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‘Sponge-specific’ bacteria are widespread (but rare)
in diverse marine environments
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Numerous studies have reported the existence of sponge-specific 16S ribosomal RNA (rRNA) gene
sequence clusters, representing bacteria found in sponges but not detected in other environments,
such as seawater. The advent of deep-sequencing technologies allows us to examine the rare
microbial biosphere in order to establish whether these bacteria are truly sponge specific, or are
more widely distributed but only at abundances below the detection limit of conventional molecular
approaches. We screened 412 million publicly available 16S rRNA gene pyrotags derived from 649
seawater, sediment, hydrothermal vent and coral samples from temperate, tropical and polar
regions. We detected 77 of the 173 previously described sponge-specific clusters in seawater or
other non-sponge samples, albeit generally at extremely low abundances. Sequences representing
the candidate phylum ‘Poribacteria’, previously thought to be largely restricted to sponges, were
recovered from 46 (out of 411) seawater and 41 (out of 129) sediment samples. While the presence of
an organism does not imply that it is active in situ, our results do suggest that many ‘sponge-
specific’ bacteria occur more widely outside of sponge hosts than previously thought.
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Marine sponges form relationships with a diverse
range of microbes (Taylor et al., 2007; Webster and
Taylor, 2012), and many of these associations are
highly host specific (Schmitt et al., 2012). Numerous
studies have reported the existence of monophyletic
sponge-specific 16S ribosomal RNA (rRNA) gene
sequence clusters, representing bacteria found in
sponges but not detected in other environments,
such as seawater (Hentschel et al., 2002; Taylor
et al., 2007; Simister et al., 2012). In a recent 16S
rRNA gene tag pyrosequencing study (Webster et al.,
2010), we revealed the presence of sequences
affiliated with ‘sponge-specific’ clusters in seawater.
While this finding suggests that ‘sponge-specific’
bacteria can in fact reside outside of these hosts, the
seawater was collected only 10 m away from the

sampled sponges at the time of sponge spawning
and thus a sponge origin for these bacteria could not
be unequivocally ruled out. To clarify this funda-
mental issue in sponge symbiont biology, we
examined 412 million 16S rRNA gene pyrotags
(V6 region) generated under the auspices of the
International Census of Marine Microbes (ICoMM;
http://icomm.mbl.edu/). These sequences were
derived from a range of seawater, sediment, hydro-
thermal vent and coral samples obtained from
temperate, tropical and polar regions (Figure 1).
The absence of ‘sponge-specific’ bacteria from these
samples would provide strong additional evidence
for their host specificity, whereas their widespread
occurrence among non-sponge samples would
imply that they are capable of at least surviving in
a free-living state.

We downloaded Bacteria-derived 16S rRNA gene
pyrotag sequences that were publicly accessible via
the ICoMM website in May 2011. All sequence reads
had previously been de-replicated into 3% opera-
tional taxonomic units by ICoMM, and all singleton
operational taxonomic units (that is, those opera-
tional taxonomic units represented in the entire
ICoMM data set by only a single sequence read) were
removed before analysis. This yielded a total of
12 312 433 sequences obtained from 649 samples in
42 different studies (see Supplementary Table S1 for
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detailed sample information). These sequences were
screened against a manually curated SILVA 16S
rRNA database (Pruesse et al., 2007) containing
366 026 bacterial sequences, using a phylogenetic
assignment procedure based on those described
previously (Webster et al., 2010; Schmitt et al.,
2012). One-hundred and seventy-three sponge-spe-
cific clusters (SC1–SC173) and 32 sponge-coral-
specific clusters (SCC 1–SCC 32) were identified in
an earlier study (Simister et al., 2012) and were
represented in the SILVA database. In brief, each
ICoMM-derived pyrotag was subjected to a BLAST
(Altschul et al., 1990) search against the curated
SILVA database, and the 50 best hits were aligned in
order to determine sequence similarities. The most
similar pyrotag sequence to the respective reference
sequence was then assigned (or not) to an SC or SCC
cluster based on application of a 75% sequence
similarity threshold (that is, a sequence read was
only assigned to a cluster if it was more similar to
the members of that cluster than to other sequences
outside the cluster and its similarity to the most
similar sequence within that cluster was above
75%). In cases where the assignment of the most
similar sequences was inconsistent, a majority rule
was applied, and the pyrotag was only assigned to
an SC or SCC if at least 60% of the reference
sequences were affiliated with this cluster.

We detected 77 of 173 previously described SC in
seawater or other non-sponge samples, albeit gen-
erally at extremely low abundances (for example,
2 sequence reads out of 20 000 for a given sample)
(Figure 2; Supplementary Table S1). Twelve of these
77 clusters were identified only in coral samples
(Caribbean Coral Bacteria, CCB study). Of 32
previously described SCC, 27 were recorded outside
of either sponges or corals (Supplementary Table
S1). Those that were present in higher numbers
included clusters within the Gammaproteobacteria

(SC157, comprising 1.96% of sequence reads in the
hydrothermal vent sample ALR_0008_2005_05_04;
Supplementary Table S1), Actinobacteria (SC16,
comprising 1.28% of sequences in the coastal sea-
water sample LCR_0002_2009_11_13), and a lineage
of uncertain affiliation (sponge-associated unidenti-
fied lineage (Schmitt et al., 2012)) related to the
Planctomycetes–Verrucomicrobia–Chlamydiae super-
phylum (SC169, comprising 1.07% of sequences in
the coral sample CCB_0001_2008_03_26; 0.36% in
the seawater samples HOT177_5 and HOT186_175).
One important caveat to keep in mind when
considering these data is that, while 16S rRNA gene
pyrotags may be represented in many samples, this
does not necessarily mean that the exact same
microorganisms are so widespread. This is, of course,
an acknowledged limitation of the 16S rRNA gene as
a phylogenetic marker and is not unique to this study.
It is also worth bearing in mind that the original
definition of SC is based on phylogenetic reconstruc-
tions, whereas our assignment of ICoMM pyrotags to
these clusters is based on sequence similarity.
Although we do not believe that this has a substantial
effect on our data or its interpretation, we do
acknowledge that some sequence tags that are
assigned to a given cluster could actually fall adjacent
to (rather than within) that cluster.

The candidate phylum ‘Poribacteria’ occurs in
many marine sponges, often at very high abun-
dances (Fieseler et al., 2004; Lafi et al., 2009).
Having never been detected outside of sponges
using conventional molecular approaches such as
16S rRNA gene library construction or fluorescence
in situ hybridisation, ‘Poribacteria’ were generally
considered to be restricted to sponge hosts. How-
ever, their recent detection in seawater by pyrotag
(Webster et al., 2010) and fosmid (Pham et al., 2008)
sequencing suggested their wider occurrence in
non-sponge habitats. In this study, we detected

Figure 1 Geographic distribution of samples from the ICoMM, which were investigated in this study. Each line links together samples
from a given ICoMM study. Colour codes represent sample types as shown in Supplementary Table 1: blue¼ seawater samples;
grey¼ sediment; red¼hydrothermal vent; green¼host-associated; yellow¼ biofilm/microbial mat; brown¼ salt marsh.
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sequences affiliated with ‘Poribacteria’ (cluster
SC75) in 46 seawater, 41 sediment, 14 hydrothermal
vent, 14 salt marsh and 3 coral samples collected
from around the world (Figure 2, Supplementary
Table S1). Invariably, numbers were low, never
comprising 40.19% of sequences in seawater or
sediment samples. Interestingly, the highest non-
sponge occurrence of ‘Poribacteria’ was in a coral,
where they comprised 0.25% of sequence reads in
the sample CCB_0001_2008_03_26 (Supplementary
Table S1). SC vary greatly in size, with clusters such
as the ‘Poribacteria’ (SC75) containing 136
sequences whereas other, smaller clusters such as
the Planctomycetes cluster SC74 contain as few as
three sequences. To determine whether the size of a
sponge-specific cluster increases the likelihood of a
non-sponge-derived sequence being assigned to it,
we performed a simple analysis to compare SC/SCC
size with the number of matching ICoMM pyrotags
(data not shown). Cluster size was a very poor
predictor of sequence tag assignment (R2¼ 0.0124),
indicating that this factor has only a negligible
effect.

This study provides compelling evidence for the
occurrence of many so-called sponge-specific bac-
teria in other marine environments. However, even
upon examination of more than 12 million
sequences, 96 of the 173 previously defined SC
were undetected outside of sponges and, therefore,
remain putatively sponge specific. These include
clusters within the Acidobacteria, Actinobacteria,
Chloroflexi, Cyanobacteria, Gemmatimonadetes,
Alphaproteobacteria and Gammaproteobacteria
(Figure 2). If these bacteria are indeed absent outside
of sponges, then the symbiotic association must be
maintained solely via vertical transmission. The
transmission of diverse microbial communities
between sponge generations is well documented
(Sharp et al., 2007; Schmitt et al., 2008; Webster
et al., 2010). It is worth noting that the absence of
these clusters from the analysed ICoMM data set
does not confirm their complete absence from the
environment and further sequencing could

ultimately reveal their presence outside of sponge
hosts.

The detection of an organism’s DNA in a sample
does not necessarily mean that this organism is
active in situ. Hence, the finding of ‘sponge-specific’
bacteria in diverse habitats outside of sponges could
theoretically reflect the presence of metabolically
inactive dispersal stages for these bacteria. This type
of rare biosphere ‘seed bank’ for colonisation of
sponges has been suggested before (Webster et al.,
2010) and could explain the apparent lack of co-
speciation in sponge–microbe associations. It is
often suggested that cellular rRNA concentrations
are correlated with growth rate and activity, hence
rRNA may reflect which members of the community
are active (Kamke et al., 2010). To explore whether
these ‘sponge-specific’ bacteria were metabolically
active outside of their host we examined the only
ICoMM study to have included both RNA- and
DNA-derived samples (Coral Reef Sediment, (CRS);
Gaidos et al., 2011). Of the sponge-specific and
sponge-coral-specific clusters identified in the CRS
study, 25 contained CRS sequences found only in
DNA-derived samples, 9 contained sequences in
both DNA- and RNA-derived samples and only 1
contained sequences exclusively from RNA-derived
samples. While the majority of sponge-specific
sequences were recovered only from the reef sedi-
ment DNA fraction, the finding of any sponge-
specific bacteria within the RNA fraction suggests
that at least some of these microorganisms may be
active outside the confines of the host. Sponge-
specific bacteria in the environment could also
originate from adult sponge tissue via damage and/
or release of reproductive stages, although this
would seem unlikely for many of the environments
included in this study such as deep-sea hydrother-
mal vents and open ocean waters.

The occurrence of putatively sponge-specific
bacteria in so many non-sponge samples strongly
suggests that they are capable of surviving outside of
sponge hosts. The analysed data demonstrate the
power of next-generation sequencing technologies

Figure 2 Occurrence of ‘sponge-specific’ 16S rRNA gene sequence clusters in ICoMM samples. Heatmap showing the distribution of
representatives of previously described ‘sponge-specific’ 16S rRNA gene sequence clusters (Simister et al., 2012) among the V6 pyrotag
sequences downloaded from the ICoMM website. Clusters with an SC prefix contain sequences previously reported only from sponges;
SCC prefix signifies clusters containing only sponge- and coral-derived sequences. Displayed data for a given project represent all
samples from that project pooled together; data for individual samples is provided in Supplementary Table S1. Black arrow at the top
denotes the ‘SPO’ study which included 12 marine sponge samples from the Great Barrier Reef (Webster et al., 2010). White arrow
denotes the ‘CCB’ study of Caribbean corals (Sunagawa et al., 2010). The colours indicate relative abundance of sequence reads, from blue
(low abundance) via black to red (high abundance); white indicates that no sequences were assigned to the respective cluster. ICoMM
project names: ABR, Active But Rare; ACB, Arctic Chuki Beaufort; AGW, Amazon-Guianas Water; ALR, Lau Hydrothermal Vent; AOT,
Atlantic Ocean Transect; ASA, Amundsen Sea Antarctica; ASV, Azorean Shallow Vents; AWP, Azores Waters Project; BMO, Blanes Bay
Microbial Observatory; BSP, Baltic Sea Proper; BSR, Black Sea Redox; CAM, Census Antarctic Marine; CAR, Cariaco Basin; CCB,
Caribbean Coral Bacteria; CFU, Deep Subseafloor Sediment; CMM, Coastal Microbial Mats; CNE, Coastal New England; CRS, Coral Reef
Sediment; DAO, Deep Arctic Ocean; Eel, Eel Pond Winter Pilot Study; FIS, Frisian Island Sylt; GMS, Guaymas Methane Seeps; GOA,
Gulf of Aqaba; HCW, Hood Canal Washington; HOT, Hawaiian Ocean Time Series; ICR, IOMM Cooperative Run; KNX, Station KNOX
South Pacific Gyre Ocean Drilling Project; LCR, LaCAR Cooperative Run; LCY, Lost City; LSM, Salt Marsh study; MPI, Helgoland; NADW,
North Atlantic Deep Water Flow; NZS, New Zealand Sediment; ODP, Ocean Drilling Project; PML, English Channel; PSM, Pilot Project—
Seamounts; RIP, Dead Sea Project; SMS, Station M Sediments; SMT, Hydrothermal seamounts; SPO, sponges; SSD, Spatial Scaling
Diversity; VAG, Humboldt Marine Ecosystem.
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for improving our understanding of marine symbioses
and should enable further identification of hitherto
unknown reservoirs for these bacteria.
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