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Abstract

The mitogen-activated protein kinase (MAPK) pathway is considered to be a central block in many biological signaling
networks. Despite the common core cascade structure, the activation of MAPK in different biological systems can exhibit
different types of dynamic behaviors. Computer modeling may help to reveal the mechanisms underlying such variations.
However, so far most computational models of the MAPK cascade have been system-specific, or to reflect a particular type
among the wide spectrum of possible dynamics. To obtain a general and integrated view of the relationship between the
dynamics of MAPK activation and the structures and parameters of the MAPK cascade, we constructed a generic model by
comparing previous models covering different specific biological systems. We assumed that reliable qualitative results could
be predicted through a qualitative model with pseudo parameters. We used randomly sampled parameters instead of a
specific set of ‘‘best-fit’’ parameters to avoid biases towards any particular systems. A range of dynamics behaviors for MAPK
activation, including ultrasensitivity, bistability, transient activation and oscillation, were successfully predicted by the
generic model. The results indicated that the steady state dynamics (ultrasensitivity and bistability) was jointly determined
by the three-tiered structure of the MAPK cascade and the competitive substrate binding in the dual-phosphorylation
processes of the central components, while the temporal dynamics (transient activation and oscillation) was mainly affected
by the upstream signaling pathway and feedbacks. Moreover, MAPK kinase (MAPKK) played more important roles than the
other two components in determining the dynamics of MAPK activation. We hypothesize that this is an important and
advantageous property for the regulation and for the functional diversity of MAPK pathways in real cells. Finally, to assist
developing generic models for signaling motifs through model comparisons, we proposed a reaction-based database to
make the model data more flexible and interoperable.
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Introduction

The mitogen-activated protein kinase (MAPK) cascade is a

central block in many cell signaling networks. This cascade

presents widely in cell signaling pathways associated with

proliferation, differentiation and apoptosis [1–3]. MAPKs are a

family of cellular kinases. When activated, they activate a number

of downstream substrates that regulate transcription and transla-

tion [4,5]. The activation of a MAPK generally involves two sub-

pathways: an upstream sub-pathway (e.g. the growth factor

pathway [6] or the tumor necrosis factor pathway [7]) that lead

to the activation of a MAPKK kinase (MAPKKK), and the central

MAPK cascade that lead to the activation of a MAPK.

The central MAPK cascade has the following three-tiered core

structure [8]:

?MAPKKK?MAPKK?MAPK?,

wherein MAPKKK (or MAP3K) is the entry component. Its

activation triggers the cascade [9]. The active MAPKKK activates

its cognate downstream MAPKK (or MAP2K) by phosphorylating

the latter on two serine residues [10]. The phosphorylated

MAPKK subsequently activates its downstream MAPK, also

through dual phosphorylation [11]. The activation status of

MAPK is the eventual output of this cascade.

Despite the apparently common and simple structure of the

above central cascade, the activation of MAPK in different cell

signaling pathways may display dynamics of diverse types,

including ultrasensitivity, bistability, transient activation and

oscillation [12–17]. With ultrasensitivity, the level of MAPK

activation can vary dramatically upon small changes in an

upstream stimulus, namely, a small increase of the stimulus from

below to above a threshold can cause the activation of MAPK to

increase rapidly from a low level to full activation [12], leading to

an all-or-none type of response [13]. With bistability, MAPK

activity can be maintained at two different steady state levels under

certain conditions, e.g., with the strength of the stimulus within a

certain range [14,15]. As the actual state can be dependent on the

history of the system, bistability can lead to irreversible responses.

With transient activation, the level of MAPK activation may
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increase rapidly in initial response to the turning on of a stimulus,

but may later drop back to a lower level even though the stimulus

is maintained [16]. In certain systems, the level of MAPK

activation may also oscillate with time after a stimulus is turned on

[17].

It has been suggested that the different types of dynamics for

MAPK activations may have implications for biological functions.

For examples, ultrasensitivity and bistability are important for the

MAPK cascade to function as a switch, while transient activation

may serve the purpose of signal selection in some cases [18]. In

addition, the oscillation dynamics of MAPK activation may be

related to periodic gene expression and biological clocks [19]. It is

thus interesting to understand how the different types of dynamics

may emerge from the same core cascade structure. For examples,

among the many structure and parameter components that

comprise the cascade, what are the determining factors? And

how are the different factors coupled to each other?

In general, computer models can be employed to address these

questions. A computer model can be developed for a specific

MAPK system. However, such a model is usually associated with a

large extent of uncertainties in terms of structures and parameters

because of limited knowledge of the real network. This problem

may be partially addressed by limiting the network size, estimating

parameters based on experimental data [20,21] or referring to

online databases [22]. Alternatively, computer models can aim at

understanding properties of generic network structures rather than

of specific systems. The versatile dynamics of the central MAPK

cascade provide a suitable target for such studies. Unlike the

development of models for specific systems, the focus in such

modeling is no longer on system-specific quantitative parameters

and predictions, but on the qualitative relationships between

properties/functions of the system and possible variations of the

system in the structure and/or parameter space (e.g., sensitivity

analysis [23]). With computer modeling, such variations can be

explored systematically, subjecting to known biological constraints

to maintain maximum biological relevance of the results.

Previously, a number of system-specific computer models have

been developed to analyze the dynamics of MAPK cascades in

different biological systems. Various types of dynamics have been

predicted. In this report, we perform a systematic analysis of

possible dynamic behaviors of the central MAPK cascade that had

been investigated in different previous models based on one

generic model. In order to maintain generality without losing

biological relevance, the generic model has been constructed by

comparing/unifying 13 previous models of different specific

MAPK cascades. This has been enabled using a data structure/

database defined to facilitate the comparisons of mathematical

models. The generic model is analyzed by varying the model

structure using the structures of the previous system-specific

models as guides, and by systematic sampling in its parameter

space. The results provided a general picture of how the diverse

types of dynamics may emerge from the same core MAPK

cascade.

Materials and Methods

2.1 A reaction-based database for analyzing and
comparing mathematical models of biological networks

First, we semi-automated the procedure of performing objective

and well-defined comparisons (and possibly unifications) of

biological models. This is facilitated by defining a unified data

structure to store different mathematical models of various

biological networks into one single database, allowing the models

to be searched or queried in various ways.

There have been a number of online databases for storing pre-

defined models of biological networks, such as DOQCS (http://

doqcs.ncbs.res.in) [24], SigPath (http://icb.med.cornell.edu/crt/

SigPath/index.xml) [25] and BioModels (http://www.ebi.ac.uk/

biomodels-main) [26]. However, we found it difficult to compare

or unify models as stored in these databases. The reason is that the

data structures used in these databases are model-based, i.e., one

complete model corresponds to one unit record stored in a special

format such as SBML [27]. With this type of data structures,

automatic comparisons of names and values of model components

(e.g., species, parameters, and the expressions for kinetic equations)

are not meaningful even if some of the components in different

models actually refer to the same or similar biological entities or

processes. In addition, the formats storing the models have been

designed for processing using computer programs but not for

human comprehension, so manual comparisons of models are also

difficult.

To resolve this issue, we defined a new reaction-based data

structure, changing the unit data records from models into

reactions. The expressions of chemical species and reactions in

different models are unified or associated with each other if they

refer to the same or similar biological entities/processes. Such a

data structure improves the flexibility and interoperability of the

stored data composing different models while preserving the

convenience for the exchange and reuse of a certain model. For

example, for any given model or reaction, related models as well as

related reactions in current or other models in the database can be

easily queried. Thus different models for the same or similar

biological processes can be compared. Details of this data structure

are provided in the supplementary material as Table S1 and Text

S1.

Assisted by this data structure, 13 previous models of MAPK

cascade in different specific biosystems are compared (see Figure 1,

Table 1 and also the results section). Based on the comparisons, a

generic MAPK cascade model was defined.

2.2.1 The framework of the model. A diagram of the

model is shown in Figure 2. Detailed upstream pathways have

been excluded for simplicity as well as for generality. The

activation of MAPKKK was treated as a single reaction step with

a rate controlled by the strength of an input stimulus (see below).

The activation of MAPKK and of MAPK was treated as two-step,

enzyme-catalyzed dual-phosphorylation reactions. The inactiva-

tion of MAPKKK was treated as a first order reaction, while the

inactivation of MAPKK and of MAPK was treated as two-step,

enzyme-catalyzed dephosphorylation reactions involving phospha-

tases MAPKK phosphatase (M2KP) and MAPK phosphatase

(MKP), respectively.

In our generic model, the input signal has been treated as a

pseudo molecular species in a dynamic equilibrium between its

active and inactive form. The active form was considered as the

stimulus for MAPKKK activation. Feedback loops, if considered,

have been modeled as effects of downstream species on the

activating or inactivating rates of the input.

2.2.2 Kinetic equations. For investigating the potential

enzyme-substrate competitive binding in the enzyme-catalyzed

reactions, we divided each enzyme-catalyzed reaction into a

binding step and a catalytic step instead of using the Michaelis-

Menten equation. The kinetic equations in our models has the

following general form,

dx=dt~
X

i

ki P
j

Rij , ð1Þ

where ki is the kinetic rate of the ith reaction involving x, Rij is the

Random Parameter Sampling in Generic MAPK Model
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concentration of the jth reactant in reaction i. The complete model

contains 20 (total) concentrations and 28 kinetic rates as

parameters. Further details of the kinetic equations are given in

Supplementary material.

2.2.3 Sampling in the parameter space. For generality,

the parameters in our model are assigned only relative values. We

chose the total concentration of MAPKKK ([MAPKKK]total) and

the rate of activation of MAPKKK as the basic units for

concentrations and kinetic rates (and consequently, time), respec-

tively. The values of these two parameters have been fixed to 1,

Figure 1. A schematic drawing summarizing the topologies of
the MAPK activation network studied by previous models. The
numbers are numeric IDs of the models as they are referred in the text
and Table 1. The prefix ‘p-’ means phosphorylated and ‘pp-’ means
dual-phosphorylated.
doi:10.1371/journal.pone.0054441.g001

Table 1. A summary of previously reported MAPK models.

ID Specific Biosystem Network Topology Dynamic Behaviors

Upstream pathway Feedback Ultrasensitivity
Transient
Activation Oscillation Bistability

1 CHO EGF with 2 receptors Positive and Negative Not considered Yes No Not considered

2 Xenopus oocyte None None Yes Not considered Not considered Not considered

3 None None Negative Yes No Yes Not considered

4 None None None Yes No No Not considered

5 None None None Yes No No Not considered

6 HeLa EGF None Not considered No No Not considered

7 None None None Not considered Not considered Not considered Yes

8 None None None Not considered Not considered Not considered Yes

9 None None None Not considered Not considered Not considered Yes

10 None None None Not considered Not considered Not considered Yes

11 None None None Not considered Not considered Not considered Yes

12 None None None Not considered Not considered Not considered Yes

13 PC12 EGF and NGF Negative Yes Yes No Not considered

Field description:
ID: Numeric IDs of the models as they are referred in the text.
Specific Biosystem: Biosystem mapped by the model.
Network Topology: Upstream pathway or feedback involved in the model.
Dynamic Behaviors: MAPK dynamic behaviors emerged in the model.
doi:10.1371/journal.pone.0054441.t001

Figure 2. The topology of the generic model for MAPK
activation. The presence or absence of the two probable feedbacks
depends on the chosen kinetic parameters. In choosing the parameters,
we applied the constraints that a particular parameter set can lead to
either no feedback or the presence of only one of the feedbacks, but
not the simultaneous presence of both feedbacks. In the Figure, the
prefix p- means phosphorylated and pp- means dual-phosphorylated.
doi:10.1371/journal.pone.0054441.g002
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and the values of the other parameter have been varied either

systematically or through random sampling.

The space of initial concentrations has been systematically

explored in the following manner. The total concentrations of

MAPKK ([MAPKK]total) and MAPK ([MAPK]total) have been

sampled as 0.2, 1.0 or 5.0 times of [MAPKKK]total. The total

concentrations of phosphatases ([M2KP]total and [MKP]total) have

been sampled as 0.1 or 1.0 times of the total concentrations of

their respective substrates. We considered the concentrations of

products to be zero at the beginning of simulations, so there were

only 4 initial concentrations ([MAPKK], [MAPK], [M2KP] and

[MKP]) whose combinations need to be explored. The total

number of combinations is 3*3*2*2 = 36.

All of the 28 kinetic rates need to be explored in combinations,

which are too many to enumerate (for example, there will be 228

combinations even if each kinetic rate can assume only two

possible values). Thus the set of kinetic rates have been sampled

randomly. After trying different sample sizes, we considered 2,000

sets of kinetic rates to be a sufficient size (based on the ratios of

responsive models, see below) and the corresponding computa-

tional cost was still affordable. We note that the presence or

absence of the feedbacks in Figure 2 was implemented by

constraining the respective rate constants to zero or non-zero

values, respectively. Finally, our simulations have been performed

with 72,000 parameter combinations (36 sets of systematically

varied initial concentrations combined with 2,000 sets of randomly

selected kinetic rates). More details of parameter sampling are

given in Supplementary material.

For each combination of parameters, we solved the set of

ordinary differential equations in (1) using Matlab to obtain the

time evolution of the system for a sufficiently long time. The model

can be downloaded from https://senselab.med.yale.edu/

ModelDB/showmodel.asp?model=146024.

Results

3.1 Comparisons of previous models
We entered 13 MAPK cascade models from 7 references into

our reaction-based database. Table 1 listed for each model the

biosystem, the network topology and the types of dynamics

predicted by the model. The network topologies of the MAPK

cascade described by the 13 models are summarized in a single

diagram in Figure 1. More detailed information regarding these

models and their predicted dynamics will be described in

Discussion.

3.2 Numerical simulations of the generic model
Time trajectories were obtained by solving the ordinary

differential equations in (1). Each trajectory was characterized

using well-defined numeric indicators. Criteria for responsive,

ultrasensitive or bistable models were also defined, respectively,

based on these indicators. With these criteria, respective statistics

of 2000 sets of randomly sampled kinetic parameters were

obtained for each of the 36 sets of different initial concentrations.

The results are presented in Table 2. The numeric indicators,

criteria and statistics are described below.

3.2.1 The output or strength of MAPK activation and

responsive models. The ratio between the concentration of

dual-phosphorylated MAPK ([pp-MAPK]) and [MAPK]total was

considered as the strength of MAPK activation, or output,

O~ActStr~½pp-MAPK�=½MAPK�total ð2Þ

The models in which the maximum activation strength of

MAPK in the simulated time course, Omax, is larger than 0.1 have

been considered as ‘‘responsive’’. Since it makes no sense to

investigate the dynamics of a model that could not produce

effective activation, we are only concerned with parameters that

lead to responsive models. The fraction of responsive parameter

combinations for each of the 36 sets of initial concentrations, or

the effective activating ratio, has been calculated as

Table 2. Concentration vectors and statistics of MAPK
activation.

ID MAPKKa MAPKa M2KPa MKPa rEA (%)b rSU (%)b rBI (%)b

1 0.2 0.2 0.02 0.02 83.95 79.75 60.51

2 0.2 0.2 0.02 0.2 53.15 65.00 43.84

3 0.2 0.2 0.2 0.02 69.90 56.22 40.13

4 0.2 0.2 0.2 0.2 39.95 37.55 21.65

5 0.2 1 0.02 0.1 67.20 68.38 51.93

6 0.2 1 0.02 1 18.65 53.62 42.63

7 0.2 1 0.2 0.1 52.55 41.29 27.40

8 0.2 1 0.2 1 12.00 27.50 20.42

9 0.2 5 0.02 0.5 19.10 50.00 43.72

10 0.2 5 0.02 5 0.15 33.33 33.33

11 0.2 5 0.2 0.5 12.85 28.79 19.84

12 0.2 5 0.2 5 0.05 0.00 0.00

13 1 0.2 0.1 0.02 95.10 81.18 53.94

14 1 0.2 0.1 0.2 78.15 61.23 32.37

15 1 0.2 1 0.02 69.70 49.93 35.72

16 1 0.2 1 0.2 45.65 29.57 15.12

17 1 1 0.1 0.1 89.95 67.43 40.69

18 1 1 0.1 1 47.90 46.24 28.39

19 1 1 1 0.1 57.40 37.02 21.69

20 1 1 1 1 22.60 19.47 11.28

21 1 5 0.1 0.5 70.15 54.38 35.00

22 1 5 0.1 5 8.30 34.94 30.72

23 1 5 1 0.5 36.30 28.51 18.73

24 1 5 1 5 3.40 11.76 16.18

25 5 0.2 0.5 0.02 94.90 77.13 48.74

26 5 0.2 0.5 0.2 84.65 55.46 25.16

27 5 0.2 5 0.02 44.00 40.34 30.00

28 5 0.2 5 0.2 25.15 22.47 9.15

29 5 1 0.5 0.1 91.65 65.58 34.21

30 5 1 0.5 1 62.45 42.35 21.22

31 5 1 5 0.1 34.00 28.97 14.71

32 5 1 5 1 12.40 16.53 6.05

33 5 5 0.5 0.5 84.60 54.96 29.55

34 5 5 0.5 5 28.95 29.36 17.44

35 5 5 5 0.5 23.00 21.96 10.43

36 5 5 5 5 3.65 9.59 4.11

aTotal concentrations of components.
bPercentages of parameter sets that can induce effective activation (Omax.0.1,
rEA), significant ultrasensitivity (Gradient.1.0, rSU) and bistability (Bistability.1.5,
rBI), respectively.
doi:10.1371/journal.pone.0054441.t002
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rEA~NEA=Ntotal , ð3Þ

where NEA represented the number of parameter sets giving

responsive models, and Ntotal represented the total number of

parameter sets.

3.2.2 The effective gradient of output with respect to

signal strength and ultrasensitive models. This effective

gradient was used as an indicator for ultrasensitivity. Its value

reflect how rapidly the level of MAPK activation changes with the

stimulus during the ‘‘turning on’’ process,

Gradient~(0:9Oh
max{0:1Oh

max)=(S(0:9Oh
max){S(0:1Oh

max)), ð4Þ

where Oh
max is the maximum (saturated) steady state output

obtained from the simulations. S(x) is the stimulus strength that

induces steady state output x.

Models with Gradient larger than 1.0 were considered as

significantly ultrasensitive. For each of the 36 combinations of

initial concentrations, we defined the ratio of significantly

ultrasensitive models as

rSU~NSU=NEA, ð5Þ

where NSU represented the number of parameters inducing

significant ultrasensitivity, while NEA represented the number of

parameter sets yielding responsive models.

3.2.3 Indicators of bistability. We defined the indicators of

bistability by the following steps. For each model (noted as Mi)

constructed by randomly selecting an initial concentration vector

(noted as ICVi) and a kinetic rate vector (noted as KRVi), a set of

steady-state concentration vectors SCV is obtained by simulations

under a series of stimuli strength S that cover a range from 0 to a

saturating strength. Then the ICVi was replaced by the maximum-

response steady-state concentration vector SCVmax and a new set

of steady-state concentrations SCV’ was obtain by repeating the

simulations with the same series of S. To judge whether Mi was

bistable, the respective output SCV and SCV’ under a given

stimulus strength (the check point) were compared,

Bistability~Oh’=OhDcheck point, ð6Þ

where Oh is the output value of SCV, and Oh’ is the output value of

SCV’. The check point was chosen as S(0.1Oh
max). By this choice we

only considered bistability that covered a significant range of input

strength.

Theoretically, the value of Bistability should be in the range of

(1.0, 10.0) under this definition, with a mono-stable model having

a Bistability equal to 1.0 and a bistable model having a Bistability

larger than 1.0. To account for the inevitable effects of numerical

inaccuracies, we defined a model to be bistable if it showed a

Bistability larger than 1.5. For each of the 36 combinations of initial

concentrations, we defined the ratio of bistable models as

rBI~NBI=NEA, ð7Þ

where NBI represents the number of parameters inducing

bistability, and NEA represents the number of parameter sets

giving responsive models.

Moreover, we defined the models in which the Oh’ was very

close to Oh
max (i.e., Bistability.9.5) as absolutely bistable. Table 3

shows the numbers of parameters leading to absolute bistability

with different initial concentrations. To consider the effects of

feedbacks on bistability, models with and without certain feedback

connections were compared in this table.

3.2.4 Simulation results. Over 45% of total 72,000 models

(32,906) were found to be responsive under the definition of 3.2.1.

Steady-state dynamics including ultrasensitivity and bistability

were commonly found in responsive models as expected. The

values of steady-state statistics rEA, rSU and rBI grouped by 36 initial

concentration sets were listed in Table 2.

In contrast to steady-state dynamics, temporal dynamics

including transient activation and oscillation were found in only

few models (125 in 32,906).

Detailed analysis about the relationships between dynamics and

model parameters will be described in Discussions.

Discussion

4.1 Previous models of the MAPK cascade
Before discussing results of the generic model presented in this

work, we first summarize the previous system-specific models listed

in Table 1, on which the generic model have been based.

4.1.1 Brief summaries of previous models. Model 1 was

an integrated model including both the epidermal growth factor

(EGF) signal pathway involving two receptors (EGFR and ErbB4)

and the MAPK cascade. The model mapped the MAPK network

of Chinese hamster ovary (CHO) cells to reveal the relationship

between the network topology (feedbacks) and the network

response. The result indicated that the model including a positive

feedback from active MAPK to B-Raf (MAPKKK activated by

ErbB4) and an inhibitory link from active B-Raf to active Raf-1

(MAPKKK activated by EGFR) could best fit the experiment data

[28].

Model 2 mapped a network in Xenopus oocyte. The upstream

pathway was simplified as a single input node. Some of the

parameters were measured by experiments and the others

estimated. The model predicted that the three-tier arrangement

of the MAPK cascade could result in an ultrasensitive response. It

was confirmed by further experiments in Xenopus oocyte [29].

Model 3 had been adjusted from Model 2 by adding a negative

feedback from active MAPK to MAPKKK. Model 3 was not

meant to map a specific biological system. The corresponding

analysis indicated that a negative feedback coupled with ultra-

sensitivity could lead to oscillation [17].

Model 4 and Model 5 investigated the effects of scaffold

proteins. The models were comprised of the core cascade like

Model 2 [30].

Model 6 was an integrated model including the EGF signal

pathway and the MAPK cascade of HeLa cells. The parameters

have been trained with experimental data. Model 6 was built to

predict the differential effects of surface and internalized EGF

receptors [31].

Models 7–12 included only the last tier of the MAPK cascade,

namely, from MAPKK to MAPK. These models revealed

necessary conditions for bistability in dual-phosphorylation cycles,

such as MAPK activation [15].

Model 13 was an integrated model of PC12 cells. Beside the

MAPK cascade, this model also included two upstream signal

pathways, namely, the EGF pathway and the NGF (neural growth

factor) pathway. The model parameters were obtained by training

using experimental data. The results of this model indicated that

the distinct responses of the MAPK cascade to two input signals

(EGF and NGF) were related to the different feedbacks from

activated MAPK to the two upstream signal pathways [16].

Random Parameter Sampling in Generic MAPK Model
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4.1.2 Possible dynamic behaviors displayed by previous

models. After comparing 13 previous models in Table 1,

possible relationships between dynamic behaviors and the network

topologies can be summarized as below.

Ultrasensitivity was displayed by Models 2, 3, 4, 5 and 13,

irrespective of the presence or absence of the upstream signal

pathways and the feedback loops in the models. This suggests that

these structural features are not absolutely necessary for ultra-

sensitivity. Model 2 indicated that the high degree of ultrasensi-

tivity depended critically upon the total concentration of MAPKK

and the two-collision mechanism of the dual phosphorylation

reactions. In addition, Models 4 and 11 indicated that including

the effects of scaffold proteins could change the ultrasensitivity of

the MAPK activation by affecting the phosphorylation mecha-

nisms of MAPKK and MAPK. It is also noteworthy that in

different models, the ratios between [MAPKK]total and [MAPK]-

total were similar (,1.0), while the absolute values of the respective

quantities were significantly different.

Bistability of the MAPK pathway was investigated in Models 7–

12, which contained only the dual-phosphorylation cycle of

Table 3. Number of (absolutely) bistable models obtained with different concentration vectors under different network
topologies.

Concentration Vectors Number of (absolutely) bistable models under different network topologies

No feedback Positive Feedback Negative Feedback

1 327 (106) 348 (78) 341 (81)

2 153 (28) 156 (39) 157 (33)

3 185 (42) 204 (42) 172 (40)

4 51 (11) 75 (18) 47 (11)

5 232 (51) 242 (48) 224 (58)

6 57 (8) 55 (13) 47 (9)

7 93 (24) 117 (27) 78 (20)

8 15 (3) 17 (3) 17 (3)

9 61 (16) 52 (12) 54 (10)

10 0 (0) 1 (1) 1 (0)

11 16 (0) 18 (5) 17 (4)

12 0 (0) 0 (0) 0 (0)

13 337 (75) 353 (70) 336 (76)

14 168 (45) 172 (33) 166 (38)

15 162 (27) 191 (34) 145 (26)

16 43 (8) 55 (10) 40 (6)

17 242 (48) 272 (55) 218 (56)

18 94 (20) 101 (20) 77 (16)

19 82 (14) 109 (9) 58 (16)

20 13 (2) 23 (4) 15 (3)

21 171 (36) 205 (41) 115 (33)

22 14 (4) 23 (5) 14 (2)

23 45 (5) 67 (6) 24 (1)

24 5 (1) 4 (0) 2 (0)

25 308 (17) 322 (19) 295 (24)

26 149 (9) 151 (8) 126 (8)

27 74 (9) 108 (12) 82 (11)

28 9 (2) 21 (3) 16 (5)

29 224 (44) 240 (51) 163 (46)

30 93 (22) 103 (17) 69 (17)

31 25 (9) 47 (5) 28 (4)

32 4 (2) 8 (0) 3 (0)

33 176 (36) 210 (32) 114 (25)

34 42 (8) 34 (8) 25 (7)

35 10 (0) 29 (1) 9 (0)

36 2 (0) 1 (0) 0 (0)

Total 3682 (732) 4134 (729) 3295 (689)

doi:10.1371/journal.pone.0054441.t003
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MAPK by MAPKK. The emergence of bistability was found to be

caused by substrate saturation of the first phosphorylation step as

well as the competitive inhibition of the second phosphorylation

step by the substrate of the first step.

Transient activation of MAPK was predicted by Models 1 and

13. It was suggested that this type of dynamics was dependent on

the upstream dynamics of respective adaptor proteins. However,

comparisons of these two models with Model 6 suggested this may

not be the only factor. Model 6 also included upstream EGF

pathways but transient ERK activation was not found. The major

difference between Model 6 and Models 1 and 13 lies in MAPK-

mediated feedbacks. Both Models 1 and 13 contained this

feedback to the upstream adaptor proteins, but there was no such

feedback in Model 6. It is thus valuable to ask whether transient

activation actually depends on the MAPK-mediated feedbacks to

upstream pathways.

Sustained oscillation occurred only in Model 3. Model 3 was

constructed by incorporating a MAPK-mediated negative feed-

back into Model 2. This feedback was considered to cause the

oscillation.

4.2 Dynamics of the generic model
4.2.1 Model responsiveness. Table 2 shows that the ratio of

responsive models is critically determined by the ratios of pairs of

total-concentration, including [MAPKK]total over [MAPK]total

and substrates over phosphatases ([MAPKK]total over [M2KP]total

and [MAPK]total over [MKP]total). Particularly, the parameter

groups in which [MAPKK]total$[MAPK]total, or the total

concentration of the phosphatases was smaller than those of their

respective substrates (e.g. [M2KP]total,[MAPKK]total), are asso-

ciated with significantly larger effective activating ratios.

Moreover, only 160 of 2000 kinetic parameter vectors can lead

to responsive models in more than 30 cases when combined with

the 36 concentration vectors. After comparing these kinetic

parameter vectors, we found that the values of single kinetic

parameters showed little effects, but the ratio of association over

dissociation rates (e.g. kb5/kd5 in List S1, List S2 and List S3 of

supplemental materials) as well as the ratio of phosphorylation

over dephosphorylation rates (e.g. k2/k-2 in List S1, List S2 and

List S3 of supplemental materials) significantly affected the

responsive-model-inducing ability of a kinetic parameter vector

(Figure 3).

The above results suggested that the MAPK cascade can be

effectively blocked (i.e., made non-responsive) through increasing

the amount of respective phosphatase.

4.2.2 Ultrasensitivity. Table 2 shows that the ratio of

ultrasensitive models strongly depends on the initial concentra-

tions. A larger [MAPKK]total/[MAPK]total ratio leads to larger

rSU. This result means that with a fixed total concentration of

MAPK, there is a positive correlation between the total amount of

MAPKK and the ultrasensitivity of the network. This agrees with

conclusions from previous Model 2 in Table 1, which suggested

that the Hill coefficient of the overall response curve was positively

correlated with the total amount of MAPKK.

Table 2 additionally suggests that a larger [MAPKK]total/

[M2KP]total ratio and a smaller [MAPK]total/[MKP]total ratio lead

to a larger rSU (e.g. concentration vector 02 versus concentration

vector 03 in Table 2). Since a larger [MAPKK]total/[M2KP]total

ratio means more kinase (pp-MAPKK) of MAPK while smaller

[MAPK]total/[MKP]total ratio means more phosphatase of MAPK,

this result reflects the correlation between ultrasensitivity and

competitive binding of different enzymes with the same substrate.

In order to learn more about the relationship between

[MAPKK]total and ultrasensitivity, we drew Gradient versus

[MAPKK]total curves by scanning the values of [MAPKK]total

while fixing other parameters. To avoid scanning for all sets of

parameters, we divided the parameter sets into three groups

according to their respective Gradient. The first group was

composed of parameter vectors having Gradient between (1.0,

10.0), representing ‘‘low ultrasensitivity’’; the second group

was composed of parameter vectors having Gradient between

(10.0, 100.0), representing ‘‘medium ultrasensitivity’’; the last

group was composed of parameter vectors having Gradient

larger than 100.0, representing ‘‘high ultrasensitivity’’. We

randomly chose 10 parameter sets from each group for the

[MAPKK]total-scanning experiment. Consistent positive cor-

relations between [MAPKK]total and Gradients have been found

in all of the three groups (Table 4).

We also found that with other parameters fixed, the signal

ranges from the beginning to the end (maximum) of MAPKK

activation were not correlated with [MAPKK]total (Table 4),

implying that the signal range was more or less invariant with

respect to changes in [MAPKK]total. Therefore, with increasing

[MAPKK]total, the amount of increase in pp-MAPKK upon a

given increase in the input stimulus will become larger, leading to

larger increase in the final output, which is the MAPK activity. In

other words, when the concentration of pp-MAPKK needed for

maximum activation of MAPK is determined by other parameters,

a larger [MAPKK]total results in a smaller signal difference

between the beginning and the maximum of MAPK activation,

leading to a larger Gradient or stronger overall ultrasensitivity of the

network.

Similar to the results for responsive models, the ratio of kinetic

parameters associated with the second phosphorylation steps of

MAPKK and MAPK (kb3/kd3, kb-3/kd-3, k3/k-3, kb5/kd5, kb-

5/kd-5 and k5/k-5 in List S1, List S2 and List S3 of supplemental

materials) showed very strong correlations with ultrasensitivity

(Figure 4). The models in which the substrates have higher affinity

to kinases (larger kb3/kd3 and larger kb5/kd5) and lower affinity

to phosphatases (smaller kb-3/kd-3 and smaller kb-5/kd-5) are in

general associated with larger Gradient or equivalently, stronger

ultrasensitivity.

Irrespective of the presence or absence of feedback loops, over

50% models show significant ultrasensitivity (Gradient.1.0). This

indicates that for the MAPK cascade, feedbacks are not

dominating factors for ultrasensitivity. This result was also in

agreement with a conclusion from the previous Model 2, which

suggested that ultrasensitivity was dominated by the three-tier

cascade arrangement rather than by the feedback loops.

4.2.3 Bistability. Bistability was often considered as the

result of positive feedbacks or dual-negative feedbacks [14,32].

However, in our experiment, bistability was found in about 1/3

responsive models, irrespective of whether or what feedback loops

the model contained. The ratios were also independent of

feedbacks when concerning only absolutely bistable models.

Further analyses revealed the role of enzyme-substrate compet-

itive binding in producing bistability. Since both MAPKK and

MAPK have two phosphorylation sites sharing one kinase and one

phosphatase, competitive binding may take place when two

substrates bind to the same enzyme (e.g. MAPK and p-MAPK to

pp-MAPKK), or when two enzymes bind to the same substrate

(e.g. pp-MAPKK and MKP to p-MAPK). When competition for

binding partners occurs, the steady state concentrations may

become dependent on the initial concentrations, resulting in

bistability. This feedback-independent mechanism has been

discussed in [15] with simple models that included only the

MAPK activating tier of the MAPK core cascade.
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Figure 3. Number of kinetic parameter vectors (vertical axis) that, when combined with 36 concentration vectors, lead to
responsive models in more than 30 cases. The total 160 kinetic parameter vectors are grouped by different ratios (horizontal axis) of (a) various
association rates (kbN and kb-N) over the corresponding dissociation rates (kdN and kd-N), and (b) various activation rates (kN) over the
corresponding deactivation rate (k-N).
doi:10.1371/journal.pone.0054441.g003
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Our analyses also revealed a qualitative correlation between the

likelihood of obtaining absolutely bistable models and the

phosphorylation rates of the second phosphorylation sites of

MAPKK and MAPK (k3 and k5 in our model). Absolute

bistability emerged easier in models with smaller k3 or k5

(Figure 5A). Similar results were found when concerning not only

the absolutely bistable but also the remaining bistable models,

except that the effects of smaller k2 (phosphorylation rate of the

first phosphorylation site of MAPKK) also become significant

(Figure 5B). The rate constant k5 determines the consumption rate

of the intermediate product p-MAPK, while both k2 and k3 affect

the concentration of MAPK kinase pp-MAPKK. Smaller k2, k3 or

k5 would lead to increased p-MAPK and decreased pp-MAPKK,

which eventually resulted in more intensive competitions for

binding. Thus the numeric results support the above theory that

bistability in the MAPK core cascade can be mainly caused by

competitive binding.

We note that this cause of bistability is different from commonly

discussed causes involving positive feedbacks. Besides our results

here, it has been noted previously that oscillation or bistability

could emerge for specific parameters of the MAPK cascade model

without feedback loops [33]. In addition, Models 7–12 also

indicated that particular parameter combinations coupled with

competitive inhibition could lead to bistability in a simple dual-

phosphorylation structure [15]. Therefore, positive feedback was

in general not a necessary condition for bistability in MAPK

activation. This conclusion, however, does not exclude that

positive feedbacks, when present in particular MAPK systems,

can cause bistable responses in MAPK cascade.

4.2.4 Temporal dynamics. In our simulations, transient

activation or oscillation was found in few models (125 in 32,906).

In addition, all of the 125 models exhibiting transient activation

and/or oscillation contained a negative feedback. Thus given the

general topology of the MAPK core cascade, the presence of such

temporal properties relies first on special topological features of the

network, and then on specific parameter combinations.

As can be expected from the essentiality of negative feedbacks in

generating non-trivial temporal dynamics, the total number of

models exhibiting transient activation or oscillation increased from

125 to 398 when the effect of the negative feedback was

strengthened relatively by reducing the strength of the input

signal from 10.0 to 1.0 (however, with the decreased input

strength, the number of models yielding effective MAPK

activation decreased from 32,906 to 29,337). Apparently, the

strength of the input signal is determined by upstream pathways.

Therefore, although upstream pathways are not determinative on

the steady-state dynamics of MAPK core cascade, it may play roles

in determining the transient or temporal response of MAPK

activation in a cascade containing negative feedbacks, through

regulating the strength of the stimulus.

Conclusions

In order to obtain an integrated view of the relationship

between dynamics and architecture of the MAPK network, we

have constructed a generic model of the MAPK cascade by

comparing 13 previous MAPK models from 7 references, with the

help of a reaction-based database. Systematic exploration of the

parameter space, including total protein concentrations and

kinetic constants, have been carried out to shed light onto the

causal relationships between these quantitative properties of this

ubiquitous network block and its different types of qualitative

dynamics behaviors.

The generic MAPK cascade model can successfully repro-

duce reported steady-state dynamics (ultrasensitivity and

bistability) and the temporal dynamics (transient activation

and oscillation) observed for the MAPK pathways in different

real systems. The results indicate that the complex dynamics of

the MAPK pathways are mainly determined by the structure

and the parameters contained in the three-tiered core cascade

rather than by upstream pathways. This conclusion is in

agreement with a previous work applying multi-parametric

global sensitivity analysis to an integrated, system-specific

MAPK network including both an upstream EGF signal

pathway and the core cascade consisting of Ras and Raf

(MAPKKK), MEK (MAPKK), and ERK (MAPK) [34]. In

other words, the MAPK core cascade motif is sufficiently

versatile, being capable of delivering a variety of qualitative

dynamics required by different cellular signal transduction

tasks through tunable parameters. This may be one of the

reasons why the same MAPK core cascade are found widely in

nature as the central blocks in different cell signaling pathways,

some of them performing very different functions.

In modulating the steady-state dynamics of the core cascade,

the MAPKK seems to play the most important role. The ratio

between [MAPKK]total and [M2KP]total was found to be the

most important factor to determine whether the cascade can

yield effective response, i.e., MAPK activation, upon induction

by a strong-enough upstream signal. In addition, it is the total

amount of MAPKK that determines the ultrasensitivity of the

response with respect to the stimulus. Moreover, competitive

complex formation during dual phosphorylation of MAPKK

can induce bistability in the absence of any apparent

feedbacks.

It is possible that the central role of MAPKK in regulating

the overall dynamics may give the MAPK core cascade some

important advantages as a modular block in complicated

cellular networks. Since MAPKK was the intermediate

component of the MAPK core cascade, it may receive less

interference from outside modules than the other two

Table 4. Correlation coefficients between [MAPKK]total and
Gradient/Signal Range.

Gradienta Signal Rangeb

Lowc Mediumc Highc Lowc Mediumc Highc

0.99d 0.98 0.84 20.55 20.23 20.52

0.99 0.99 0.99 20.79 0.70 20.58

0.99 0.97 0.61 0.19 20.40 0.43

0.98 0.98 0.83 0.38 0.61 0.75

0.96 0.99 0.63 0.96 0.42 0.97

0.99 0.99 0.69 20.63 0.40 0.95

1.00 0.97 0.96 20.68 0.12 20.75

0.99 0.90 0.97 20.73 0.64 20.64

0.96 0.92 0.89 20.79 20.36 0.26

0.97 0.87 0.98 0.40 0.03 0.25

aGradient is an indicator for ultrasensitivity (see text).
bSignal range from the beginning to the end (maximum) of MAPKK activation.
cSample sets grouped by Gradients. Low: samples having Gradients between
(1.0, 10.0), representing ‘‘low ultrasensitivity’’; Medium: samples having
Gradients between (10.0, 100.0), representing ‘‘medium ultrasensitivity’’; High:
samples having Gradients larger than 100.0, representing ‘‘high ultrasensitivity’’.
dCorrelation coefficients between [MAPKK]total (total concentration of MAPKK)
and Gradient or Signal range.
doi:10.1371/journal.pone.0054441.t004
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Figure 4. Number of kinetic parameter vectors (vertical axis) that lead to large Gradient (Gradient.400) for MAPK activation (see
text). As in Figure 3, the numbers are shown for different ratios (horizontal axis) of (a) various association rates (kbN and kb-N) over the respective
dissociation rates (kdN and kd-N), and (b) various activation rates (kN) over the respective deactivation rate (k-N).
doi:10.1371/journal.pone.0054441.g004
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components. In other words, the determining role of MAPKK

may make the MAPK cascade dynamics modular, being

susceptible to regulations by specific signals but robust against

unwanted external influences, for example, variations in the

upstream network.

In the above analyses, we found the reaction-based database

proposed in this work could indeed facilitate both model

comparisons and the construct of generic models. We consider

an integrated reaction-based database to be a useful tool in

biological modeling to address questions which could be better

Figure 5. The numbers of bistable models obtained for different phosphorylation rates (horizontal axis). (a) Absolutely bistable models
(Bistability.9.5); (b) Bistable models (Bistability.1.5).
doi:10.1371/journal.pone.0054441.g005
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understood through generic models pulling out from models

focusing on specific systems rather than through the system-

specific models themselves. Such questions may include the

complex interplay and causal relations between topology,

concentration constraints, kinetic rates and dynamics of

biological networks.
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