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Sizing up metatranscriptomics
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A typical marine bacterial cell in coastal seawater contains only B200 molecules of mRNA, each of
which lasts only a few minutes before being degraded. Such a surprisingly small and dynamic
cellular mRNA reservoir has important implications for understanding the bacterium’s responses to
environmental signals, as well as for our ability to measure those responses. In this perspective, we
review the available data on transcript dynamics in environmental bacteria, and then consider the
consequences of a small and transient mRNA inventory for functional metagenomic studies of
microbial communities.
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mRNA content of bacterial cells

Classic microbiological studies of the composition
of exponentially growing Escherichia coli con-
cluded that each cell harbors B1380 mRNA mole-
cules (Neidhardt, 1996), a small number compared
with other macromolecule inventories (that is,
43000 genes and 42 000 000 proteins). Similarly,
recent single-molecule detection in individual
E. coli cells based on high-resolution fluorescence
detection of tagged mRNAs determined that the
number of transcripts per gene per cell averaged
only 0.4 (range: 0.02–3; see Supplementary Table S6
in Taniguchi et al., 2010). Assuming the 137 genes
analyzed by this method are typical of the other
B4400 genes (that is, those that were not tagged),
each exponentially growing E. coli cell contains
B1800 mRNA molecules, in good agreement with
earlier work.

For bacterial cells in natural environments, meth-
odological approaches to mRNA measurements that
require laboratory cultures or genetic modifications
are not feasible; many environmental taxa are not
readily cultured and those that are would no longer

reflect in situ macromolecule composition. Taking
an alternate approach, we constructed artificial
mRNA standards (Figure 1) and added them in
known quantities to bacterioplankton communities
at the initiation of RNA extraction (Gifford et al.,
2011; Satinsky et al., in preparation). The extent to
which the internal standards are diluted by natural
mRNAs in high-throughput sequence libraries of the
transcriptomes allows estimation of the number of
mRNAs in the sampled community (Figure 1). In
marine microbial communities from southeastern
US coastal waters and the Amazon River plume, we
estimated B200 mRNAs per cell (Table 1), a value
less than for laboratory-grown cells (Table 1) but
consistent with expectations for lower macromole-
cule inventories in environmental cells (Lee and
Fuhrman, 1987; Simon and Azam, 1989; Schut
et al., 1993).

mRNA content of bacteria in natural environ-
ments can also be estimated based on the quantity of
RNA recovered from a known number of cells. This
calculation requires estimates of RNA extraction
efficiency (we assumed 50%), the make-up of
bacterial RNA (we assumed 4% mRNA by mass;
Neidhardt and Umbarger, 1996), and the average
length of a bacterial mRNA (we assumed 924 nt; Xu
et al., 2006). By this method, bacterioplankton cells
in various coastal environments have an average
mRNA content of B300 molecules (Table 1), with
calculations for freshwaters, soils and sediments
likely to be similar. Thus, several lines of evidence
suggest that bacterial communities in nature main-
tain a considerably lower inventory of transcripts
compared with genes and proteins (Figure 2).
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mRNA half-life

Various measures of global half-lives of mRNA in
laboratory-grown E. coli cells converge at about
5 min (range: B1–8 min; Ingraham et al., 1983;
Bernstein et al., 2002; Selinger et al., 2003;
Taniguchi et al., 2010). For Bacillus subtilis, the
average half-life of mRNA has also been estimated at
B5 min (Hambraeus et al., 2003), and that of labora-
tory-grown marine cyanobacterium Prochlorococcus

MED4 mRNA at 2.4 min (Steglich et al., 2010). Half-
lives of mRNAs appear to be independent of cell
growth rate (Bernstein et al., 2002; Dennis and
Bremer, 1974), and consequently lifetimes should be
similarly short for environmental cells (Steglich
et al., 2010). Even in the case of cells in extreme
environments with very slow growth rates (Price
and Sowers, 2004; Jørgensen, 2011), mRNA half-life
will likely be short with respect to the timescale of
environmental changes.
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Figure 1 The use of internal standards (artificial mRNAs produced by in vitro transcription of vector templates) in metatranscriptomic
studies allows calculation of average per-cell mRNA inventories. (a) A known number of internal standards are spiked into a microbial
sample. In this example, 917 and 971 nt standards were added to a filter in an extraction tube containing lysis buffer just before initiating
RNA extraction (see Gifford et al., 2011 for complete protocol). The ratio of standards added:standards recovered in the high-throughput
sequence library allows estimation of the numbers of natural mRNAs in the sampled community. (b) Recovery ratio of internal standards
in Illumina libraries from free-living (FL) and particle-associated (PA) metatranscriptomes from two locations in the Amazon River plume
in May 2010. Standards were produced by reverse transcription from the T7 promoter (green arrowhead) of two linearized commercial
cloning vectors (Promega, Fitchburg, WI, USA; New England Biolabs, Ipswich, MA, USA). (c) Based on internal standard recovery in the
mRNA library, the average number of transcripts per SYBR green-stained bacterial cell was calculated for the free-living (0.2 to o2 mm
size range; purple cells) and particle-associated (42 mm size range; orange cells) size fractions at two stations in the Amazon River plume.
The total abundance of prokaryotic transcripts was 2.3� 1011 l�1 at Station 27 and 8.5�1011 l�1 at Station 10. The background color is
modified from a MODIS Aqua image of chlorophyll a concentrations.
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Response of mRNA levels to
environmental cues

This bacterial ‘just-in-time’ management strategy for
mRNAs (low inventories, rapid turnover) is tremen-
dously powerful for indicating near-real-time con-
ditions experienced by cells, information that is not
possible to extract from gene inventories. For
example, bacterial mRNA pools have provided
assays of the bioreactive components of dissolved
organic carbon pools based on transcriptome
changes in amended seawater (McCarren et al.,
2010; Poretsky et al., 2010; Shi et al., 2012);
identified bacterial degradation pathways based on
shifts in mRNA composition with increased
substrate concentrations (Vila-Costa et al., 2010);
characterized short-term reactions to altered CO2

(Gilbert et al., 2008) and pollutant concentrations
(de Menezes et al., 2012); and revealed niche
differentiation among co-occurring autotrophs (Liu
et al., 2012) and heterotrophs (Gifford et al., 2012).
Changes in transcript inventories provide a sensitive
window into the fluctuating cues perceived by
microbes in their environment, and therefore the
signals that drive changes in ecosystem function.

Correlation between mRNA and protein
abundance in a single cell

If mRNA levels consistently predicted protein
levels, then metatranscriptomic data would also be
useful for another critical challenge in microbial
ecology: to estimate rates of biogeochemically
important transformations. Yet systems biologists
realized a number of years ago that there is
surprisingly little correlation between abundance
of a protein in a cell and abundance of the transcript
that mediates its synthesis. In the single-cell study
of fluorescently tagged E. coli strains mentioned
above (Taniguchi et al., 2010), the correlation
coefficient between per cell mRNA and protein
levels of the same gene averaged zero for the genes
tested. There are various reasons for a poor relation-
ship between single-cell mRNAs and protein abun-
dance, including post-transcriptional processing
and regulation (Maier et al., 2009), random fluctua-
tions in low-copy mRNAs (Kaufmann and van
Oudenaarden, 2007), uneven partitioning of macro-
molecules during cell division (Golding et al., 2005)
and variable translation efficiencies (that is, the
number of completed proteins per mRNA per time;
Maier et al., 2009). However, the most important
factor responsible for poor mRNA–protein correla-
tions is the long half-life of proteins relative to
mRNAs. A typical bacterial protein half-life is
B20 h (Koch and Levy, 1955; Mandelstam, 1957;
Borek et al., 1958), which is about two orders of
magnitude longer than an mRNA half-life. Thus,
most proteins persist in a bacterial cell long after the
mRNAs that encoded them have been degraded.

Correlation between mRNA and protein
abundance in a population

Despite the poor correlations between single-cell
mRNA and protein abundances observed by
Taniguchi et al. (2010), their data coalesced into a
predictable relationship when averaged across many

Table 1 Estimates of per cell mRNA inventories for laboratory bacterial cultures (top) and natural marine bacteria (bottom)

Cells Method Total RNA content
(fg cell�1)

mRNAs
cell�1

Reference

Laboratory studies
Escherichia coli Biochemical analysis NA 1380 Neidhardt and Umbarger, 1996
Escherichia coli Single-cell microscopy NA 1800a Taniguchi et al., 2010
Vibrio alginolyticus RNA recovery 28 2288b Kramer and Singleton, 1992

Natural communities
Coastal bacterioplankton, GA Internal standard NA 142–238 Gifford et al., 2011
Bacterioplankton, Amazon Plume Internal standard NA 85–255 Satinsky et al., in preparation
Coastal bacterioplankton, GA RNA recovery 0.6–1.3 96–190b Gifford et al., 2011
Coastal bacterioplankton, NY RNA recovery 1.6–5.4 135–458b Lee and Kemp, 1994
Coastal bacterioplankton, CA RNA recovery 1.9–9.5 161–805b Simon and Azam, 1989

Abbreviation: NA, not available.
aCalculated by extrapolation from 137 genes (see text).
bCalculated by assuming total RNA contains 4% mRNA by mass (Neidhardt and Umbarger, 1996) and bacterial mRNAs have an average length of
924 nucleotides (Xu et al., 2006) and therefore an average weight of 4.72� 10� 4 fg.
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Figure 2 Bacterioplankton macromolecule inventories in a
milliliter of typical coastal seawater. Bacterial mRNAs are an
order of magnitude less abundant than genes, and almost four
orders of magnitude less abundant than proteins.
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cells growing under steady-state conditions; that is,
the population mean of mRNA copies successfully
predicted the population mean of proteins when the
cells were under constant growth conditions. In a
gross sense, the universal mechanism of protein
production from mRNA requires a correlation
between the two when abundances are integrated
over time or space. Measures of mRNA and protein
relationships in natural bacterial populations are
similarly averaged across a population, which
should smooth out variation at the single-cell level
to a consistent relationship for a given gene under
steady-state conditions. A basic simulation model
of macromolecule inventories (Supplementary
Materials) that compares a single cell to a popula-
tion of cells in a constant environment bears this
out. Although the model shows it is not possible to
predict protein levels from mRNA levels in just one
cell (Figure 3a; simulated protein and mRNA half-
lives are 12 h and 1.5 min, respectively), the ratio
between the two is consistent at the population
level, even for a population as small as 100 cells
(Figure 3b).

However, if a shift in environmental conditions
(for example, a nutrient pulse) triggers a change in
gene transcription rates, the population-wide rela-
tionship is quickly disrupted because of the mis-
matched half-lives of mRNA and proteins (Figures
3c and d). mRNA inventories respond sensitively to
both the beginning and end of the environmental
signal because they are short-lived relative to its
duration. Relative shifts in protein inventories are
slow, however, both because proteins are long-lived
and because their high standing stocks (reaching
into the thousands for the protein product of a single
gene in one cell) make them less responsive. Thus,
the ratio between mRNA and protein is variable and,
importantly, not reflective of instantaneous condi-
tions experienced by the cell. Such non-steady-state
situations are likely to be common in the ocean, for
example, the strong 24-h rhythm imposed by solar
energy inputs and the shorter-lived variations in
dissolved organic carbon concentrations around
particles and cells (Fenchel, 2002; Azam and
Malfatti, 2007; Stocker et al., 2008). This mismatch
between mRNA and protein dynamics can be
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Figure 3 Simulation model of levels of mRNA (green lines) and protein (blue lines) of the same gene in a single cell (a, c) or averaged for
a population of 100 cells (b, d) during a 24-h period. In the steady-state version of the model (a, b), which could represent either
constitutive gene expression or an unchanging extrinsic regulatory signal, each cell experiences up to 10 randomly timed transcription
events per day and produces a single mRNA molecule at each event (Supplementary Materials). In the dynamic version (c, d), extrinsic
signaling upregulates gene transcription for a 4-h period (500–740 min; blue shading) through an increase in transcriptional burst size to
three mRNA molecules per transcription event. Both model types were initialized with 900 protein molecules per cell, and both assume 7
proteins are translated from each mRNA template, that the half-life of mRNA is 1.5 min, and that the half-life of protein is 12 h. Varying
the parameter values (for example, frequency of transcription events, mRNA burst size, proteins translated per message, macromolecule
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conditions.
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partially ameliorated by targeted protein degrada-
tion when an environmental signal dissipates, or by
proteins with an atypically short half-life (for
example, 1 h for AraC in E. coli or 19 min for
photosystem protein D1 in Synechocystis PCC
6803; Kolodrubetz and Schleif, 1981; Tyystjärvi
et al., 1994). Nonetheless, the conditions under
which mRNA abundance is a strict proxy for protein
abundance in a dynamic ocean may be rare for
regulated genes (Figure 3).

Similar arguments can be made regarding the
assumption that protein abundance is a reliable
proxy for cellular rates, as post-translational regula-
tion of protein activity and concentration of sub-
strate both strongly affect catalysis rates. For
instance, expression of bacterial enzymes can be
constitutive and therefore unlinked to environmen-
tal signals (for example, proteorhodopsin in marine
Flavobacteria and SAR11, and DMSP lyases in
marine roseobacters; Curson et al., 2008; Riedel
et al., 2010; Steindler et al., 2011); induced proteins
may outlive the resources they were synthesized to
exploit (for example, in microscale substrate patches
or plumes that dissipate in within minutes; Stocker
et al., 2008); and proteins expressed in response to a
scarcity may actually be most abundant when
reaction rates are lowest (for example, ammonium
or phosphate transporters during nutrient starva-
tion; Gyaneshwar et al., 2005; Sowell et al., 2009).
Even for pure cultures growing under laboratory
conditions, systems biology-based analyses typi-
cally show that protein levels cannot be readily
correlated with metabolic flux (Ovacik and
Androulakis, 2008).

All in all, a large number of factors confound
simple relationships between mRNA and protein as
well as between protein and transformation rates for
most bacterial genes at any given time. The
inefficiencies that likely stem from these mis-
matches may be part of the overhead of responding
quickly to environmental change. Interestingly, one
of the key differences proposed to distinguish
‘copiotrophic’ versus ‘oligotrophic’ marine bacter-
ioplankton is the ability to react to environmental
variation (Giovannoni et al., 2005; Lauro et al.,
2009). Presumably, the trade-off between the ability
to benefit from a transient substrate on the one hand,
versus maintaining a protein that has outlived its
usefulness on the other, is at least one element of the
evolutionary fine tuning of bacterial regulation.

The prognosis for metatranscriptomics

The integration of diverse molecular-level processes
to predict system-level phenotypes is a unifying
challenge in modern biology, with the system of
interest ranging from a bacterium to an entire
ecosystem. In the field of marine microbial ecology,
it is anticipated that amassing of ‘meta-omics’ data
sets will bring insights into the interaction networks

underpinning biogeochemically relevant processes
(Doney et al., 2004; Raes and Bork, 2008). In turn,
this will build better predictions of system behavior
in the context of changing global climate and
increasing human perturbations. Our appraisal of
the inherent challenges of community mRNA ana-
lysis does not in any way diminish its value as a tool
in these important efforts. Instead, we argue for
identifying the most powerful and appropriate use
of the technology. Sizing up the potential for a small
yet dynamic metatranscriptome to contribute to the
important goals of ‘eco-systems’ biology leads to
four key observations: (1) the abundance of mRNAs
from functional genes is not a reliable rate proxy for
those functions in naturally fluctuating environ-
ments, and neither is the abundance of proteins; (2)
instantaneous inventories of mRNA pools are none-
theless highly informative about ongoing ecologi-
cally relevant processes; (3) fluctuations in mRNAs
pools provide a highly sensitive bioassay for
environmental signals that are relevant to microbes;
and (4) replicated, manipulative experiments fully
leverage the value of metatranscriptomes for reveal-
ing the microbes that perceive a specific environ-
mental change and the metabolic pathways they
invoke to respond to it.
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