oral fat load followed by a 30-min infusion (intravenous) of either VEH, GLP-1,
GLP-2, or GLP-1 and GLP-2; poloxamer was given 20 min post-fat load (intraperitoneal). Plasma was collected at 30, 60, 90, and 120 min to assess
lipemia. B: A representative blot of TRL-apoB48 is shown along with a graph of TRL-apoB48 levels as determined by densitometry. Plasma (C) and
TRL-TG (D) levels and plasma (E) and TRL-cholesterol (F') levels were quantified and shown in the graphs. Each graph represents the mean *
SEM at each time point for the given parameter. Calculated slopes are shown within each graph (n = 4-5; *P < 0.05 vs. GLP-1, #P < 0.05 vs. GLP-2,

AP < 0.05 vs. GLP-1 + GLP-2).

GLP-1 may directly antagonize its receptor on the absorp-
tive enterocyte. The diminution of the hyperlipidemic effect
with the inclusion of glucose in the oral fat load suggests
that glucose-dependent insulinotropism, at least in ham-
sters, is one pathway that mediates GLP-1’s hypolipidemic
function. Insulin’s involvement may also explain the de-
layed peak postprandial TG concentration observed with
glucose ingestion in humans during a fat tolerance test
where ostensibly both GLP-1 and GLP-2 were secreted (29).
This would have pathophysiological implications in states
of defective insulin secretion or compromised insulin sen-
sitivity, where one aspect of GLP-1 influence is unavailable
and would thus allow the GLP-2 effect to outweigh. In
streptozotosin-treated rats that are hyperphagic and over-
secrete GLPs but unable to produce insulin, the elevated
plasma apoB48 levels (30) could be attributed to a domi-
nance of GLP-2 action. In B6D2F1 mice fed a high-fat diet
for 3 weeks to induce insulin resistance, there is greater
transport capacity of linoleic acid, along with elevated CD36
expression and higher intestinal mitotic index (31). This is
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consistent with a preponderance of GLP-2 action. The po-
tentiation of GLP-1's hypolipidemic action with the addition
of glucose to the oral gavage (Fig. 5) suggests that the
incretin effect of GLP-1 contributes to its inhibition of
CM secretion in insulin-sensitive states. In diseases with
dampened GLP secretion, such as type 2 diabetes (32,33),
decreased insulin sensitivity implies that the reduced GLP-1
levels would have an especially compromising acute hy-
polipidemic effect. In addition to preventing GLP-1 from
exerting insulin-mediated reductions in CM production, in-
sulin resistance might also prevent GLP-1 from having
potential stimulatory effects on CM clearance. Exenatide,
a GLP-1R agonist, is thought to potentially promote CM
clearance by reducing postprandial levels of apoCIIl (34),
which inhibits lipoprotein lipase (35) and hinders hepatic
TRL clearance (36). However, insulin resistance is associ-
ated with the impaired uptake of LDLR-related protein 1
ligands, thus opposing an important clearance mechanism
for CM remnants (37) and resulting in a lipidemic profile
more characteristic of GLP-2 dominance. The greater
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FIG. 5. Glucose attenuates stimulation of postprandial lipemia by GLP-1 and GLP-2 coinfusion. A: Chow-fed hamsters received an oral fat load (200
L) mixed with glucose (1 mg/kg) followed by an infusion (intravenous, 30 min) of either VEH, GLP-1, GLP-2, or GLP-1 and GLP-2; poloxamer was
given 20 min post-fat load (intraperitoneal). Plasma was collected to assess lipemia. B: A representative blot of TRL-apoB48 is shown along with
a graph showing TRL-apoB48 levels as determined by densitometry. Plasma (C) and TRL-TG (D) levels and plasma (E) and TRL-cholesterol (F)
levels are shown in graphs. Each graph represents the mean + SEM at each time point for the given parameter. Calculated slopes are shown within

each graph (n = 4-5; *P < 0.05 vs. GLP-1, #P < 0.05 vs. GLP-2).

magnitude of GLP-2-stimulated CM production in insulin-
resistant states may possibly explain the exacerbated post-
prandial apoB48 secretion in type 2 diabetic individuals (38).

A major contribution of DPP-4-mediated GLP degrada-
tion to the net physiological effect on postprandial TRL
production is consistent with the conclusions that can be
inferred from the sitagliptin-treated FF hamsters and mice.
When neither the hamsters nor mice were injected with an
exogenous GLP-1R agonist, sitagliptin administration
alone attenuated postprandial CM secretion (8). Although
both GLP-1 and GLP-2 are substrates for DPP-4 with sim-
ilar K,,, values, DPP-4’s k., for GLP-1is 7.1 s~ ! as opposed
to 0.87 s ! for GLP-2; thus, the former is degraded nine
times faster (39). Extending the bioactivity of endogenous
GLP-2 with valine-pyrrolidide did not affect intestinal mor-
phology in rats (40); thus GLP-2 functions likely intensify
minimally with protection from DPP-4-mediated degrada-
tion. The ability of sustained GLP-1 action to limit post-
prandial lipemia is also evident in this current study, given
that a 120-min infusion of both GLPs has relatively tempered
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CM secretion compared with the 30-min infusion (Fig. 2).
Therefore, in the physiological setting, the hypolipidemic
effect of GLP-1 is limited largely by its susceptibility to DPP-4,
and this presents implications for therapeutic strategies to
address aberrant postprandial lipemia. Furthermore, re-
duced CM secretion during prolonged coinfusion may be
due to decreased gastric emptying and impaired intestinal
motility. These two phenomena are associated with GLP-1
treatment and limit the availability of lipid for uptake (41),
as reflected in the reduced lipid absorption seen with GLP-1
infusion. Once the short 30-min coinfusion ended, in-
testinal motility was likely restored shortly after. However,
during a prolonged coinfusion, GLP-1 may have main-
tained its effects, thus limiting the amount of lipid available
for GLP-2—stimulated uptake.

Despite the completely opposite effects on dietary lipid
transport, the biological functions of GLP-1 and GLP-2 may
in fact be complimentary. One example of this potential
complimentary action would be the ileal break (42). The
ileal brake is a primary function ascribed to GLP-1 (43) and
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is thought to be the driving force behind GLP-1-induced
satiety (44). This phenomenon is evident in the increased
GLP-1 levels observed in high fat-fed, MGAT2-deficient mice,
which have delayed kinetics of dietary fatty-acid absorption
(45). This effect is also present in rats fed a fat-enriched
diet and the intestine-specific microsomal triglyceride
transfer protein (MTP) inhibitor (46). Although the bulk of
dietary fatty acid is absorbed by passive diffusion across
the brush border membrane, by the time dietary lipids
have reached the distal intestine the concentration of lip-
ids in the lumen of the proximal intestine would be con-
siderably lower. In this case, increased absorption could
be facilitated by the GLP-2—-induced increase in expression
of CD36 at the apical membrane to allow complete and
facilitated absorption of dietary lipids (7). The stimulatory
effect of GLP-2 on lipid transport may also serve to co-
ordinate with GLP-1 in mediating satiety. The GLP-2—
increased presence of CD36 at the apical membrane may
be instrumental in transporting oleic acid as a substrate for
the synthesis of oleoylethanolamide, a satiety factor (47).
In conclusion, the relative contributions of GLP-1 and
GLP-2 to the regulation of intestinal CM secretion depend
on the duration of their presence, their susceptibility to
DPP-4-mediated degradation, and glycemia. These modu-
lators have implications for postprandial lipemia observed in
physiological and pathophysiological circumstances when
GLP-1 and GLP-2 are cosecreted in equimolar amounts.
However, these findings also propose that tipping the bal-
ance in favor of GLP-1, either by GLP-1R agonist-based
therapies or DPP-4 inhibitors, is a viable approach to help
correct dyslipidemia in insulin-resistant/diabetic states.
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