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Abstract
As our thinking about the basic principles of biology and medicine continue to evolve, the
importance of context and regulatory interaction is becoming increasingly obvious. Biochemical
and physiological components do not exist in isolation but instead are part of a tightly integrated
network of interacting elements that ensure robustness and support the emergence of complex
behavior. This integration permeates all levels of biology from gene regulation, to immune cell
signaling, to coordinated patterns of neuronal activity and the resulting psychosocial interaction.
Systems biology is an emerging branch of science that sits as a translational catalyst at the
interface of the life and computational sciences. While there is no universally accepted definition
of systems biology, we attempt to provide an overview of some the basic unifying concepts and
current efforts in the field as they apply to illnesses where brain and subsequent behavior are a
chief component, for example autism, schizophrenia, depression, and others. Methods in this field
currently constitute a broad mosaic that stretches across multiple scales of biology and
physiological compartments. While this work by no means constitutes an exhaustive list of all
these methods, this work highlights the principal sub-disciplines presently driving the field as well
as future directions of progress.
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1. Introduction
The prevalence of behavioral and psychiatric disorders is increasing, and with it the cost to
society. Currently, 5.4 million Americans have Alzheimer’s disease requiring $200 billion in
care, with the prevalence of this disease expected to double by 2050 (Alzheimer’s

© 2012 Elsevier Inc. All rights reserved.
1Corresponding author Div. of Pulmonary Medicine, Dept. of Medicine, University of Alberta WMC 2E4.41 WC Mackenzie Health
Sciences Centre 8440 - 112 Street, Edmonton AB T6G 2R7, Canada Ph: +780.492.1633 Fax: +780.407.3027
gordon.broderick@ualberta.ca.
Authors’ contributions All authors contributed equally to this work.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Brain Behav Immun. Author manuscript; available in PMC 2014 March 01.

Published in final edited form as:
Brain Behav Immun. 2013 March ; 29: 1–8. doi:10.1016/j.bbi.2012.09.008.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Association, 2012). Autism now affects 1 in 88 children (Wingate et al., 2012) at an
estimated annual cost of $60 billion (Järbrink and Knapp, 2001). An even more poorly
understood illness, Chronic Fatigue Syndrome/ myalgic encephalopathy (CFS/ME), is
estimated to affect 800,000 Americans and cost the US economy approximately $9.1 billion
in lost productivity and up to $24 billion dollars in health care expenditures annually (Jason
et al., 2008). Clearly, the individual suffering, loss of social function, and economic cost
caused by these conditions present a significant societal burden, however resolution of these
illnesses is anything but simple. In a clinical setting, the classification of behavioral and
psychiatric disorders remains one of the foremost challenges (Bousman and Everall, 2011).
Individuals with the same disorder often present with a broad constellation of symptoms.
Likewise individuals presenting with the same symptom profile may be suffering from
disparate diseases. This biological complexity creates significant challenges for standard
illness classification frameworks such as the Diagnostic and Statistical Manual of Mental
Disorders (DSM-IV) (American Psychiatric Assoc., 1994) and the International
Classification of Diseases (ICD-10) (World Health Org., 1992). Discovery of the molecular
features that underlie these pathologies is desperately needed however in many if not most
cases no single marker or identifiable lesion has been found that reliably supports screening
and diagnosis of these conditions.

Reductionist approaches have and continue to serve us well on several fronts however the
very breadth of symptoms and their inter-dependency pose significant challenges to this
piece-wise approach. In illnesses where dysfunction spans across several of the body’s main
systems the issue of breadth of coverage is critical if we are to examine markers in the
proper biological context. The rise of “omic” research (genomic, proteomic, metabolomic
etc…) has lead to a rapid increase in our ability to collect and store much more
comprehensive snapshots of biological processes. Indeed more data can now be collected on
a single process in a year, than has been gathered over the course of scientific history
(Chuang, Hofree and Ideker, 2010). Yet despite the growing mass of data describing
genotypic variation, transcription, translation, and enzymatic biochemistry, little is known of
how these elements give rise to disease and their behavioral symptoms. Clearly breadth is
not sufficient and it may well be perceived as overwhelming by most, leaving us data rich
and knowledge poor. However is omic data as high-dimensional as it appears? Biological
markers are not expressed independently but instead manifest according to patterns that arise
at least in part from the critical property of robust design.

A first contributor to biological robustness is partial redundancy of the components
themselves. For example genes with overlapping functions will be able to compensate for
one another. A second source of robustness has its origin in the interactions linking
components with distinct but complementary functions. These interactions are dictated by
the structure of the overarching regulatory network (Barabási et al., 2011). At a given point
in time, the end result is that the number of fundamental processes regulating the changes
observed in broad sets of markers will typically be much smaller than the list of parts. Feala
et al., (2012) estimate that the number of controllers in a typical biological network will be
less than 10% of the total regulatory targets. Importantly, this active subset in a much larger
network will change over time giving rise to complex dynamic behavior (Hanel et al., 2012).
Understanding these system-wide relationships, how they evolve over time and the emergent
behaviors they support is essential if we are to formulate and test clinical hypotheses in any
but the simplest of pathologies. This is the aim of systems biology as we define it in this
work. With this in mind, our aim in this review was not to be inclusive, but rather to provide
a representative overview of the various dimensions of systems biology and the challenges
faced with an emphasis on applications in the realm of behavioral medicine.
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2. Interaction: the connective fabric of biology and emergent behavior
The nature of biology is that of a holistic system. Like words in a language, the actions and
effects of biological components are dependent on the context within which they occur.
Systems biology in its simplest form can be described as an integrative science.
Fundamentally it is directed at the identification of organizing principles that govern the
context-specific emergence of function from the interactions that occur between constituent
parts (Broderick and Rubin, 2006; Chuang, Hofree and Ideker, 2010). Our current
understanding suggests that many of these principles appear to be conserved across scales of
biology. An important and popular example is the small-world or scale-free topology of
biological networks whereby the number of highly connected nodes decreases according to a
power law. This typically results in sparsely connected networks that are governed by a
small number of highly influential nodes. This pattern of interactivity is a defining feature of
network architecture; one that reaches from the regulation of genes within a cell to the social
interaction between individuals (Barabási, 2009). Indeed this applies broadly to network
nodes representing the concentration of an individual mRNA species to the activity an
individual cell phone subscriber and where associations between nodes can represent a
chemical bond or a telephone conversation. This pattern of interactivity is a defining feature
of network architecture; one that reaches from the regulation of genes within a cell to the
social interaction between individuals (Barabási, 2009). It is important at this point to
distinguish clearly between scale-free topology of anatomical and biochemical association
networks and scale invariance with respect to temporal dynamics. These are essentially
independent properties that must not be mutually confused. Interestingly it is now well
established that intrinsic brain activity is arrhythmic and manifests scale-free temporal
dynamics, where the contribution or power at a specific frequency decreases according to a
power law at rest (Ciuciu et al., 2012). Deviation from this bias towards persistent long-term
associations occurs during certain tasks but has also been observed at rest in conditions such
as Alzheimer’s disease (Maxim et al., 2005).

With interactivity being so pervasive in biology it follows that a physiological disturbance
cannot be fully understood in terms of localized components alone, but must also be realized
in the context of the entire system. The vast majority of research in the area of behavioral
and psychiatric disorders has focused on the brain. However, to effectively address the
growing epidemic of “brain diseases” the metabolic, nutritional, and environmental
influences that exert effects on the brain must also be considered (Hyman, 2007). It is from
this very interactivity and its fluidity in biology that complex behavior emerges. The first
obvious examples of this phenomenon can be found in the generation of organ structure and
function from cell interaction during embryological development (Setty et al., 2011). This is
not limited to the emergence of structure but extends to complex dynamic behavior. Indeed
it can be shown mathematically that interactivity between even a small number of
components can lead to the existence of multiple regulatory modes. Examples of complex
dynamic behavior include the emergent and context-dependent selection of cell fate (Hanel
et al., 2012), immune cell population dynamics (Almeida et al., 2012) and bifurcation in
immune response (Reynolds et al., 2006). Perhaps more complex still is the concept of
emergence of consciousness from the large-scale interaction of neurons (Greenfield and
Collins, 2005). Though we are increasingly aware of the relevance of these properties of
biological systems to illness pathology their use in practice remains limited and focused
primarily on the integration of elements that co-exist at the same scale, within specific
physiological compartments and systems.
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3. Linking parts within scales and compartments of biology
A natural consequence of interactivity and regulation is that biological markers will present
in specific patterns of expression that reflect the underlying recruitment and instantiation of
an active regulatory structure. Examining the structure of these co-expression patterns has
the potential to enhance our diagnostic resolution by enforcing context (de la Fuente A.,
2010). This was recognized early in the social and behavioral sciences where extensions of
classical statistics were applied to identify symptom constructs. For example Schröder et al.
(1992) applied common factor analysis (CFA) to isolate and describe patterns of symptom
association and their relation to neuro-imaging results in the establishment of sub-types of
schizophrenia. More recently similar statistical methods have been used to identify
constructs that distinguish patient sub-groups based on clinical presentation in a complex
and poorly understood illness: chronic fatigue syndrome/ myalgic encephalomyelitis (CFS/
ME) (Aslakson et al., 2006). Methods such as these that are based on singular value
decomposition (SVD) essentially capture patterns of linear correlation between markers that
exist at distinct levels of resolution and that can be superimposed to reconstruct the original
data. Another related method, independent component analysis (ICA), was applied recently
to construct inter-regional networks of brain activity serving as cerebral correlates of
cognitive deficits in schizophrenia (Nygård et al., 2012). Association networks can also be
constructed using more sophisticated and sensitive measures of similarity. For example
information theoretic measures such as mutual information (MI) have been used to map non-
linear associations between transcription factors and their mediators in the context of
oncogenesis (Sumazin et al., 2011) and schizophrenia (Torkamani et al., 2010). An
important caveat to this remains the multiplicity of active regulatory configurations that can
lead to similar if not identical symptom presentation. It might be more appropriate therefore
to refer to families of biomarker association networks and the properties these networks
might share when discussing diagnostic applications or illness fingerprinting.

Though informative, the analysis of associations existing at rest does not make it possible to
infer the direction of flow of regulatory information. To make use of such cause and effect
relationships one can first draw on known biochemical dependencies such as those encoded
in pathway databases like Ingenuity Pathway (Ingenuity Systems, www.ingenuity.com) or
the NCI/Nature Pathway Interaction Database (PID) (Schaefer et al., 2009). For example
Guo et al. (2010) used regulatory associations documented in the Ingenuity Pathways
database to identified feed-forward elements in the microRNA-transcription factor (miRNA-
TF) regulatory networks that were enriched in schizophrenia. The limiting factor in this
approach remains coverage of the actual regulatory network of interest. It is safe to say that
a significant number of regulatory associations remain to be discovered. In these cases
temporal precedence must be used as a proxy to infer causality. Empirical linear
autoregressive models have been applied to describe the evolution of EEG recordings from
patients in a minimally conscious state (MCS) from patients with severe neurocognitive
disorders (SND) that show some signs of awareness (Pollonini et al., 2010). More recently
the same approach has been applied to study the directed networks that emerge in traumatic
brain injury (TBI)(Leon-Carrion et al., 2012). These examples represent an important step
forward in that we are now examining illness in the context of altered regulatory circuitry.
More ambitious and detailed models are now being constructed that extend the identification
of the type of input-output associations to more complex model forms such as formal Hill
kinetics (Schmidt et al., 2011). Similarly, added regulatory structure is also being applied to
this analysis by re-organizing these networks into assemblies of formal feedback and feed-
forward control elements or motifs (Alon, 2007). With few exceptions, the majority of these
analyses is conducted at the level of the genome, the proteome or between coarsely defined
anatomical compartments. Moreover, topological architecture is being compared between
networks constructed for a priori defined clinical groups with the aim being one of
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identifying illness-specific network features such as local changes in connectivity and the
appearance of hub transcripts or proteins (Fuite, Vernon and Broderick, 2008a). This is a
static analysis and there is little if any direct consideration of the subsequent dynamical
modes supporting the emergence and exacerbation of symptoms, be they sustained or
episodic in illnesses such as multiple sclerosis (Vergelli et al., 2001) and chronic fatigue
syndrome (Aschbacher et al., 2012). Even directed graphs that encode this dynamic
information are still compared in terms of their structure, for example motif frequency,
rather than the dynamics of information flow that they describe (Frankenstein, Alon and
Cohen, 2006).

4. From connectivity to complex behavior and alternate homeostatic
programs

Connectivity drives emergent behavior and vice versa. Indeed even without information
regarding the kinetics of the processes in question Mendoza and Xenarios (2006) have
shown that number and type of stable homeostatic states available to a regulatory system can
be identified based on connectivity alone. This is an important result linking network
structure to dynamic behavior. It is especially meaningful when one considers that the
availability of dynamic parameters values describing in vivo kinetics is extremely limited
however we have a much more substantial knowledge base of the regulatory connectivity
from basic biochemistry and physiology (vasculature, innervation patterns, etc…). This
analysis has been applied to understanding the dynamic properties of T helper (Th) cell
immune regulation and is now being applied at a broader scale by our team to investigate the
multi-stability of immune-neuroendocrine interaction as it applies to Gulf War Illness
(GWI), building on previous work (Broderick et al., 2011). Though connectivity is a
powerful determinant of system dynamics, the kinetic parameters are still required if one is
to resolve behavior at so-called saddle points that separate regions of homeostatic stability
(attractors). At the very least relative rates are required to obtain a realistic description of the
transition states and the paths available to recover from a disturbance or migrate to an
alternate homeostasis.

Such formal rate equation models were pioneered in early work on the dynamics of immune
response to infection, giving rise to a new field called mathematical immunology (Perelson,
2002). Cytokines interact with neurons (Dustin, 2012) to produce a constellation of signs
and symptoms known as ’sickness behavior’ (Tracey, 2010). Inflammation itself affects
multiple behaviors including sleep, pain, appetite, cognition (learning and memory, or even
chemo-brain), and plays a significant role in diseases such as depression, autism and
schizophrenia (Khansari and Sperlagh, 2012). A basic understanding of the complex inner-
workings of the immune system moves us one step closer to integrating sickness behavior
symptoms with what we know about physiology. Using a simple continuous model of
effector cell, self and pathogen interactions, Segal and Bar-Or (1999) captured key
fundamental properties of immune feedback dynamics and demonstrated how multiple,
potentially conflicting, goals are managed over time to favor the most appropriate response
to a pathogen. More recently Reynolds et al. (2006) include immune response to cortisol to
describe the effects of ant-inflammatory signaling on the geometry of stable homeostatic
attractors during infection and sepsis. Investigations such as these draw on a rich foundation
of differential equation methodology where the molecules, cells, etc… are distributed in
space as an uninterrupted field and the changes in their concentration across time are
assumed continuous in nature. While this framework is a powerful tool for exploring
biological complexity there are limits to representing biology as dilute, well-mixed
continuous systems. These large-scale population dynamics emerge from the collective
behavior of individual cells enacting, what has been modeled by some as a discrete
decisional logic. For example, spatial competition for antigen presentation in the thymus
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was demonstrated to be a key factor in T cell development using a discrete model (Efroni,
Harel and Cohen, 2007). Only by using mathematical agents to represent individual cells
was it possible to identify this effect; a result that was hiding beyond the resolution of
continuous field equations. The property of emergent complexity is especially relevant to
understanding the physiological mechanisms and events that drive the appearance of
behavior. As with T cell development the emergence of human behavioral patterns will
almost certainly lie beyond the grasp of field equations.

In much the same way, populations of neurons and their activity have been summarized over
regions of the basal ganglia-thalamocortical system by sets of mean field equations and have
successfully captured many of the key electrophysiological correlates of Parkinson’s disease
(PD) (van Albada et al., 2009). More recently still, a lumped model of the continuous
dynamics of superficial and deep pyramidal cells in the neocortex has been used to explore
stable dynamic modes in this system and rapid transition (bifurcation) between these modes
as they might relate to the onset of epileptic episodes (Visser et al., 2012). However, because
of the nature of the brain as a biological compartment (tissue versus circulatory media) and
the availability of spatial as well as temporal data, dynamic models of this organ have
evolved methodologically along a different path. Perceived from the outset as computational
engine, models of the brain have been inspired strongly by electrical circuit theory.
Networks of logical switches, oscillators and other circuit-like components represented as
nonlinear rate equations were used in early models to describe neural dynamics such as
those responsible for odor recognition and discrimination (Skarda and Freeman, 1987).
Increases in high-performance computing power have made it possible to create large-scale
networks of interacting discrete agents. For example, Kumar et al., (2011) simulated a
network of 3,000 leaky-integrate-and-fire (LIF) model neurons, of which 1,000 excitatory
neurons were assigned to the sub-thalamic nucleus (STN) population and the remaining
2,000 inhibitory neurons to the globus pallidus external (GPe) population, and realistically
modeled the effects of dopamine loss in Parkinson’s disease on firing rate.

Models of these systems extend inward to the level of intracellular pathway networks,
biochemical reaction kinetics and even molecular binding; exchanging broad but coarse
coverage of cellular processes for very detailed but focused descriptions. At one end of the
spectrum, large-scale methods are being developed to recover organism-wide metabolic
regulatory reaction kinetics (Schmidt et al., 2011) from experimental data. At the opposing
end of the spectrum, Craddock et al., (2012) used computational molecular dynamics
combined with pharmacokinetic modeling to describe β-amyloid-induced alterations in zinc
concentration and its potential effects on neuronal microtubule stability and the molecular
dynamics of cognition in Alzheimer’s disease. Similarly detailed representations of immune
signal transduction have been constructed showing the importance of the cytoskeleton in
sequestering excess inhibitors, therefore regulating steady-state and feedback behavior of
NF-κB activation (Pogson et al., 2008). A more comprehensive review of these different
methods and their application to models of the immune system is presented in Kim et al.
(2009).

5. Bridging across systems from molecule to phenotype
Though informative in their own right, these model systems remain for the most part
separated by scale in both time and space (Ridgway et al., 2006) as well as by physiological
compartments. Efforts to integrate vertically across scales from molecular biology to
function and behavior face several challenges and remain limited at present. Genetic studies
have shown that functionally related causative genes support similar clinical phenotypes, be
it through expression of a single protein or an entire network of protein interactions. On this
basis, integrative methods are being developed to consolidate human protein–protein
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interactions, disease phenotype similarities, and known gene–phenotype associations to
elucidate the genotype-phenotype interplay. One such method, the prioritization and
complex elucidation (PRINCE) algorithm, works to infer novel causal genes via a
prioritization function, which integrates protein-protein interaction (PPI) information with a
disease similarity metric to score the strength-of-association of proteins with a disease of
interest (Vanunu et al., 2010). Application of this algorithm to Alzheimer’s disease inferred
the major genes previously associated with the disease and several novel candidates not
previously identified, suggesting avenues for further research. This class of methods allows
for the identification of causative genes from pre-existing phenotypic information. However,
the reverse is also true. Using a bi-random walk (BiRW) algorithm, phenotype-gene
association network patterns in circular bigraph format have been utilized to yield the
associations between disease phenotypes and genes (Xie, Hwang and Kuang, 2012). This
method identifies and quantifies an enrichment of “behavior”, “synaptic transmission”, and
“transmission of nerve impulse” by the causative genes of psychiatric diseases. Similarly, in
a bioinformatics-based study metadata was collected from genome-wide association studies
(GWAS), genome-wide copy number variation (CNV) studies, linkage analyses, low-scale
genetic association studies, expression profiling and other low-scale experimental studies
and used in a scoring and ranking approach to select a core ensemble of 434 high-confidence
genes associated with Autism (Xu et al., 2012). The genes identified corresponded to
pathways that included neuroactive ligand-receptor interaction, synapse transmission and
axon guidance; highly relevant processes. Methods such as these are capable of linking the
genome to the phenome, identifying potential causal genes for specific phenotypic
symptoms where previous genetic information is unknown. Conversely, where the genetic
markers for behavioral and psychiatric disorders are known these methods serve to identify
key areas where causal genes may affect behavior, albeit the resolution is vague. Though
useful in supporting biomarker discovery, these methods produce relatively coarse
associative models. Because of their generic structure and the significant gap in biological
scale separating gene from behavioral trait these methods yield little of the illness
mechanisms and how best to intervene therapeutically. To gain a more complete insight into
how genetic changes promote illness mechanisms and affect brain function another level of
understanding must be integrated into the framework.

A truly integrative model would adhere to the hierarchy and structure of biology and
formally represent the intermediate levels of regulation. Vertical integration is an exercise in
abstraction or progressive coarse-graining and can be directed from known biology in a top-
down fashion or inferred from data using basic organizing principles in a bottom-up
approach (Figure 1). The practical implications of this integration are several-fold. First, the
concurrent profiling of marker expression across levels of biology provides an internal
validation for each of these assays. For example, strong correlation linking changes in
protein expression with changes in transcript abundance would help support the validity of
both measurements. Second, a study of the path linking immune cell transcript abundance
with changes in cell populations, the expression of signaling proteins and ultimately
symptom exacerbation might help one distinguish between processes central to an illness
and those that might be more peripheral or secondary. Useful as it may be, the true
underlying biological structure is often unknown and must be inferred. A host of statistical
methods have evolved from network theory with the objective of indentifying modular
assemblies with potential functional bias in large-scale co-expression networks. Based
primarily on the distribution of network connections, Winden et al. (2011) recently
identified gene co-expression modules in transcriptomic data from an animal model of
temporal node epilepsy. One of these module contained genes upregulated in the
epileptogenic region, including multiple epileptogenicity candidate genes, and was found to
be involved the protection of glial cells against oxidative stress. We have applied a similar
approach, adjusting formally for network size and prior probability of occurrence, to isolate
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functionally related immune signaling modules from cytokine profiling of patients with
chronic fatigue syndrome (Broderick et al., 2010) (Figure 2). More recently efforts have
been made to enrich these data driven methods by guiding the search for functional modules
using motifs based on feed-forward and feedback control elements. Yeger-Lotem et al.,
(2004) found that cellular regulation in yeast may be governed by assemblies of small
network motifs, in particular a two-protein motif defining a mixed-feedback loop involving
both transcription– regulation and protein-protein interaction. Methods such as these
introduce structure in the form of generic features and remain exploratory in nature. That is
after all their intended role. Unfortunately these purely data-driven methods continue to be
used even when knowledge of the underlying physiology and biochemistry exists.

In many cases a first step in exploiting existing knowledge of the system may consist of
simply enforcing anatomical structure. Honey et al. (2007) proposed a computational
approach that relates the features of measured spontaneous cortical dynamics to the
underlying anatomical connectivity. Their model captured nonlinear neuronal dynamics
spanning large-scale interregional connections of the macaque neocortex, yielding new
insight into structure-function relations at multiple temporal scales in the brain. In a similar
fashion Efroni et al. (2007) developed a novel approach for the analysis of gene expression
data that exploits our current knowledge of pathway topology and biochemical function. The
latter estimate discrete activation states for individual genes from expression data and
project these onto the regulatory logic of known pathways to produce a relative estimate of
pathway activation. Translation into discrete logic is a powerful avenue now being used by
many as a framework for traversing scale and incorporating additional biological structure in
computational models.

As processes are aggregated at higher scales a model inevitably extends beyond the limits of
the biological components initially under consideration to adjacent interacting systems.
Integrating vertically requires concurrent horizontal integration. For example the nervous,
endocrine and immune system are tightly coupled and constitute what many have called an
overarching regulatory super-system (Figure 1). The hypothalamic-pituitary-adrenal (HPA)
axis occupies a central position at the interface of these three systems. It is one of the
principal and better-known information trunks by which behavior mediates biology (Antoni
et al., 2006) and biology mediates behavior (Kelley and Dantzer, 2011). Although
connectivity of this axis across systems is well-documented mathematical models of the
HPA axis continue to focus solely on the feedback of cortisol to the hypothalamus and
pituitary (Vinther, Andersen and Ottesen, 2011). Simple models such as these have
nonetheless served to demonstrate the potential association between altered HPA regulatory
dynamics and behavioral pathology in chronic fatigue syndrome and fibromyalgia
(Aschbacher et al., 2012). As the HPA axis does not operate in isolation, aggregating the
effects of interaction with adjacent systems, in particular the immune system, leads to the
loss of mechanistic understanding and limits insight into specific avenues for intervention to
only general and abstract statements. In addition, important aspects of the dynamic behavior
are obscured. In our current efforts we are finding that the inclusion of even coarse models
of the adjacent immune and sex hormone axis reveal stable modes of homeostatic regulation
with characteristics that align with chronic symptoms in Gulf War Illness and chronic
fatigue syndrome. Even the inclusion of glucocorticoid receptor dynamics has shown
alignment of clinical data with bifurcation of HPA dynamics in PTSD and depression
(Sriram, Rodriguez-Fernandez and Doyle, 2012). In fairness, a limiting factor in these
efforts is our recent and still growing knowledge of the avenues of interaction between the
brain and the immune and endocrine systems (Dustin, 2012). Certainly the availability of
kinetic parameters describing these interactions will continue to be limited even as our
understanding of the molecular biochemistry of signaling grows. This is the case for many if
not the majority of human physiological processes at this time.
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6. Synopsis and future perspectives
Unlocking the fundamental molecular mechanisms of measureable symptoms can propel our
understanding of the brain-body connection in its entirety, and potentially offer a substantial
advance in the diagnosis and treatment of behavioral and psychiatric disorders. While, many
of these diseases are highly heritable, progress in decisively determining the genetic changes
associated with specific symptoms has been slow. A major obstacle has been the inherent
difficulty in identifying behavioral measures that are concisely defined, yet compatible with
high-throughput genetic association studies. Yet this is not the only difficulty. As our
understanding of biology continues to grow, so does our appreciation of the critical
importance of context, interaction and the dynamics of regulation. The behavior that
emerges from these regulatory interactions can only be observed by collecting the parts to
create a broader more comprehensive view. Systems biology is by definition an integrative
science. It seeks to uncover the basic organizing principles that direct the emergence of
complex behavior from the interactions between component parts. This integration is not
without its challenges as biological processes are separated across multiple scales of time
and spatial resolution as well as across physiological compartments. For these reasons, most
current models encompass small to moderate scales of physiology. Moreover the association
of molecular and cellular models with organism level pathologies is done almost solely
through stratification of patient cohorts and their assignment to discrete clinical classes.
Indeed in clinical psychiatry, the most daunting challenge consists in the translation of
system-wide relationships amongst biological components into cognitive behavior, where
cognition itself is a property that emerges from indirectly linked organizational hierarchies
that can and do evolve over time (Greenfield and Collins, 2005). Nonetheless these models
and the methods with which they are constructed continue to evolve, as does our computing
power. This progress will only be further catalyzed by the development of frameworks that
combine multiple mathematical formalisms, each optimally supporting the level of
biological knowledge available to describe a specific sub-system at a specific scale (Figure
3). Formal methods exist to aggregate the collective dynamics of populations of discrete
cells into local field equations producing significant gains in computational tractability
(Raghib, Levin and Kevrekidis, 2010). Such field equations can be further abstracted and
expressed as a time-delayed regulatory logic (Mendoza and Xenarios, 2006) to reconcile
intracellular signaling, metabolic, and regulatory networks across time scales (Lee et al.,
2008). The drive to seamlessly combine these and other methods into a comprehensive but
computationally efficient framework is perhaps the biggest challenge in the field currently
but may also deliver the largest rewards (Dada and Mendes, 2011).
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Research Highlight

Integrative systems biology is becoming a key enabler in understanding complex
illnesses of the nervous, endocrine and immune systems where context is critical.
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Figure 1. A science of integration and emergence
High throughput technologies are now available to produce comprehensive molecular
profiles of the genome, the transcriptome, the proteome and the metabolome (metabolites).
Systems biology provides a framework to model and infer molecular interactions and their
organization into pathways, and subsequently into signaling networks at the cellular, tissue
and organ system levels (endocrine, brain/nervous and immune systems). Interactions
among these body systems give rise to phenotypic changes that correlate with observable
pathologies (top) such as sickness behavior, depression, etc…. Likewise, modifications to
behavior as a result of external stressors can modulate the balance of cellular and
intracellular signaling.
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Figure 2. Emergent and fluid modularity of biology
Networks were constructed for linking N=37 markers of immune and neuroendocrine status
in patients with chronic fatigue syndrome (CFS) and in healthy control subjects. Inferring
coherent modules on the basis of network topology (network modularity M) (Broderick et
al., 2010), cohesive modules were found that formed coarse networks of N=13 and N=5
aggregate nodes in CFS. In contrast only one coarse network of N=8 aggregate nodes was
found in healthy controls. This aligned with a top-down aggregation of N=10 organ-specific
nodes based on known anatomical annotation (Fuite, Vernon and Broderick, 2008a, b).
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Figure 3. A mosaic of model forms
As biological processes build upon one another from the molecular to the cellular, from
organs to organ systems, the degree of resolution necessary to support a realistic
representation of the biology will be optimally supported by different mathematical
formalisms. These will range from molecular dynamics models (MD), which capture
chemical binding with atomic resolution, to agent-based models (ABM) where mathematical
automata can be used to represent populations of cells (e.g. embryogenesis) or even
populations of individuals (epidemiological simulations).
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