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Abstract

To date, the genome-wide association study (GWAS) is the primary tool to identify genetic variants that cause phenotypic
variation. As GWAS analyses are generally univariate in nature, multivariate phenotypic information is usually reduced to a
single composite score. This practice often results in loss of statistical power to detect causal variants. Multivariate
genotype–phenotype methods do exist but attain maximal power only in special circumstances. Here, we present a new
multivariate method that we refer to as TATES (Trait-based Association Test that uses Extended Simes procedure), inspired
by the GATES procedure proposed by Li et al (2011). For each component of a multivariate trait, TATES combines p-values
obtained in standard univariate GWAS to acquire one trait-based p-value, while correcting for correlations between
components. Extensive simulations, probing a wide variety of genotype–phenotype models, show that TATES’s false
positive rate is correct, and that TATES’s statistical power to detect causal variants explaining 0.5% of the variance can be
2.5–9 times higher than the power of univariate tests based on composite scores and 1.5–2 times higher than the power of
the standard MANOVA. Unlike other multivariate methods, TATES detects both genetic variants that are common to
multiple phenotypes and genetic variants that are specific to a single phenotype, i.e. TATES provides a more complete view
of the genetic architecture of complex traits. As the actual causal genotype–phenotype model is usually unknown and
probably phenotypically and genetically complex, TATES, available as an open source program, constitutes a powerful new
multivariate strategy that allows researchers to identify novel causal variants, while the complexity of traits is no longer a
limiting factor.
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Introduction

Genome-wide association studies (GWAS) are currently the

primary tool to identify genetic variants (GVs) underlying

phenotypic variation. GWAS are generally univariate in nature,

i.e., focus on a single phenotype. This means that researchers,

prior to analyses, often reduce available, originally multivariate,

phenotypic information (e.g., information on multiple questions

from a diagnostic interview or questionnaire, or multiple items in a

test) to a single phenotypic composite score, such as a continuous

sum score or binary case-control status (the latter is often based on

the number of endorsed symptoms, i.e., effectively a dichotomized

sum score). Such univariate conceptualisations are consistent with

the practical and diagnostic definitions employed in psychology

and medicine of traits like depression, cognition, Type I diabetes,

and asthma. However, whether they represent informative entities

with respect to biological aetiology is questionable [1]. Many

acknowledge the possible genetic heterogeneity of psychological

and medical traits [2–3]. This heterogeneity implies that distinct

GVs may give rise to the same univariate trait score, and that the

same GV may have different behavioral manifestations, depending

on genetic background and environmental exposure. It also

implies that phenotypes (e.g., symptoms, items, subtests) may be

affected by different GVs. To appreciate this, consider diagnostic

indicators of asthma, like spirometric measures, serum total IgE,

and fractional exhaled nitric oxide. These measures are pheno-

typically correlated and all associated with asthma diagnosis, yet

their genetic architecture may differ. When GWAS is subsequently

conducted on asthma case-control status, however, both the

plausible phenotypic and genetic heterogeneity of the trait is

discarded. Likewise, depression symptoms like worrying, insomnia,

and feeling lonely or irritable, and metabolic syndrome related

measures like waist-to-hip ratio, fasting glucose levels, triglycerides,

and high-density lipoprotein, are phenotypically correlated yet

need not be subject to the same GVs. That is, while the conceptual

multidimensionality of traits is often acknowledged in the

phenotypic instruments – e.g. by including measures of multiple

symptoms for disease traits, or multiple subtests to cover

distinguishable dimensions of complex traits (e.g., spatial and

verbal ability, memory, and general knowledge in cognition) - this
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phenotypic resolution is lost when the multivariate phenotypic

information is subsequently reduced to a univariate composite

score.

As we often do not know how a causal GV impinges on a

phenotype, determining the most informative operationalisation of

a trait for gene-finding purposes poses a challenge. Multiple studies

[4–7] have shown that phenotypic data reduction, such as case-

control status phenotypes or sum scores calculated across all

distinguishable phenotypes, results in a considerable loss of

statistical power to detect GVs in all but the special circumstance

that 1) a single phenotypic dimension underlies the variance-

covariance structure of the multivariate phenotypes (i.e., single

common factor model), and 2) the GV directly affects this

dimension (schematic representation Figure 1a). In this ideal

unidimensional model, the underlying phenotypic dimension

mediates the relationship between the GV and the multivariate

phenotypes, and the univariate sum score is a good approximation

of this dimension. However, many other genotype-phenotype

models are plausible. For instance, the model could be multi-

dimensional rather than unidimensional (Figure 1b–1c), and the

GV effect could be specific to one of the phenotypes, rather than

on the latent dimension (Figure 1d–1e). Recently, the field of

psychology has witnessed a shift towards network models, in which

relations between individual phenotypes are not believed to result

from shared causal latent factors, but rather originate in direct

causal influences between phenotypes over time [8–10]. For

instance, from a network perspective, symptoms like worrying,

sleeplessness and agitation are not viewed as manifestations of the

latent dimension depression, but as directly and causally related:

worrying interferes with sleep, and lack of sleep causes agitation. In

such network models, which obviate the need to invoke latent

dimensions, each phenotype could be affected by different GVs

(Figure 1f). In all these alternative genotype-phenotype models,

univariate conceptualisations like sum scores and case-control

status result in substantial loss of power to detect underlying GVs.

One way to avoid the potential loss of power associated with

univariate conceptualisations of complex heterogeneous traits, is to

adopt a multivariate method, which accommodates the originally

multivariate nature of the phenotypic measure. Exploratory

multivariate strategies, developed in GWAS context, include

MultiPhen [11], and canonical correlation analysis [12], which is

included in the GWAS software PLINK [13] (as canonical

correlation analysis is identical to MANOVA with one GV treated

as additive codominant (i.e., covariate), we use the term

MANOVA here). MultiPhen uses ordinal regression to regress

0/1/2-coded GVs on a collection of phenotypes of any

measurement nature (i.e., continuous, dichotomous, ordinal),

and applies one omnibus test to test whether all regression weights

in the model are together significantly different from zero.

MultiPhen has been shown to outperform MANOVA when

minor allele frequency (MAF) is low and the phenotypes are case-

control status or non-normally distributed continuous variables

[11]. Under most circumstances, however, MultiPhen and

MANOVA yield very similar results in terms of power to detect

causal GVs.

A drawback of these multivariate methods is that their power

depends on the specific configuration of phenotypic correlations

and on the location of the GV effect (e.g., on the latent dimension,

or specific to one of many correlated phenotypes). For instance,

when the ideal model (Figure 1a) holds, MANOVA is decidedly

less powerful than univariate analyses based on sum scores.

MANOVA, however, easily outperforms the sum score approach

when the GV affects only one of multiple strongly correlated

variables (e.g., Figure 1d–1f) [4–5,14].

As prior knowledge about the exact location of the GV effect in

a multivariate system is usually lacking, a computationally efficient

multivariate procedure that performs well in many different

circumstances is required to increase the success of future GWAS.

Here, we introduce a new multivariate technique called TATES:

Trait-based Association Test that uses Extended Simes procedure.

TATES is based on the GATES procedure [15], which was

developed to combine p-values of individual SNPs located within

the same gene into one gene-based p-value PG (where the gene is

considered a more attractive unit of analysis for association studies

than the SNP because genes are the functional units in the

genome). Similarly, for individual phenotypes characterizing a

trait (e.g., items or symptoms), TATES combines the p-values

obtained in standard univariate GWAS to arrive at a global trait-

based p-value PT, while correcting for the observed correlational

structure between the phenotypes. Here we show that TATES has

correct false positive (type-I error) rate, and that TATES picks up

both phenotype-specific genetic effects as well as genetic effects

that are common to multiple correlated phenotypes. Through

extensive simulations, probing a wide variety of genotype-

phenotype models, we demonstrate under which circumstances

TATES outperforms analyses based on sum scores and MAN-

OVA/MultiPhen with respect to the statistical power to detect

causal GVs.

Results

The TATES method is described in detail in the Materials and

Methods section. Briefly, TATES requires the m6n p-values of the

regression of m phenotypic variables on n GVs, and the m6m

correlation matrix of the phenotypes. The regression of the

phenotypes on the GVs can be conducted in standard software

packages like PLINK, Mach2dat/qtl, SNPtest, and Gen/ProbA-

BEL [13,16–20], which are fast, facilitate quality control, and can

correct for population stratification. For samples that include

related individuals, analyses could be conducted using PLINK

(where the –mperm option should not vary over the m phenotypes

to assure that the p-values used in TATES have similar accuracy),

*ABLE, PBAT or Merlin-offline [13,16–17,21–22]. For each GV,

Author Summary

The genome-wide association study (GWAS) is the primary
tool to identify genetic variants that cause phenotypic
variation. As GWAS methods are generally univariate in
nature, multivariate phenotypic information is usually
reduced to a single composite score, which frequently
results in a considerable loss of statistical power to detect
causal variants. Multivariate genotype–phenotype meth-
ods do exist but attain maximal power only in special
circumstances. We present a new multivariate method
called TATES (Trait-based Association Test that uses
Extended Simes procedure). Extensive simulations show
that TATES’s false positive rate is correct, and that TATES’s
statistical power to detect causal variants explaining 0.5%
of the variance can be 2.5–9 times higher than the power
of univariate tests of composite scores and 1.5–2 times
higher than the power of the standard MANOVA. Unlike
other multivariate methods, TATES uncovers both genetic
variants that are common to multiple phenotypes as well
as phenotype specific variants. TATES thus provides a more
complete view of the genetic architecture of complex
traits and constitutes a powerful new multivariate strategy
that allows researchers to identify novel causal variants.

TATES: Efficient Multivariate Analysis for GWAS
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TATES sorts the m p-values ascendingly. To derive from these m

p-values one trait-based p-value PT for each of the n GVs, TATES

takes into account that the m phenotypes, and thus the m p-values,

are correlated. In an iterative procedure, TATES weighs the jth p-

value in the 1 to m sorted p-values with me/mej, where me is the

effective number of independent p-values among all m variables,

and mej the effective number of p-values among the top j p-values.

The weight me is a function of m, and the sum of those eigenvalues

Figure 1. Schematic representation of the simulation settings and results. Schematic representation of the simulation settings (a–f) and
radar plot (g) of the power to detect 1 genetic variant (GV) explaining .5% of the phenotypic variance in 12 simulation settings. The power radar plot
(power running from 0 (midpoint) to 1 (outer edge)) displays the power for the univariate sum score analyses (blue), MANOVA (green), and TATES
(red). The phenotypic correlation structure was either due to one common factor (a,e), multiple underlying latent factors (b,c,d), or a network model
(f). Within these phenotypic settings, the GV either affected multiple phenotypes via a common factor (a,b,c), or affect a single phenotype directly
(d,e,f). Power results for 12 simulation settings and a GV explaining .5% of the variance are highlighted (g, colour labels corresponds to colour
simulation settings; see Tables S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12 for more GV effect sizes). Specifically, gA1–3: 1-factor models with GV
effect on the factor. gA1: mix of dichotomous, ordinal and continuous phenotypes correlating .36 to .81; gA2: continuous phenotypes correlating .56;
gA3: continuous phenotypes correlating .12. gE1–3: 1-factor models with GV effect specific to 1 phenotype. gE1: phenotypes correlate .56 (like gA2);
gE2: phenotypes correlate .30; gE3, phenotypes correlate .12 (like gA3). gF1–F3: network models with GV effect specific to 1 phenotype. gF1:
phenotypes correlate .56 (like gA2 and gE1); gF2: phenotypes correlate .12 (like gA3 and gE3); gF3: 4 clusters of phenotypes that within clusters
correlate .55, and between clusters correlate .13. gC1: 2-factor model, 10 phenotypes per factor, correlating .36–.81 within factors, and a factorial
correlation of .5. GV affects only the 2nd factor. gB1: 4-factor model, 5 phenotypes per factor, correlating .81 within factors, and factorial correlations of
.1. GV affects only the 4th factor. gD1: like gB1 but GV effect specific to 1 phenotype.
doi:10.1371/journal.pgen.1003235.g001

TATES: Efficient Multivariate Analysis for GWAS
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larger than 1 of the m6m correlation matrix of the p-values.

Similarly, mej is a function of j and the sum of the eigenvalues

larger than 1 based on the j6j correlation matrix of the top j p-

values . The correlation matrix of the m p-values is approximated

from the observed correlation matrix between the m phenotypes

using a 6th order polynomial (coefficient of determination

R2 = .992, see Materials and Methods and Figure S1). For each

of the n GVs, the trait-based TATES p-value PT equals the

smallest weighted p-value, with the null-hypothesis that none of

the phenotypes is associated with the GV, and the alternative

hypothesis that at least one of the phenotypes is associated with the

GV. The TATES procedure is implemented in a Fortran 77

program and an R script, both of which are freely available from

the website (http://ctglab.nl/software). The Fortran program

takes less than 1 minute to calculate the TATES trait-based p-

values PT for 12 phenotypes and 437,598 GVs on an ordinary

desktop computer with Intel(R) Core(TM)2 Duo CPU 2.99 GHz,

RAM 2.94 GB, and 32-bit Windows XP Professional Version

2002.

To study the false positive rate and the power to detect GVs

using TATES, we simulated genotype-phenotype data for 2000

subjects and 20 phenotypes (standard normally distributed unless

stated otherwise) according to various scenarios that are illustrated

in Figure 1a–1f. Specifically, the phenotypic correlation structure

was due to one underlying common factor (or dimension,

Figure 1a, 1e), multiple underlying common factors (Figure 1b–

1d), or to a network model, in which correlations between

phenotypes are due to direct, mutual relations between the

components (Figure 1f). Within these phenotypic correlational

settings, the GV affects multiple phenotypes via the common

factor (Figure 1a,b,c), or affects a single component directly

(Figure 1d–1f). For each scenario, we simulated GVs (MAF of .50)

with effect sizes ranging from 0 to 1% explained variance. The

false positive rate was also studied given MAF = .05 and

N = 12000. Simulations are described in detail in the Materials

and Methods section.

In each scenario, the 20 simulated phenotypes were either a)

summed and the sum score was regressed on the GV, b) subjected

to a 1-factor model to calculate Thompson’s factor scores [23],

which were regressed on the GV, c) subjected to a MANOVA with

the GV as covariate (canonical correlation analysis), d) subjected to

MultiPhen (regressing the GV on all 20 phenotypes in a

multivariate ordinal regression model), or e) individually regressed

on the GV (using logistic or ordinal regression where appropriate).

The last procedure yielded 20 p-values per simulated GV, which

were then combined into 1 overall trait-based p-value PT using

TATES. In addition, we compared the performance of TATES to

that of various other published procedures for combining p-values,

limiting our comparison to procedures that, like TATES, do not

require permutation, i.e., Fisher’s combination test, Lancaster’s

weighted Fisher test, the Z-transform test, and the original Simes

procedure (see Text S1). All data simulations and subsequent

analyses were repeated 2000 times. We counted the number of

times that the GV effect was detected given a= .05.

The results of all simulated scenarios are presented in detail in

Tables S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12. The false

positive rates of TATES, the sum score and factor scores

procedures, MANOVA, and MultiPhen were correct given our

simulation settings with both MAF = 50% and MAF = 5%, while

the original Simes procedure proved slightly conservative, if the

phenotypes were highly correlated. (Note that the false positive

rate of MANOVA is known to be inaccurate if the GV has low

MAF (.5 or 5%) and the phenotypic data are dichotomous or non-

normally distributed [11]). In contrast, the false positive rate of the

Fisher combination test, Lancaster’s weighted Fisher test, and the

Z-transform test, which do not account for correlations between

the 20 phenotypes, was often highly inflated (up to 20%,

depending on the magnitude of the phenotypic correlations).

Power results for these methods are therefore not discussed here

(but see Tables S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12).

Since power results of the factor scores, MultiPhen, and the

original Simes procedure were quite similar to those of the sum

scores, MANOVA, and TATES, respectively, these are not

discussed here (but see Tables S1, S2, S3, S4, S5, S6, S7, S8, S9,

S10, S11, S12).

Figure 1g illustrates the power results of 12 selected simulation

scenarios for the sum score procedure, MANOVA and TATES,

given a GV explaining .5% of the phenotypic variance. As

expected [4–6], the sum score procedure has excellent power to

detect the GV, if the phenotypic data are generated according to a

1-common factor model, and the GV effect is on this factor

(Figure 1g: A1–A3). However, if either the location of the GV

effect or the data-generating process is different, the power of the

univariate sum score procedure drops to levels often ,.10

(Figure 1g: B1,C1,D1,E1–3,F1–3). In 9 out of the 12 scenarios

we considered, the power of TATES was 2.5 to 9 times higher

than the power of the sum score procedure. As expected [4–

5,14],the power of MANOVA is especially high if the GV effect is

specific to only one of many highly correlated phenotypes

(Figure 1g: D1,E1). The power of MANOVA drops if the

phenotypic correlations are lower, or if multiple phenotypes are

subject to the GV effect. In contrast, TATES is only slightly less

powerful than the sum score procedure if the phenotypes correlate

substantially (Figure 1g: A1,A2), and clearly more powerful than

MANOVA in this condition. TATES outperforms both other

procedures if the GV affects multiple, but not all correlated

phenotypes (power TATES is 1.5–2 times higher, Figure 1g:

B1,C1), and is approximately as good as, or better than,

MANOVA, if the GV effect is specific to one of multiple

phenotypes that correlate .30 or lower (Figure 1g: E2,E3,F1–3). In

7 of our 12 scenarios, the power of TATES was 1.5 to 2 times

higher than the power of MANOVA.

As the original Simes procedure does not take into account the

correlations among the p values (originating in the phenotypic

correlations), TATES is expected to increasingly outperform

Simes as the phenotypic correlations increase. Given low to

modest phenotypic correlations, the gain in power acquired with

TATES varies from low (1%) to modest (9%) (the latter observed

in a 4-factor model with a phenotype-specific GV effect; Table

S12). Additional simulations (Tables S13, S14, S15, S16, S17,

S18), however, show that, as phenotypic intercorrelations increase

in magnitude (.75, .85, .95), the power of TATES can be as much

as 10%–19% higher than the power of the Simes procedure, with

TATES especially being more powerful when the GV effect is

specific to one of multiple correlated phenotype. As TATES is

comparable to Simes in computational effort, phenotypes within a

trait are almost invariably correlated, and the location of the GV

effect is generally unknown (i.e., could be phenotype-specific), one

is well-advised to adopt TATES.

Finally, we studied the effect of 10% missingness completely at

random (MCAR) or 10% blockwise missingness on the power to

detect GVs in three different genotype-phenotype models (see

Materials and Methods for details and Tables S19, S20, S21, S22,

S23, S24, S25, S26). Power was hardly affected in 1-factor models

with the GV effect on the factor. However, if the GV effect was

specific to one of the phenotypes (either in factor models or

network models), the power of MANOVA usually showed a 5–6%

larger drop in power compared to Simes and TATES. Only when

TATES: Efficient Multivariate Analysis for GWAS
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the GV effect was specific to a phenotype showing blockwise

missingness was the drop in power of Simes and TATES similar

to, or even slightly higher (2–3%) than, the power drop observed

for MANOVA.

Discussion

We have presented TATES, a new, computationally feasible

multivariate method to test genotype-phenotype relations. The

false positive rate of TATES is correct for varying MAF, even if

the multiple phenotypes are substantially correlated. Through

simulations, we showed that TATES outperforms standard

univariate analyses, unless the data-generating process is a

unidimensional factor model and the GV affects the factor.

TATES is only outperformed by MANOVA in the particular

condition that the GV affects only one of multiple strongly

correlated phenotypes.

Multivariate genotype-phenotype analyses are important for

several reasons. First, most complex traits, such as cognitive ability,

personality, problem behavior in humans [24–26], and anxiety in

mice [27], are multi-dimensional, i.e., multiple common factors

are required to describe the variance-covariance structure. Given

this multidimensionality, multivariate genotype-phenotype analy-

ses are indicated, as standard univariate analyses cannot accom-

modate genetic heterogeneity of subdimensions. Second, pheno-

typically distinguishable subdimensions need not correspond

simply to genetic dimensions, and the information to parse a trait

into genetically informative subdimensions is usually lacking. Conse-

quently, researchers often focus on those GVs that are common to

all subdimensions by studying a single, ‘‘general’’ composite

measure. A simple, but deficient alternative is to conduct a series of

independent univariate association studies without correcting for

the dependency between the results caused by the correlations

between the phenotypes. TATES offers a simply method to

correct for this relatedness, while identifying GVs that are

common to multiple phenotypes and GVs that are phenotype

specific. As such TATES provides a more complete view of the

genetic architecture of complex traits. Third, it is often unclear

which phenotype(s) or combination of phenotypes will maximize

the probability of unraveling the genetic architecture of a complex

trait. For example, in studying a complex trait like schizophrenia,

quantitative cognitive traits that are commonly affected in

schizophrenia patients (e.g., attention, mental flexibility, memory,

sensorimotor processing) may be better candidates for unraveling

the genetic architecture of schizophrenia than schizophrenia

affection status [28]. Multivariate techniques obviate the need to

focus on one phenotype, and help to chart both genetic overlap

and genetic uniqueness of related traits. Such information on

genetic similarity and dissimilarity of phenotypes may ultimately

help uncover the actual disease mechanism.

TATES allows researchers to test their genetic associations

efficiently using standard GWAS software. In addition, TATES’

reliance on p-value information assures that phenotypes of

different measurement levels (e.g., dichotomous, ordinal, contin-

uous) can easily be analyzed simultaneously, and that contrasting

effects (i.e., GVs affect some phenotypes positively, some

negatively) do not influence the power of the method. Note that

the plausibility of contrasting genetic effects does not only depend

on the magnitude of the phenotypic correlations and the effect size

of the GV (i.e., the correlation matrix between the phenotypes and

the GV should remain positive definite), but also on the underlying

genotype-phenotype model. For instance, if the true genotype-

phenotype model is a 1-factor model with the GV effect on the

factor, the direction of the effect of the GV must be identical for all

phenotypes (assuming that all phenotypes are coded such that

higher scores imply higher trait levels). Yet, if the true genotype-

phenotype model is a network model, contrasting GV effects are

unproblematic from a statistical point of view. Whether contrast-

ing effects are plausible from a biological perspective depends on

the actual functional role of the GV. For instance, symptoms like

blunted affect and agitated mood can both be positive indicators of

depression on a population level, but their biochemical basis may

be antagonistic, making contrasting GV effects for these symptoms

both statistically and biologically possible.

TATES cannot be used directly to test specific hypotheses

concerning the underlying genotype-phenotype model. However,

as TATES outputs the p-values from the original univariate

GWAS analyses along with TATES’ trait-based p-values, further

inspection of the pattern of significant univariate tests that drive

the significant TATES p-value can be informative. For instance, if

a significant TATES p-value is driven by an association with only

one of the multiple phenotypes, then the true genotype-phenotype

model is unlikely to be a 1-factor model with the GV effect on the

factor. The more these phenotype-specific GV effects are

observed, the stronger the indication that the trait under study is

genetically heterogeneous. This, again, implies that multivariate

approaches, in which the heterogeneity is accommodated, are

more likely to reveal the genetic architecture of that trait than the

standard approach based on univariate composite scores.

Furthermore, if one aspires to actually test specific hypotheses

concerning the underlying genotype-phenotype model, TATES

can be used as a filter to reduce the number of SNPs to a

computationally manageable set. The exact location and role of

the selected SNPs may then be studied in detail in appropriate

multivariate models [4–5].

Finally, TATES facilitates the study of the genetic overlap

between phenotypes in different domains, for example medical

and psychiatric disorders that show high comorbidity, and yet are

generally studied separately. Studying behavioural profiles [29]

rather than single phenotypes, and phenotypes spanning multiple

levels of organisation (e.g., behaviour, morphology, physiology),

advances analysis of the ‘‘phenome’’ (the phenotype as a whole, on

an organism-wide scale) [30]. Here, TATES is a useful tool, as it is

hypothesis- and model-free, and deals with the high phenotypic

dimensionality by combining the univariate analyses while

correcting for the relatedness between phenomic dimensions.

Furthermore, in a highly dimensional phenotypic context, the fact

that one does not need to know the underlying data-generating

model, or the mechanism causing comorbidity/association

between the individual phenotypes in the analysis, is an attractive

feature of TATES.

To summarize, TATES is an efficient multivariate method for

combining p-values across different, correlated phenotypes in

genotype-phenotype analyses. In the context of gene-finding

studies, TATES allows researchers to test genetic associations

without a priori data reduction or commitment to one phenotypic

or genetic model. As the actual phenotypic and genetic

architecture of traits is usually unknown and probably complex,

an exploratory multivariate procedure like TATES provides a

viable and, as simulations show, powerful new strategy.

Materials and Methods

TATES
Suppose m phenotypes are measured as indicators of one trait,

e.g., individual symptoms within a disorder, items within a test, or

multiple measures of one trait using different instruments (e.g.,

open-field test, a light-dark box, and an elevated plus maze to

TATES: Efficient Multivariate Analysis for GWAS
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measure anxiety in mice). Rather than combining these m

phenotypes into one general phenotype, we test the association

between all m phenotypes and all n genotyped genetic variants

(GVs) using a statistically appropriate method (e.g., linear or

logistic regression). Let p(1)…p(m) be the ascending p-values of the

m phenotypes for a given GV. TATES combines within each GV

the m phenotype-specific p-values to obtain one overall trait-based

p-value PT as follows:

PT~Min
mepj

mej

� �
, ð1Þ

where me denotes the effective number of independent p-values of

all m phenotypes for a given GV, and mej the effective number of

p-values among the top j p-values, where j runs from 1 to m, and pj

denotes the jth p-value in the list of ordered p-values. PT is thus the

smallest weighted p-value, associated with the null hypothesis that

none of the phenotypes is associated with the GV, and the

alternative hypothesis that at least one of the phenotypes is

associated with the GV.

Following Li et al [15], we obtain an estimate of the effective

number of p-values mej through a correction based on eigenvalue

decomposition of the m6m correlation matrix r between the p-

values associated with the m phenotypes. The effective number of

p-values mej for the top j p-values is calculated as:

mej~j{
Xj

i~1

I(li{1), ð2Þ

where j is the number of top j p-values, li denotes the ith

eigenvalue, and I( li21) is an indicator function taking on value 0

if li#1 and 1 if li.1. That is, the effective number of p-values mej

is calculated as the observed number of p-values j minus the sum of

the difference between the eigenvalues li and 1 for those

eigenvalues li.1. If the j phenotypes are all uncorrelated, then

all j eigenvalues equal 1, and mej = j20 = j. In contrast, if the j

phenotypes are perfectly correlated, then the first eigenvalue

equals j, and the other eigenvalues equal 0, rendering

mej = j2(j21) = 1 (i.e., j perfectly correlated phenotypes represent

only 1 unique unit of information). In practice, phenotypes show

intercorrelations of variable magnitude (but not 0 or 1), so the

effective number of p-values mej will usually be smaller than j, but

greater than 1. Note that me is equal to mej for the case that j = m,

i.e., when the selection of top phenotypes covers all phenotypes.

Approximation p-value correlation matrix
The m6m correlation matrix r between the p-values is not

observed in practice. Following Li et al [15], we used simulation to

show that matrix r can be accurately approximated through the m6m

correlation matrix r between the phenotypes. We simulated 55

continuous standard normally distributed phenotypes whose inter-

correlations ranged between 2.90 and .90, and a GV (MAF = .5) that

was simulated to be unrelated to the 55 phenotypes. The association

between the GV and all phenotypes was tested, yielding 55 p-values,

and this simulation was run 10,000 times. We then calculated, across

the 10,000 simulations, the mean pair-wise correlations between the

55 phenotypes (i.e., (55*55255)/2 = 1485 correlations), and the

mean pair-wise correlations between the p-values. Regressing the

vector of correlations between the p-values on the vector of

correlations between the phenotypes, we obtain the 6th order

polynomial r = 20.000820.0023r+0.6226r2+0.0149r3+0.1095r42

0.0219r5+0.2179r6 (coefficient of determination R2 = .992; see Figure

S1), allowing accurate approximation of the correlations between the

p-values from the observed correlations between the phenotypes.

The thus obtained matrix r is subjected to the eigenvalue

decomposition in Eq. 2.

Simulations
General settings. All simulations concerned N = 2000 subjects

and 20 standard normally distributed phenotypes (N,(0,1)), unless

stated otherwise. Simulated GVs (MAF = .5) explained 0 to 1% (with

steps of .01) of the variance in either the latent factor, or in a specific

phenotype (see below). All simulations were repeated Nsim = 2000

times. Simulations and analyses were conducted in R [31].

Factor models. For m phenotypes and k common factors,

data were simulated according to the model:

S~L �Y � LtzH, ð3Þ

where S denotes the m6m variance-covariance matrix between the

phenotypes, L is the m6k matrix of factor loadings (t denotes

matrix transpose), Y is the k6k variance-covariance matrix

between the common factors, and H is the m6m diagonal matrix

of residual variances (i.e., the part of the phenotypic variance that

is not explained by latent factors). In simulations with multiple

factors (k.1), we maintained simple structure, i.e., each phenotype

is related to only one factor.

Sum scores calculated across all m phenotypes are only

sufficient statistics (exhaustively summarizing all information

available in the individual phenotypes) if a) all correlations

between the phenotypes are explained by 1 latent factor, b) all

phenotypes have identical factor loadings, and c) all phenotypes

have identical residual variances [6] (a so-called Rasch model

[32]). In the case of 1 factor models (Figure 1a and 1e), we thus

chose to simulate phenotypic data according to Rasch models, as

this represents the most favorable condition for the univariate

sum score method. Factor loadings ranged between .75

(corresponding to .752 = .56% explained variance by the factor,

and 12.752 = .4375% residual variance; A2, E1 in Figure 1g),

.55 (.30% explained; E2) and .35 (.12% explained; A3, E3). With

these settings, intercorrelations between all m phenotypes are .56,

.30, or .12, respectively. The GV effect was then either modeled

on the factor (Figure 1a; Figure 1g A1–A3), affecting via the

factor all phenotypes defining the factor (in which case the GV

effect is weighted by the factor loadings; the lower the factor

loading, the smaller the GV effect on a phenotype), or

specifically on the residual variance of one phenotype

(Figure 1e; Figure 1g E1–E3). Note that a sum score only

summarizes both phenotypic and genetic information exhaus-

tively if the GV affects the factor; if the GV affects one

phenotype specifically, the sum score operationalisation is not

sufficient from a genetic perspective.

A special case was simulation A1, in which we simulated a 1-

factor model for a mix of dichotomous, ordinal (3 categories), and

continuous phenotypes with factor loadings ranging from .60 to

.90, to show that TATES also works well for phenotypes of

different measurement levels. In this specific simulation, the

correlation matrix between the phenotypes, used to approximate

the correlations between the p-values, was mixed with the type of

correlation (Pearson, polyserial, polychoric) depending on the

measurement levels of the phenotypes involved.

In the 2-factor model (C1), each factor was indicated by 10

phenotypes, with factor loadings ranging from .60 to .90 within

each factor, a factorial correlation of .5, and the GV affecting the

2nd factor only. In 4-factor models (B1, D1), each factor was

indicated by 5 phenotypes, with factor loadings of .90 within each
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factor, factorial correlations of .10, and the GV affecting either the

4th factor (B1), or one phenotype specifically (D1).

Network models. All network simulations concerned a

stationary network, i.e., assuming that mutual interactions

between phenotypes have over time resulted in a stable

variance-covariance matrix. Assuming m phenotypes, stationary

network data were created according to the model:

S~(I{B){1 �Y � (I{B){1t, ð4Þ

where S denotes the m6m variance-covariance matrix between the

phenotypes, I is a m6m identity matrix, and B is a full m6m matrix

containing the regression parameters b of all the phenotypes on

each other (e.g., element B[i,j] contains the regression parameter b
of phenotype i on phenotype j). The diagonal of the matrix B was set

to 0, implying absence of self-activation of the phenotypes (i.e., the

phenotypes do not affect themselves). Y is a m6m diagonal matrix

containing the variances of all phenotypes conditional on the effects

of the other phenotypes. In all network simulations, the GV was

only associated to the first phenotype in the network (Figure 1f).

Note, however, that the GV effect spreads throughout the network

as all phenotypes in the network were directly or indirectly

interrelated. To assure convergence of our network models (i.e.,

simulation settings result in stable systems), we checked the sufficient

condition that the largest eigenvalue of B*Bt is smaller than 1 [33].

Two types of networks were simulated. First (F1,F2), all

regression weights in matrix B were set to .04202, or .08187,

resulting in phenotypic intercorrelations of .56 or .12, respectively,

i.e., the phenotypic variance-covariance matrix of the network

simulations mimics the phenotypic variance-covariance matrix of

two Rasch models discussed above(A2/E1,A3/E3). Second (F3), a

network was simulated with 4 clusters of strongly associated

phenotypes (correlation = .55), and weaker associations between

clusters (correlation = .13).

Importantly, data generated according to a network or factor

model can have the very same variance-covariance structure,

despite different underlying, data-generating processes. Conse-

quently, even if a 1-factor model describes the phenotypic data

well, this does not guarantee that the 1-factor model is the actual

data-generating model. This realization is relevant for univariate

GWAS where factor analytic results are often taken as indication

that reduction of the multivariate data to sum scores is justified. In

reality, however, such reduction is only justified if the data-generating

process is a unidimensional factor model, but not if the data-

generating process is a network model.

TATES versus original Simes
To determine the circumstances in which TATES outperforms

the original Simes procedure, we conducted six additional

simulations. While the original Simes procedure corrects for the

observed number of p-values, TATES corrects for the effective

number of p-values, by taking the correlations between the p-

values into account. The difference in terms of power between

Simes and TATES is thus expected to be larger as the correlations

between the p-values (phenotypes) are stronger (i.e., the effective

number becomes smaller).

To illustrate the difference in power between TATES and

Simes, we simulated phenotypic data according to 1-factor Rasch

models, with factor loadings of .8660, .9220, or .9747, indicating

correlations of .75, .85 and .95 between the phenotypes,

respectively. The GV effect was modeled either on the latent

factor (like Figure 1a; Tables S13, S14, S15), or directly on one of

the 20 phenotypes (like Figure 1e; Tables S16, S17, S18).

Missingness and power
To study the effect of missingness in the phenotypic data on the

power to detect GVs, we conducted eight simulation studies in

which we studied two types of missingness in five different

genotype-phenotype models. The effect of missingness complete-

ly at random (MCAR) was studied by simulating data in which

each of the 20 simulated phenotypes had 10% missingness

distributed randomly across individuals. With 2000 subjects and

20 phenotypes, this results in ,4000 missing values (i.e., 10% of

the total of 40000 observations). In addition, we studied the

effect of blockwise missingness; 400 randomly selected subjects in

each simulated file had valid data only for the first 10 of 20

phenotypes (e.g., comparable to the situation that data of two

samples are combined: in sample 1 (N = 1600), a full 20-item

questionnaire is administered, while in sample 2 (N = 400), the

abbreviated version of 10 items is administered). This results

again in 4000 missing values, i.e., the amount of missingness is

the same across the two missingness scenarios, but the

distribution is different.

The effect of these two types of missingness was studied in three

genotype-phenotype models: 1) 1-factor Rasch model with the GV

effect on the factor (Figure 1a; Tables S19, S20), 2) 1-factor Rasch

model with the GV effect specific to one phenotype (Figure 1e;

specific phenotype not showing blockwise missingness; Tables S21,

S22, or showing blockwise missingness; Table S23), 3) network

model with the GV effect specific to one phenotype (Figure 1f;

specific phenotype not showing blockwise missingness; Tables S24,

S25, or showing blockwise missingness; Table S26). In all these

models, the 20 phenotypes correlated .56 (power results including

missingness can thus be compared to power results concerning the

same models without missingness presented in Tables S2, S4 and

S7). Note that equal correlations between all phenotypes

represents the ideal situation in which all phenotypes are equally

reliable, i.e., the effect of the missingness only depends on the

pattern of missingness, not e.g. on the reliability of the individual

phenotypes.

In subsequent analyses, missingness was handled in two ways.

The missing values were either imputed using mean imputation

(i.e., missing values are imputed with the sample mean of the

appropriate phenotype). This type of imputation, which was

done for MANOVA, sum score, Simes and TATES, is standard

in MultiPhen [11] and canonical correlation analysis in Plink

[13]. Alternatively, the analyses were based on all available valid

data. The sum score was then calculated as a weighted sum (i.e.,

the sum of all available data, divided by the total number of

available data). For Simes and TATES, the univariate tests were

based on all available data, and the p-values, now due to the

missingness based on different sample sizes, were combined as

usual. (Whether a correction is required to deal with the fact that

the p-values are based on different sample sizes, is open to

debate. In theory, the test statistic, and thus the p-value, already

take N into account. In practice, however, a procedure that

weights for the sample size can be more powerful [34]. We tried

one type of weighting for Simes and TATES, in which each p-

value was weighted by dfmax/dfj, where dfmax denotes the

maximal number of degrees of freedom (i.e., sample size) of the

20 simulated phenotypes, and dfj denotes the number of degrees

of freedom for the jth phenotype in the set of 1…20. This way,

the p-value belonging to the largest sample was weighted by

dfmax/dfmax = 1, while the other p-values were weighted by

dfmax/dfj and as dfj is always ,dfmax the weight is thus .1, i.e.,

p-values derived from small samples were adjusted upwards and

are therefore less likely to be the minimal p-value chosen by

Simes or TATES.)
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MANOVA was not conducted on all available data because in

standard MANOVA, cases are excluded listwise, resulting in a

very low sample size when missingness is MCAR. In theory, fitting

MANOVA on the raw data using Full Information Maximum

Likelihood (FIML) is possible in software like LISREL, Mx, or

Mplus [33,35–36], but this is time consuming in a genome-wide

context. Here, we chose to stick to the common practice of

MultiPhen [11] and Plink [13], which is mean imputation.
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33. Jöreskog KG, Sörbom D (1996–2001) LISREL 8 User’s Reference Guide, SSI
Scientific Software International. Suite. USA

34. Whitlock MC (2005) Combining probability from independent tests: the
weighted Z-method is superior to Fisher’s approach. J Evolution Biol 18:

1368–1373.

35. Neale MC, Boker SM, Xie G, Maes HH (2006) Mx: statistical modeling, 7th
edn. Department of Psychiatry, VCU, Richmond.

36. Muthén LK, Muthén BO (1998–2012) Mplus User’s Guide. Seventh Edition.
Los Angeles, CA: Muthén & Muthén

TATES: Efficient Multivariate Analysis for GWAS

PLOS Genetics | www.plosgenetics.org 9 January 2013 | Volume 9 | Issue 1 | e1003235


