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Global abundance of microbial rhodopsins
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Photochemical reaction centers and rhodopsins are the only phototrophic mechanisms known to
have evolved on Earth. The minimal cost of bearing a rhodopsin-based phototrophic mechanism in
comparison to maintaining a photochemical reaction center suggests that rhodopsin is the more
abundant of the two. We tested this hypothesis by conducting a global abundance calculation of
phototrophic mechanisms from 116 marine and terrestrial microbial metagenomes. On average, 48%
of the cells from which these metagenomes were generated harbored a rhodopsin gene, exceeding
the reaction center abundance by threefold. Evidence from metatranscriptomic data suggests that
this genomic potential is realized to a substantial extent, at least for the small-sized (40.8 lm) of
microbial fractions.
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The two light-harvesting mechanisms known to
have independently evolved on Earth, photochemi-
cal reaction centers and retinal-activated proton
pumps (Bryant and Frigaard, 2006), have evolved
in dramatically different directions. Photochemical
reaction centers have radiated and increased in
complexity throughout their evolution, forming
subcellular mechanisms composed of dozens of
proteins and pigments capable of not only harvest-
ing solar energy but also of using it to fix carbon by
generating a reductive force. Retinal-activated pro-
ton pumps, on the other hand, have retained a
simple mechanism throughout their evolutionary
course, using a single membrane protein—
rhodopsin—to form a proton gradient employed to
activate ATPase (Béjà et al., 2000; Spudich and Jung,
2005; Frigaard et al., 2006).

These two parallel mechanisms represent
opposing evolutionary strategies: the machinery
comprising photochemical reaction centers allows
the utilization of light at a high quantum yield
(Wraight and Clayton, 1974) and at an efficient
coverage of the solar spectrum (Hohmann-Marriott
and Blankenship, 2011). More importantly, photo-
chemical reaction centers can generate the reducing

power used to fix carbon in addition to a proton
motive force. However, the cost of occupying
extensive membrane real estate (Molenaar et al.,
2009), as well as that of high repair and maintenance
due to photodamage (Blokhina et al., 2003), greatly
exceeds that of a monomeric proton pump. Further-
more, the complexity of the photochemical reaction
center is likely to render its lateral transfer a relatively
rare event. Rhodopsins, on the other hand, do not
provide sufficient energy for cellular growth and
are not known to support carbon fixation, but they
require the expression of only one membrane protein
and are simple enough to be expected to proliferate by
lateral gene transfer (Frigaard et al., 2006).

One of the first discoveries made possible by
metagenomics was the apparent abundance and
diversity of rhodopsins in marine environments
(Béjà et al., 2000; Rusch et al., 2007; Fuhrman
et al., 2008); these proteins have been found in
diverse taxa, including SAR11 (Giovannoni et al.,
2005), a contender to the title of ‘the most abundant
organism on the Earth’. However, despite the
plethora of increasingly available metagenomic data,
the abundance of rhodopsins was not systematically
compared to that of photochemical reaction centers.

Here we present a systematic abundance profile of
genes encoding for photochemical reaction centers
and for rhodopsins in publically available metagen-
omes. Using the MG-RAST metagenomic analysis
server (Meyer et al., 2008), we compiled and
normalized the number of hits to oxygenic photo-
system I and II genes, to anoxygenic RC1 and RC2
photosystem genes, and to rhodopsin homologs
from 115 marine and terrestrial metagenomes
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(Supplementary Table 1). Genes representing the
different groups were chosen according to their
occurrence profiles in sequenced genomes
(Supplementary Table 2), selecting genes that were
(a) nearly single-copy (Supplementary Table 2) and
(b) ubiquitous within their category. For both
criteria, the maximal deviation allowed was 20%.
For example, psaB was not used as it appeared 232
times in 75 genomes and over 3 times per genome,
whereas psaH was not used as it was found in only
14 out of the 75 PS I-bearing genomes. Abundance
profiles were generated by normalizing the hit
number to gene size and to an average abun-
dance of 35 independent single copy genes
(Supplementary Table 3). As a measure of quality
control, the calculated abundances of PS I and PS II
were plotted against each other and were found to be
at a nearly 1:1 ratio, as expected (Supplementary
Figure S1). Rhodopsin genes, found in nearly all
photic environments, were both more abundant and
more ubiquitous than all four photochemical reac-
tion centers combined. On average, 48% of the cells
from which these metagenomes were generated
harbored a rhodopsin gene, in comparison with
18% harboring a photochemical reaction center
(Figure 1). This trend appears to apply only for the
fraction of particles smaller than 0.8 mm. Samples
that were prefiltered with a larger pore size
displayed an opposite trend, dominated by photo-
chemical reaction centers (Figure 2), indicating that

rhodopsin-based phototrophy is a prominently
prokaryotic process. Most terrestrial environments
(soil and phyllosphere) had a relatively high
proportion of photochemical reaction centers as
well, presumably due to a large proportion of
eukaryotic microorganisms in these samples. Inter-
estingly, although oxygenic photosystems were
found to be the most abundant photochemical
reaction centers, anoxygenic photosystems were
found to be more ubiquitous, as they were present
in nearly all metagenomes. In 13 of the data sets, the
summed abundance of rhodopsins and of reaction
centers exceeds 100%. Furthermore, in six of these
cases, the abundance of PS genes or rhodopsin genes
alone exceeds 100%. One possible explanation for
this apparent anomaly is that some sequenced
cyanobacterial as well as eukaryotic genomes harbor
both PS and rhodopsins (for example, Nostoc sp.
PCC 7120 (de la Torre et al., 2003) and uncultivated
oceanic diatoms (Marchetti et al., 2012)). This co-
occurence of both light-harvesting genes may be
more common than currently thought. Furthermore,
the occurrence profile of PS genes in the sequenced
genomes may not properly represent their profile in
nature. Finally, it is also possible that PS genes from
phage genomes (Mann et al., 2003; Lindell et al.,
2004; Millard et al., 2004; Sullivan et al., 2005, 2006;
Zeidner et al., 2005; Sharon et al., 2007, 2009;
Alperovitch et al., 2011; Béjà et al., 2012) may have
been included in the samples.
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Figure 1 Relative abundance of four types of photochemical reaction centers and of rhodopsins in 115 metagenomes. Reaction center
abundances were calculated using averages of single-copy components of the different photosystems: anoxygenic RC2—pufM, pufL, H
subunit, Cyt. C Subunit; anoxygenic RC1—pscA, pscB, pscC, pscD; PSII—psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbO, psbW,
psbY, psbZ, psb27; PSI—psaA, psaC, pdsD, psaE, psaF, psaJ, psaL. Rhodopsin abundances were calculated using abundances of genes
annotated as proteorhodopsin, xanthorhodopsin and bacteriorhodopsin. Metagenomes used are listed in Supplementary Table 1.

Microbial rhodopsins
OM Finkel et al

449

The ISME Journal



One important caveat of the abundance profile
presented above is the fact that the data only refer to
genomic abundance and not to the expression or
function of these genes. However, transcriptomic
and proteomic data, rapidly increasing in scale and
depth, suggest that rhodopsin is abundantly
expressed in a variety of ocean sites (Béjà et al.,
2001; Frias-Lopez et al., 2008; Poretsky et al., 2009;
Shi et al., 2010; Gifford et al., 2011). In fact, four of
the samples used in our analysis (samples 5, 6,
75 and 76) have also been subjected to metatran-
scriptomic analysis (Gilbert et al., 2008). A positive
correlation was found between the abundance of
functional groups in the respective DNA and RNA
samples (Supplementary Figure S2). No expression
of PS I or PS II was detected in the mRNA samples,
while the expression of rhodopsin and RC2 genes
was on average 74% and 10% of the expression of
the 35 aforementioned marker genes, respectively.
This indicates that at least for these cases, high
abundance of genomic sequences accurately pre-
dicted high expression levels.

Although this line of evidence suggests that the
majority of prokaryotic cells in the photic biosphere
bear phototrophic potential, and that many of them
contain rhodopsin genes, a precise assessment of
their actual expression and activity needs to be
carried out at the protein and functional levels. We
hope that the intriguing rhodopsin abundance
profiles suggested by our analysis will trigger more
accurate measurements of rhodopsin activity in
nature.
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Figure 2 Relative abundance of photochemical reaction centers
and of rhodopsins as a function of prefilter size. Left
panel: particles of the size range 0.1�0.8 mm (n¼ 63); middle
panel: particles 0.1�3 mm (n¼8); right panel: particles
0.22�5 mm (n¼4).
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