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Abstract

Various movement parameters of grasping movements, like velocity or type of the grasp, have been successfully decoded
from neural activity. However, the question of movement event detection from brain activity, that is, decoding the time at
which an event occurred (e.g. movement onset), has been addressed less often. Yet, this may be a topic of key importance,
as a brain-machine interface (BMI) that controls a grasping prosthesis could be realized by detecting the time of grasp,
together with an optional decoding of which type of grasp to apply. We, therefore, studied the detection of time of grasps
from human ECoG recordings during a sequence of natural and continuous reach-to-grasp movements. Using signals
recorded from the motor cortex, a detector based on regularized linear discriminant analysis was able to retrieve the time-
point of grasp with high reliability and only few false detections. Best performance was achieved using a combination of
signal components from time and frequency domains. Sensitivity, measured by the amount of correct detections, and
specificity, represented by the amount of false detections, depended strongly on the imposed restrictions on temporal
precision of detection and on the delay between event detection and the time the event occurred. Including neural data
from after the event into the decoding analysis, slightly increased accuracy, however, reasonable performance could also be
obtained when grasping events were detected 125 ms in advance. In summary, our results provide a good basis for using
detection of grasping movements from ECoG to control a grasping prosthesis.
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Introduction

Brain-machine interfaces (BMI) aim to restore movement and

communication abilities of paralysed patients. To this end,

movement intentions are read out from brain activity and

translated into actions of external actuators. For such devices,

movement decoding from neural activity can be carried out

continuously over time, for example by continuously decoding the

intended state of the effector (e.g., position and velocity of hand

and arm joints) at each point in time and translating the decoded

state into corresponding movements of a prosthesis. Such a

decoding scheme was applied e.g., by Velliste and colleagues [1] to

let monkeys continuously control the opening and closing of a

gripper. However, to implement different grasp modes, the

number of involved hand joints increases, requiring simultaneous

and continuous control of a high number of degrees of freedom.

An alternative BMI control scheme is to decode a discrete set of

movement classes, e.g. different kinds of natural grasps. This,

however, requires the additional detection of the time of the

movement event, that is, the time at which the grasp should be

applied.

While classification of different movement types has been

extensively studied in primates and humans [2], the question of

movement event detection from neuronal activity was addressed

less often. Some previous studies on event detection dealt with the

detection of the onset of reaching movements [3,4] or the onset of

hand/wrist extensions [5,6], using a variety of detection methods,

signal features and recording techniques: Hwang and Andersen

[3] detected the onset of monkeys’ reaching movements from the

difference of the temporal derivatives of 20–40 Hz and 0–10 Hz

power of the local-field potential, using a thresholding mechanism.

Studies on humans used different classification algorithms on

spectral features of the EEG to detect hand extensions [5,6]. The

frequency of the used spectral frequencies varied widely: Awwad

Shiekh Hasan and Gan [6] modelled spectral EEG features in the

range of 8–45 Hz with a mixture of Gaussians, whereas Bashashati

and colleagues [5] used spectral power in bands between 1 and

25 Hz for linear discriminant analysis. The latter also tested a

nearest neighbour classifier on low-pass filtered EEG. Another

approach was applied by Levine and colleagues [4] who based

detection of various movements and vocalizations on the cross-

correlation of recordings of the human electrocorticogram (ECoG)

with average evoked potentials for the various events.

Movement events of interest may also be embedded within a

larger sequence of sub-movements, without pronounced pauses,

disqualifying detection of a general onset of movements. For
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example, this is the case when the time of grasping should be

detected during natural, continuous reach-to-grasp movements. So

far, little is known about such detection of grasping movements

from brain activity.

We created a movement paradigm in which grasping move-

ments are occurring during a sequence of self-paced and largely

self-chosen movements. We previously showed that different

modes of grasping can be reliably decoded from human ECoG

under these conditions [7]. Here, we demonstrate that the time of

the grasping movements can also be detected from the same data.

We quantify the precision of detection as a function of various

parameters and show that reasonable precision can be obtained

for real-time applications where movement events need to be

predicted before, or detected while they are produced.

Methods

Subjects
Three subjects, who will be referred to as S1, S2 and S3,

participated in our study. Subjects had a number of ECoG

electrodes subdurally implanted for presurgical epilepsy diagnos-

tics. All three subjects were female and 14 to 16 years of age.

Information about implantation sites and pathology can be found

in table 1. The study was approved by the University Clinic’s

ethics committee and was conducted only after subjects and their

parents (since subjects were under-age) had given their informed

written consent.

Experimental Task
We created a task, in which grasping movements were part of

longer natural reach-to-grasp movements. The movement para-

digm is outlined in figure 1a. Reaching movements were self-

initiated by the subject by reaching from a marked resting position

to a cup, placed at one of four locations, arranged in a semi-circle

around the resting position and drawn on a flat table in front of the

subject. Without explicit halt, the cup was lifted and carried to one

of the other marked positions, where it was released. After that

subjects moved their hand back to the resting position. Several

factors increased the variability of grasping movements:

The starting position of the cup changed in every trial, being the

position it was carried to in the previous trial.

The cup could be grasped in two different ways: with a precision

grip at the handle or a whole-hand grip around the cup. Subjects

were asked to choose either of the two grasp types with equal

probability in each trial.

After each block of 15 to 16 trials, the cup alternated between

an empty, light-weight version (68 g) and a heavier version (340 g),

with some weights fixed to the bottom of the cup.

These factors ensured a large amount of variability of grasping

events, making detection a non-trivial undertaking.

Due to the self-paced nature of the task, the time of the grasping

event in each single trial had to be subsequently identified from the

behavioural data. ‘Time of grasp’ here relates to the moment in

time when the grip was tightened, shortly before lifting the cup.

The transitions between movement components were smooth,

without pronounced separation. The time of grasp could be

defined with a precision estimated to about 60 ms.

For S1 and S3, we used recordings of wrist position, obtained

synchronously to the neural data using an ultrasound tracking

system (Zebris, Isny, Germany). The time of grasp was marked by

a local minimum in hand speed (figure 1b) and by a simultaneous

minimum in hand elevation over the table and a turning point in

the trajectory parallel to the surface. For S2, the recordings of wrist

position could not adequately be synchronized to the neural

recordings. We therefore used video recordings of the subject,

acquired synchronously and routinely in the course of clinical

observation. Similar criteria as for S1 and S3 were applied to

define the time of a grasping event, but based on a frame-by-frame

video analysis. With video frames recorded every 40 ms, and an

ambiguity of about one frame (earlier or later) for the identification

of these events, the imprecision of grasping events was estimated to

be about 60 ms and, therefore, similar to the temporal precision

estimated for event times derived from wrist position recordings.

Table 2 gives an overview over number of grasps and analysed

time for each subject.

Neural Recordings
Subjects were implanted with stainless steel electrodes (Ad-

Tech, Racine, Wisconsin, USA) of 4 mm diameter, covered in

sheets of silicone, arranged in regular grids with 10 mm inter-

electrode distance. Electrode arrays were implanted subdurally

over the lateral convexity of subjects’ cortices, partly covering

precentral motor cortex. The choice of electrode implantation sites

was exclusively based on clinical requirements, unrelated to the

experiment.

The electrocorticogram (ECoG) was recorded using a clinical

EEG-System (IT-Med, Germany), and sampled at a rate of

256 Hz (S1, S2) or 1024 Hz (S3). A digital video recording (25 Hz

frame rate), synchronized to the ECoG, was additionally acquired

for all subjects.

Table 1. Subject information.

S1 S2 S3

age 14 years 16 years 15 years

handedness right right right

pathology right frontal FCD FCD in right superior frontal gyrus/right
cingulated gyrus

right frontal FCD

implanted electrodes fronto-parietal 868 grid; 3 lateral prefrontal
stripes (166); 1 anterior cingulated depth
electrode (10 contacts); 1 medial fronto-polar
depth electrode (10 contacts); all electrodes
on the right

fronto-parietal 668 grid; 3 interhemispheric
stripes (164); all electrodes on the left

right fronto-parietal 868 grid

seizure onset zone right medial and lateral prefrontal left interhemispheric right premotor

All subjects were female and had ECoG electrodes subdurally implanted for pre-neurosurgical diagnosis. FCD: focal cortical dysplasia.
doi:10.1371/journal.pone.0054658.t001
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Figure 1. Experimental paradigm. A: Task layout. The subject’s hand was resting palm down (1) on a central spot, marked by the grey hand
pictograph. A reaching movement (2) was initiated by the subject (self-paced) and a cup was grasped (3) at one of four marked positions (circles) and
carried (4) to one of the remaining three positions (self-chosen). There, the cup was released (5) and the hand returned (6) to the central resting
position. Grasps of the object varied with respect to the applied grasp type (precision or whole-hand grip, self-chosen in every trial) and object
weight (switched between two cups every 15–16 trials), pictured in the upper right inset. B: Sample profile of hand velocity during one trial. Actions
labeled by numbers in (a) are marked at their respective times. C: Electrode implantations in all three subjects. The position of the central sulcus and
the lateral sulcus (S3 only) relative to the electrodes are shown by black lines. Electrode contacts of hand-arm motor cortex are marked by a black
circle with a black dot in the center.
doi:10.1371/journal.pone.0054658.g001

Table 2. Amount of analysed data.

number of grasps median inter-grasp time total time analysed non-movement time

S1 303 in 20 blocks 5.2 s 1919 s ( = 32.0 min) 657 s

S2 338 in 21 blocks 5.3 s 2119 s ( = 35.3 min) 989 s

S3 320 in 20 blocks 4.6 s 1522 s ( = 25.4 min) 401 s

Compound movements, including gripping and carrying a cup, were self-paced, with short resting periods between trials, and between blocks of trials to allow
alternating between a light-weight and a heavier cup. Subjects decided for either a precision or a whole-hand grip on a trial-to-trial basis. The total time analysed also
included non-movement time between trials.
doi:10.1371/journal.pone.0054658.t002

Grasp Detection from Human ECoG
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Electrical stimulation was performed through the electrode grid.

All sites with arm or hand motor responses were, in all subjects,

located outside the ictal onset zone.

In each subject, a structural MRI data set with full head

coverage was acquired, both before and after electrode implan-

tation. Motor cortices were identified according to anatomical

landmarks [8–10]. The positions of the central and lateral sulci

relative to the electrode positions were determined from the post-

implant MRI.

Electrode contacts residing over hand-arm motor cortex were

identified by two conditions, which both needed to be met: (i) their

precentral anatomical location, and (ii) by hand or arm

movements evoked upon electrical stimulation through these

electrodes. Figure 1c highlights these locations by a black outline

and a dot. As a likely target area for BMI applications, all analyses

presented here were performed exclusively on signals recorded

from this cortical area.

Data Processing
General treatment of data. Prior to any further processing,

data recorded by the clinical EEG system was re-referenced to a

common average reference. For each recorded channel, the

average voltage over the entire recording time was subtracted to

eliminate any possible offset of the signals. To account for

systematic differences in amplitudes across channels, which would

prevent direct comparison between channels, signals of each

channel were also divided by their respective standard deviation

over time.

Our main analysis was aimed to detect events within continuous

stretches of ECoG data. Some longer pauses between trial blocks

were introduced when subjects needed to rest or readjust their

position or some other interruption to the experiment occurred.

During this time subject behaviour, which may or may not have

included instances of grasping movements, could not be accurately

controlled or protocolled, precluding evaluation of potential

detections. Therefore, we restricted analysis to continuous periods

within blocks of trials and some shorter breaks in-between. Periods

of data that were temporally separated from grasping events

further than 4 times the median inter-grasp interval (about 20

seconds) were excluded from analysis. This procedure further

ensured that the proportion of movement to non-movement times

was comparable between subjects. The length of data analysed

from each subject can be found in table 2, part of which was spent

without overt hand movement, in-between trials (last column of

table 2).

Low-pass filtering. We used a causal version of a 2nd order

Savitzky-Golay-filter of 250 ms length to smooth recorded ECoG

signals. This corresponds to a low-pass filter with an approximate

3-dB-cutoff frequency at 6.7-Hz. We termed the resulting signal

the low-pass filtered component (LFC). Two examples of trial-

averaged LFC from each subject, aligned on the time of grasp, are

shown in the bottom row of figure 2. Example channels were

chosen from the hand-arm motor area, marked in figure 1c.

Low-pass filtered EEG, MEG, ECoG and LFPs have already

been used successfully to determine movement directions [11–14]

and trajectories of continuous hand-arm movements [11,15,16].

Frequency band amplitudes. In addition to low-pass

filtering, we also extracted modulations of amplitudes within

consecutive bands of 4 Hz width, from 0 to 128 Hz. This was

done by band-pass filtering, rectification of the filtered signal and

subsequent low-pass filtering, using the same low-pass filter,

described above. We chose this method because it can easily be

implemented in a causal way and accurately synchronized to the

LFC. For band-pass filtering, we chose a 4th order elliptic digital

filter design [17] for its steep roll-off characteristics and because it

introduces only small temporal shifts due to phase distortions in

the filtering process. The amplitudes of each 4 Hz band were

normalized by the average amplitude of this band over the whole

recording time. This normalization prevents frequency bands with

overall weaker signal power, especially high-frequency bands, from

being under-represented when averaging amplitudes over broad

frequency ranges [12]. Trial-averaged amplitudes, in time and

frequency, are shown in the upper row of figure 2, presenting two

exemplary hand-arm motor channels per subject.

Amplitudes of different frequency bands are often used to infer

motor behaviour from neural activity recordings, such as LFP,

ECoG or EEG e.g., [12–15,18]. If amplitudes are consistently

modulated over broader frequency bands, averaging over these

bands can significantly improve signal-to-noise ratio, compared to

that of narrower frequency bands.

Event Detection
We distinguished between two classes: ‘event’ (occurrence of a

grasp) and ‘non-event’ (no grasp). The feature vector x contained

signal features extracted from the neural recordings, that is,

voltage values or amplitude envelope values of different frequency

bands obtained from different ECoG recording sites at a given

time, attributed to either event or non-event class (see paragraph

‘Construction of feature vectors’ below for details).

Regularized linear discriminant analysis. We employed

regularized linear discriminant analysis [19] to decide whether or

not an event occurred at a specific time. Starting from Bayes’

theorem, the posterior probability P(Ci|x) for class Ci, given

observation x, is given by

P Ci Dxð Þ~ P xDCið ÞP Cið Þ
P xð Þ

where P(x|Ci), called the likelihood, is the conditional probability

of x, given class Ci, P(Ci) the prior probability of class Ci, and P(x)

the prior probability of observation x. Prior probabilities P(Ci) of all

occurring classes can be estimated from training data with known

class assignments. Estimation of the conditional probabilities

P(x|Ci) is based on an approximation of the distribution of

observations x for each class Ci by a (multi-variate) N-dimensional

Gaussian distribution. In linear discriminant analysis (LDA), it is,

additionally, assumed that all class distributions have the same

covariance matrix S and only differ in their means. Class-

dependent means and the common covariance matrix were also

estimated from training data. Finally, P(x) can be computed asP
i

P xDCið ÞP Cið Þ.

Since a maximum likelihood estimate of the covariance S based

on a limited amount of training data can easily lead to overfitting

in a high-dimensional feature space, we used regularized LDA.

This imposes additional restrictions on the covariance matrix, by

interpolating between the maximum likelihood estimate of the

covariance matrix S and the scalar covariance [19]:

ŜS(l)~(1{l)Sz
l

N
tr(S)I

Here, I denotes the identity matrix and tr(S) the trace of S. The

degree of interpolation is specified by the regularization parameter

l, used to obtain the regularized covariance ŜS(l). A value of l = 0

corresponds to a non-regularized linear discriminant analysis,

whereas l = 1 assumes spherical Gaussian distributions. We used

Grasp Detection from Human ECoG
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values of l from a set of [0.0001, 0.001, 0.01, 0.1, 0.5, 1],

optimized on the respective training sets (see section ‘Evaluation of

detections’).

Construction of feature vectors. Decoding is based on a

neuronal feature vector. The selection of neuronal features can

be tailored in several ways. One important choice is which

signal components to use. Another question is, at which time

related to the decoded property, in our case the grasping event

time, features should be extracted from the neuronal signals.

Here, we call this latter property the delay, which is a free

parameter in our analysis. A negative delay corresponds to a

time prior to the event, a positive delay to a time after the event.

The choice of the delay is constrained by the time at which the

detection should be available: If it is sufficient to learn about

detection after the actual event, signals occurring after the event

might still be taken into account. Post-event signals can be

informative, since post-event neural processing and behaviour

could still be related to the initial event (e.g., holding a cup is

related to previous grasping). If, however, the detection should

be known before the event i.e., if a prediction of a future event

is required, only negative delays should be allowed.

It can also be beneficial to enlarge the feature space by using

neuronal features from multiple time points. For simplification,

features can be collected at fixed intervals throughout an epoch of

exploited signal history, sampled such that most information from

the signals is retained. Since all signal components, used here, were

low-pass filtered (see above) and, therefore, had most of their

power below 8 Hz, we restricted ourselves to 16 time points per

second of signal history. For example, when using a signal history

of one second, the feature vector for time t included 17 samples of

each channel, including a sample from t - delay and 16 samples

from earlier times, with the earliest sample recorded at t - delay -

1 s. To use the signals from multiple channels, the feature vectors

of all channels were concatenated. The length of a feature vector,

using one signal component, thus depends on the length of the

signal history Thist and the number of included ECoG channels,

and can be calculated as Thist|16s{1z1
� �

|nch. We created

such a vector for each analysed time step.

To fit the mean and covariance of the event class to a subset of

the available recordings (training set), feature vectors were

extracted from the training data at every event time contained

therein. For the non-event class training set, however, we did not

simply use all remaining time points, as this could lead to several

problems: First, the batch of non-event training data would grow

exceedingly large, making it computationally costly. Moreover,

due to autocorrelations in the signals, neighbouring samples are

mutually dependent. This would introduce redundancy and, in

addition, make non-event samples close to grasp times very similar

to event samples, leading to weaker separation of the two classes,

that is, a greater overlap of class distributions. To avoid these

issues, we excluded times closer than 300 ms to the next event

from the training set and restricted the number of non-event

samples to 16 times the number of event samples in the

corresponding subset of data. These non-event-samples were

gathered from times evenly distributed over the remaining part of

the training data. In the test data, used for subsequent event

detection, however, no such selection was made.

Determination of detected times. We calculated the

posterior probability P(event|x) to observe an event, given the

measured signals, every 15.625 ms i.e., 64 times per second.

P(event|x) larger than 0.5 signified that an event should be

considered more probable than no event. However, since the

signal components used in the feature vector x were autocorrelated

on short time scales, a whole set of time points around the actual

time of the event yielded high posterior probabilities (figure 3). The

threshold required to trigger a detection was set to P(event|x).0.95.

Peaks in the posterior probability of the event class were usually

quite distinct from periods with no event, and quite broad in time,

as exemplified in figure 3. In theory, the most likely one in a set of

consecutive time points with high P(event|x) i.e., the peak time of

the posterior probability, could be used. However, such maxima

can only be registered retrospectively, when data after the peak

Figure 2. Event-related signals. Signal components of the ECoG recorded from two example electrodes over hand-arm motor cortex of each
subject. Top row: Average spectrograms, aligned on the time of grasp. Spectrograms were computed by (causal) band-pass filtering in successive
bands of 4 Hz width and subsequent rectification and smoothing with a (causal) Savitzky-Golay filter. Estimated amplitude modulations were
normalized by the average amplitude, per frequency bin and channel, over the entire recording. Bottom row: Trial-averaged low-pass filtered ECoG
signals (causal Savitzky-Golay filter), aligned on the time of grasp. Gray bands around the black traces of average potentials depict three times
standard error of the mean (SEM) in positive and negative direction.
doi:10.1371/journal.pone.0054658.g002
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have already been recorded and analysed. To develop an

approximation of this strategy which is still compatible with real-

time usage, we considered the following:

1) Two grasping events are not likely to take place in rapid

succession. From the training data, we could infer an estimate

of the minimal interval between consecutive grasping events.

In our analysis we, therefore, introduced a refractory period

by assuming that the time between two successive grasps is

always larger than 1.5 seconds. This is a conservative

estimate, since the shortest intervals encountered between

any two grasps were 3.6, 4.1 and 2.1 seconds for subjects S1,

S2 and S3, respectively. Therefore, once an event was

detected, we could safely discard potential detection times

within the following 1.5 second interval.

2) If detections are delivered tadvance before the time they are

required (determined by the delay), the output of the detection

algorithm can be delayed over this time. This time interval

can be used to wait for even more likely detections i.e., data

frames yielding a higher posterior probability for an event. If

a higher posterior probability is found within this interval

tadvance, the detection can be shifted forward accordingly. This

rule can be applied recursively until no higher values are

found within tadvance. We therefore always based detections on

signals, picked from times at 3 evaluation steps before the

given delay (tadvance = 3/64 s).

By following the reasoning in (2), detection times were advanced

towards a maximum in posterior probability. This drastically

reduced – but, on average, not completely eliminated – a bias of

detections being made too early. Applying a refractory period of

1.5 s, for reasons described in (1), ensured that only one detection

was delivered during a period of likely detection.

Evaluation of Detections
Sensitivity, specificity and precision measures. The

quality of event detection is determined by the numbers of true

positives NTP – events that were correctly detected – and the

numbers of false positives NFP – detections that occurred despite

the absence of an event. The number of false negatives – events

missed by the detector – can simply be calculated as the difference

between the total number of events Nevents and the number of true

positives NTP. To compare these measures across different data

sets, we defined the true positive ratio (TPR) as the fraction of true

positives among all real events Nevents. This measure reflects the

sensitivity of detection. Additionally, we defined a measure of

specificity, the false positive ratio (FPR), as the fraction of false

positives among all detections Ndet. This should not be confused

with the false positive rate, which gives an estimate of how many

false responses should be expected per unit time. Both measures,

TPR and FPR, are bounded between 0 and 1 and have previously

been used in this form to evaluate movement detections [4].

TPR~
NTP

Nevents

FPR~
NFP

Ndet

To decide, whether an event was correctly detected, a certain

tolerance t of how much the time of the detection was allowed to

deviate from the correct time, has to be defined. TPR and FPR are

therefore a function of this tolerance t. Fixing t to a defined

interval, thus, introduces an implicit measure of temporal

precision.

In addition to the above analysis, using a pre-specified

tolerance, we determined the temporal error of (potentially)

correct detections, by considering for each single event the

respective closest detection and measuring its temporal distance to

the event. If more than one event referenced one specific

detection, only the distance to the closest event was considered

(leaving some events undetected). Thereby, we obtained an

overview over achievable precision. We summarized this temporal

precision into a single variable, termed temporal deviation (TD) by

means of the root mean squared error:

TD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
DE2

i

n

s

Here, DEi denotes the detection error, defined as the difference

between the time of the ith detection and that of the corresponding

event. If the average detection error were zero, TD would be

identical to the standard deviation, but is larger in the presence of

a systematic temporal bias of detections.

Figure 3. Illustration of the detection process. Example trace of the posterior probability P(grasp|LFC(t)) for a grasping event, given the LFC of
the ECoG at time t. Vertical dashed lines mark the actual event times. Times with a posterior probability .0.95 (horizontal, dotted line) are potential
detections. The corresponding time interval around one detection is shown as a grey shaded area in the enlarged section on the right. Final detection
time is marked by a grey arrow. See Methods, section ‘Event detection’, for details of the detection algorithm.
doi:10.1371/journal.pone.0054658.g003
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Baseline detection performance: random predictor. We

contrasted the yielded detection accuracy against the null

hypothesis that no specific information was extracted from ECoG

recordings. To this end we compared results to a random

predictor that does not take any information from neural data.

We considered a renewal process that triggers detections at a rate

equal to that of the true events in the original data and with a

minimal inter-occurrence interval of 1.5 s. This provides a suitable

comparison to our detection algorithm, because both, the estimate

of the rate of events (prior probability) and the minimal inter-event

time (refractory period), are part of our detection scheme and

independent of neural recordings. TPR and FPR, assuming

tolerances smaller than half the refractory period (0.75 s), can

easily be calculated for this process. For decisions on ‘detection’ or

‘no detection’, made in steps of Dt, with a tolerance t in a session

of length T containing Nevents events, we obtain:

TPRrand tð Þ~ Nevents

T
2tzDtð Þ, for tv0:5|refractory period

FPRrand tð Þ~1{TPRrand tð Þ

Thus, TPR and FPR, expected from a random detector, are

linear functions of t (for non-overlapping tolerance windows

around events, which in our case holds for t ,0.75 s) and depends

on the temporal density of events. For the derivation, we refer to

Appendix S1.

For a detection method based on neuronal recordings to be

useful, it should, at the very least, be superior to a random

predictor with regard to both, TPR and FPR.

For a sensitive but unspecific detection method, that is, one that

detects multiple time points, besides the desired events, a large

number of false detections and hence FPR .1-TPR would be

predicted. On the other hand, a method with high specificity but

low sensitivity i.e., one that detects the right kinds of events but

only part of them, would be marked by FPR ,1-TPR. On the

extreme end of those cases are trivial predictors, producing either

a TPR of 1 or an FPR of 0, by triggering a detection either in every

single time bin (TPR = 1) or never (FPR = 0). Trivial predictors of

this kind would, at the same time, produce a FPR of almost 1 (for

the over-sensitive method, with TPR = 1) or a TPR of 0 (for the

insensitive method, with FPR = 0). Superiority over these trivial

methods should be documented by a combination of favourable

TPR and FPR with FPR < 1-TPR, as would be predicted if all

events were detected, but with a random temporal jitter. Further

criteria may be imposed, for instance that the number of true

positives should exceed that of false positives. Besides these

considerations, the ultimate requirements for TPR and FPR will

depend on the intended application.

Cross-validation. To test detection performance, we applied

a ten-fold cross-validation to the available data. Recordings from

each subject were sub-divided into ten periods of equal length.

Nine of these periods were combined to form the training set,

providing the basis for estimating the detector parameters. The

remaining subset was then used as a test set, to determine the

detection performance, based on the trained model. This

procedure was repeated for each combination, with one part

being used as a test set and the remaining nine parts being

combined into a training set. Thus, detection was run once on the

complete stretch of available data, with test and training sets being

mutually exclusive at any given time.

To choose the regularization parameter l (see section ‘Event

detection’) during training, we tested the detection performance as

a function of l by evaluating a selection of l-values in a separate

ten-fold cross-validation on the current training set (but excluding

the test set). The value of l which yielded the best discrimination

between events and non-events was then used to retrain the RLDA

on the complete training set.

Results

Detection from Time-frequency Amplitudes
Commonly used signal components for decoding of movement

parameters include amplitudes or power in frequency bands that

are modulated during movement or movement planning. To

investigate which frequency bands were informative for the

detection of grasping event times, we employed our detection

strategy (cf. Methods) on the basis of any possible contiguous

frequency band between 0 and 128 Hz that could be constructed

by averaging over normalized amplitudes in consecutive bands of

4 Hz width. This was repeated for several possible delays and the

performance was evaluated in each case for a number of different

tolerances. Figure 4 shows detection performance as a function of

the lower and upper frequency bounds, averaged over different

delays (2250 ms, 0 and +250 ms) and tolerances t (125 ms,

250 ms, 375 ms, …, 750 ms), and averaged across subjects. The

length of the signal history in this evaluation was fixed to 1.25

seconds. As a measure of performance we used TPR(t)-FPR(t),

which weighs sensitivity against specificity and has previously been

used in related studies in this [4] or similar form [6,20]. Figure 4

shows average TPR-FPR values for different frequency bands,

sorted for lower and upper frequency limits on the vertical and

horizontal axes, respectively.

We found that amplitude values recorded from hand-arm motor

channels allowed for best performance in a broad high-gamma

band, and a bit weaker but still notable performance in a

frequency band spanning the beta-range (cf. figure 4). We assured

that these findings did not vary substantially over delays, tolerances

or subjects (figures S1 and S2). Local maxima in performance were

found for a 56–128 Hz band in the high-gamma range and for a

16–28 Hz band in the beta range (locations indicated in figure 4).

For a closer inspection of the detection performance, we restricted

ourselves in the sequel to amplitudes from these two bands (along

with the LFC), which for brevity, we termed b for the 16–28 Hz

band and c for the 56–128 Hz band.

LFC and Combination with Frequency Band Modulations
Detections from the LFC were generally more accurate than

those from either b- or c-band. A combination of the LFC,

together with either b- or c-amplitudes or both could further

improve the accuracy of prediction. Figure 5 shows the

performance for a combination of all three signal components,

using a signal history of 1.25 s and a delay of 0 s. The curves for

TPR(t) and FPR(t) (figure 5, top row) show almost symmetric

behaviour with respect to a horizontal line at 0.5 on the TPR and

FPR axis, since an increase in tolerance will classify additional

detections as true positives, formerly interpreted as false positives.

This indicates that the difference TPR-FPR might be a valid

summary of these two parameters, as long as the number of real

events does not differ too much from the number of detected

events, by which the numbers of true and false positives,

respectively, were normalized. Also, note that the detection

performance was always better than that of a random process,

denoted by dashed lines in the top panels of figure 5. In order to

reach high levels of correct detections, higher tolerances had to be
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allowed (see table 3). For S2, more than for S1 and S3, detections

lacked in temporal precision, as illustrated by its broader

distribution of detection errors in figure 5 (bottom row). Detection

errors in S2 were also more biased towards a negative temporal

error (predicting too early), and less so in S1 and S3. An overview

of numerical values of TPR, FPR, and FP-rate (false positive rate)

for this detection scheme is given in table 3. It should be noted that

false positive rates given in table 3 (false detections per minute)

were calculated for time periods consisting of a sequence of

grasping trials and short resting periods in between and warrant no

statement about false positive rates of grasp detection during

periods of different behaviour.

A comparison of the performance of different signal compo-

nents (figure 6) revealed that the lower detection accuracy for S2

can largely be attributed to the low performance obtained, when

using the LFC, which for the other subjects provided most of the

information.

Dependence of Performance on Detection Parameters
Early predictions – detections with negative delays – could allow

BMI applications time for preparation of an appropriate action.

This time could be used, for instance, to prepare the grasping

movement of a prosthesis. However, in applications in which

timing is not crucial, or which have a high tolerance in terms of

temporal precision, detection at positive delays i.e., detection after

the actual event, could be allowed, if this improves overall

performance. To test this idea, we carried out detection over a

wide range of possible delays, from 21 s to +1 s. Dependency of

the detection accuracy on delay in terms of the TPR-FPR measure

for an intermediate tolerance of 0.5 s and in terms of TD is shown

in figure 6. In the prediction phase (delay ,0, white area), accuracy

increased strongly when delays got closer to zero. Delayed detection

(delay .0, grey area), only slightly increased the detection accuracy

further.

Detection performance showed only a weak dependence on the

duration of the signal history gathered in the feature vector (figure

S3). Here, we only presented examples with a fixed history length

of 1.25 s.

Discussion

Using the presented detection method, we were able to detect

grasping of a cup against a background of other movement events,

such as start of reach, cup release and end of reach. Event

detection, using ECoG recordings from motor cortex, worked

without information on the temporal structure of the trials. This

demonstrates that our method, based on linear discriminant

analysis, works reliably and is specific to one class of events, even

though the grasps themselves varied in the applied grasp type,

weight of the lifted object and position in the workspace. Grasping

events could also be predicted 125–250 ms before their occur-

rence, without substantial loss in accuracy, allowing for an early

preparation signal in potential future applications.

Detection Algorithm
Distinguishing between two classes, with one class representing

a specific event and the other class everything else, might be taken

to imply that distributions of neural features of both classes are

probably quite different and therefore not well described by a

common class covariance, as it is assumed and used in linear

discriminant analysis. Therefore, we tested our detection algo-

rithm also using RDA (regularized discriminant analysis [19])

Figure 4. Detection from band-limited ECoG amplitudes.
Detection accuracy, obtained using amplitudes from different frequen-
cy bands of the ECoG. Every continuous frequency band between 0 and
128 Hz, constructed by averaging over normalized amplitudes of
successive frequency bands of 4 Hz width, was used as input to the
detection algorithm. The figure shows colour-coded average values of
TPR-FPR, for frequency bands stretching from a lower limit (vertical axis)
to an upper limit (horizontal axis). TPR-FPR values were averaged over
delays of 20.25 s, 0 s and +0.25 s and tolerances of 125 ms, 250 ms,
375 ms, …, 750 ms as well as over all three subjects (pictures for
individual delays and tolerances, as well as individual subjects provided
as supporting information, figures S1 and S2). Detections from each
frequency band were based on a history of one second, sampled every
62.5 ms (16 times per second), recorded from all available hand-arm
motor channels in each subject. Pink lines point to two local maxima in
detection performance, representing frequency bands that were used
for further analysis.
doi:10.1371/journal.pone.0054658.g004

Table 3. Detection accuracy using combined LFC, 16–28 Hz and 56–128 Hz amplitudes.

t = 0.25 s t = 0.5 s t = 0.75 s Ndet
detection errors

TPR FPR
FP-rate
(min21) TPR FPR

FP-rate
(min21) TPR FPR

FP-rate
(min21) Bias (ms) TD (ms)

S1 0.75 0.26 2.5 0.92 0.10 0.9 0.97 0.05 0.4 309 247 265

S2 0.50 0.36 2.7 0.69 0.12 0.9 0.74 0.05 0.4 264 2117 362

S3 0.75 0.25 3.1 0.91 0.08 1.0 0.96 0.03 0.4 318 263 271

True positive ratio (TPR), false positive ratio (FPR) and false positive rate (FP-rate) are given for three different tolerance values t, 1.5 s of signal history and a delay of 0 s
(cf. figure 5). bias: median detection error over all potentially correct detections (negative values indicate detections are positioned before real events). Ndet: number of
detections; TD: temporal deviation, measured as the root mean squared error of (potentially) correct detections (see section ‘Evaluation of detections’).
doi:10.1371/journal.pone.0054658.t003
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which, unlike RLDA, allows for class specific covariances. This,

however, did not yield better predictions than RLDA (data not

shown), as long as samples, very close to events were excluded

from the training set of non-events (see Methods, section ‘Event

detection’). For this reason, we here only presented detailed results

of the RLDA approach.

Precision
While predictions were quite reliable at sub-second precision,

the observed temporal deviations might still be too large for

applications of very precisely timed movement control, such as

catching a ball or interaction with fast moving objects. An

explanation for these temporal deviations may be found in the

time course of the posterior probability, which was the basis for

our event detection: within intervals of several hundred millisec-

onds duration around grasping events, the posterior probability for

an event was higher than the used threshold of 0.95. While these

peaks in the posterior probability featured a steeply rising flank,

the maximum was often located on a plateau-like episode (cf.

figure 3, inset). Simply raising the detection threshold further than

0.95 might slightly narrow this interval, but at the expense of

decreased sensitivity, that is, the danger of more events being

missed by the detection. Optimizing the final detection time, by

climbing the gradient in the posterior towards a maximum

brought detections closer to the correct event times as exemplified

in figure 3 (grey arrow), but still left considerable temporal

ambiguity.

The temporal profile of the posterior probability can most likely

be attributed to autocorrelations in the signal components used for

detection. Using signal components with more transient event-

specific potentials could potentially improve the temporal preci-

sion of detections. But even if these existed in the motor-cortical

ECoG, they might be difficult to detect since events of the training

set, marked on the basis of movement behaviour, had only limited

temporal precision and, therefore, cannot reveal transient signals

which are locked to the event on very short time-scales. This, in

fact, might be a general difficulty for self-paced movements and

smooth transitions between movement components, like reach and

grasp.

Specificity
For all three subjects, FPRs converged towards a value close to

zero, for large tolerances (Fig. 5). This suggests that most false

detections were due to a temporal scattering around the actual

event times, indicating limited precision, rather than unspecific

triggering of detections. This is all the more remarkable as the

analysed data not only included two kinds of grasps and periods of

rest (see Table 2), but also a large variety of movement

Figure 5. Sensitivity, specificity and temporal precision of detection. Top row: true positive ratio (TPR, green solid trace) and false positive
ratio (FPR, red solid trace) as a function of tolerance (required temporal precision) for each of the three subjects (different panels). Dashed lines show
TPR and FPR (green and red, respectively) of a random predictor (see Methods, section ‘Evaluation of detections’). Bottom row: distributions of
temporal errors of detections. Red vertical lines indicate median temporal error; grey horizontal lines indicate the (flat) distribution for the random
predictor (in the same binning). Detection results, summarized here, were calculated for a delay of 0 s, using 1.25 s of signal history (sampled every
62.5 ms within this period) from LFC, 16–28 Hz (b) amplitudes and 56–128 Hz (c) amplitudes from all hand-arm motor electrodes. TPR indicates
sensitivity of detections, whereas FPR quantifies specificity (with high FPR meaning unspecific detections).
doi:10.1371/journal.pone.0054658.g005
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components, like reaching to and from different positions and

carrying cups of two different weights. However, any analysis of

specificity within the limits of such an experiment will not allow for

a very general statement of how many false detections are to be

expected during every-day activities, as this would require

monitoring of movement and ECoG over a much broader range

of behaviour.

Comparison to Previous Studies on Movement Detection
So far, only few studies reported on the detection of movement

events in time from neural signals. Rather than looking for specific

events within a continuous movement, most of these previous

studies were concerned with detection of movement onset of

reaching movements (from LFP: [3]) or short, simple movements

(from ECoG [4]; from EEG [5,6]) or other movement related

states (e.g., detection of a planning phase from spiking activity in

monkey pre-motor cortex [21]; detection of periods of event-

related desynchronization and synchronization from human EEG

[20]). In this respect, our study extends and complements previous

investigations.

Moreover, earlier studies did not emphasize the aspect of

temporal acuity, even though this aspect substantially influences

sensitivity and specificity of detection and is crucial to determine

the range of possible applications.

We specifically targeted hand and arm areas of the human

motor cortex, a site likely to be targeted in future BMI

applications. This not only reduces the impact of post-central

sensory sources, but also allows for a more specific statement about

potential capabilities of epi-cortical BMIs than permitted by

previous studies based on EEG [5,6].

Conclusion
Augmented with additional classification of the applied grasp

type [7], our findings introduce a possible approach for the

development of an ECoG-based brain-machine interface for

grasping. Moreover, our detection methods are of interest for

detecting other events (e.g. movement onset, error signals) from

neuronal data.

Supporting Information

Figure S1 Detection accuracy, using different frequency bands

(see manuscript, figure 4), for different delays and tolerances (t).

Average over 3 subjects.

(EPS)

Figure S2 Detection accuracy, using different frequency bands

(see manuscript, figure 4), for single subjects. Average over delays

and tolerances, displayed in figure S1. White spaces below the

diagonal appear, if no detections were made for the according

frequency band.

(EPS)

Figure S3 Detection accuracy as a function of signal history. 0.5

to 1.5 s of signal history before the time given by the delay (here:

delay = 0) included into the feature space. Different signal

components or combination of components are marked by colour

Figure 6. Detection accuracy as a function of delay for different signal components. Detections were inferred from a signal history of
1.25 s at and before the indicated delay of either LFC, b-amplitudes, c-amplitudes or a combination of these, as indicated in the colour code.
Accuracy is represented by TPR-FPR for a tolerance of 0.5 s (top row) and the temporal deviation (TD) of detections (bottom row) as a measure of
overall temporal imprecision. The left half of each plot (white background) comprises delays ,0, indicating prediction i.e., event detections ahead of
time. In the case of missing data points (b-amplitudes, S1/S2), no events were detected.
doi:10.1371/journal.pone.0054658.g006
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(see legend). Missing data points (b) indicate that no detections

were made.

(EPS)

Appendix S1 Calculation of TPR and FPR for a random

process (cf. section ‘Baseline detection performance: random

predictor’).
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