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Abstract: Acute myelogenous leukemia (AML) can progress quickly and without treatment can become fatal in a 
short period of time. However, over the last 30 years fine-tuning of therapeutics have increased the rates of remis-
sion and cure. Cytogenetics and mutational gene profiling, combined with the option of allogeneic hematopoietic 
stem cell transplantation offered in selected patients have further optimized AML treatment on a risk stratification 
basis in younger adults. However there is still an unmet medical need for effective therapies in AML since disease 
relapses in almost half of adult patients becoming refractory to salvage therapy. Improvements in the understand-
ing of molecular biology of cancer and identification of recurrent mutations in AML provide opportunities to develop 
targeted therapies and improve the clinical outcome. In the spectrum of identified gene mutations, primarily targe-
table lesions are gain of function mutations of tyrosine kinases FLT3, JAK2 and cKIT for which specific, dual and 
multi-targeted small molecule inhibitors have been developed. A number of targeted compounds such as sorafenib, 
quizartinib, lestaurtinib, midostaurin, pacritinib, PLX3397 and CCT137690 are in clinical development. For loss-of-
function gene mutations, which are mostly biomarkers of favorable prognosis, combined therapeutic approaches 
can maximize the therapeutic efficacy of conventional therapy. Apart from mutated gene products, proteins aber-
rantly overexpressed in AML appear to be clinically significant therapeutic targets. Such a molecule for which tar-
geted inhibitors are currently in clinical development is PLK1. We review characteristic gene mutations, discuss their 
biological functions and clinical significance and present small molecule compounds in clinical development, which 
are expected to have a role in treating AML subtypes with characteristic molecular alterations.
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Introduction 

Acute myelogenous leukemia (AML) can prog-
ress quickly and without treatment can become 
fatal in a short period of time. However, over 
the last 30 years fine-tuning of therapies and 
therapeutic schemes have increased the rates 
of remission and cure [1]. Currently certain 
karyotype abnormalities and gene mutations 
are being taken into consideration to guide 
treatment and in particular the therapeutic use 
of allogeneic hematopoietic stem cell trans-
plantation in non-elderly patients. However, 
AML remains incurable for a significant propor-
tion of adult patients [2-4], while no viable ther-
apeutic option exists for patients with relapsed 
and refractory AML [5]. In this context it is cru-
cial to develop novel targeted therapies that 

could improve the clinical outcome in subsets 
of AML [6].

A better understanding of the molecular basis 
of cancer during the last two decades has con-
tributed to the development of drugs that target 
protein products of mutated or chimeric genes, 
which are linked to various cancers [7-9]. Pivotal 
example of small-molecule kinase inhibitors 
that bind to driver oncoprotein and block its 
function on a potentially curative intent are the 
BCR–ABL kinase inhibitors, in use for chronic 
myeloid leukemia (CML) [10]. Acute 
Promyelocytic Leukemia (APL) is another exam-
ple where effective targeted therapies, such as 
all-trans retinoic acid (ATRA) and arsenic triox-
ide are used and can reinstall differentiation of 
leukemic promyelocytes by targeting the culprit 
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PML-RARa fusion protein [11, 12]. However, in 
non-APL AML, despite the identification of a 
handful recurrent chimeric genes and gene 
mutations, development of targeted therapies 
has been notably sluggish. Here we review 
characteristic gene mutations, discuss their 
biological functions and clinical significance 
and present small molecule compounds in clini-
cal development, which are expected to have a 
role in treating non-APL AML subtypes with 
characteristic druggable mutations.

Gene mutations of good prognosis

NPM1 mutations in AML (NPMc+ AML)

Nucleophosmin (NPM1) is a ubiquitously 
expressed phosphoprotein that belongs to the 
nucleoplasmin family of nuclear chaperones. It 
is encoded by the NPM1 gene located at 
5q35.1 that produces 3 isoforms through alter-
native splicing, of which NPM1 (or nucleolar 
phosphoprotein B23.1) is a 294-amino acid 
[13, 14]. NPM1 is a pleiotropic nucleolar pro-
tein that shuttles across cytoplasm and nucleo-
plasm and regulates among others centrosome 
maturation and the ARF/p53 pathway [15-18].

NPM1 protein as a product of mutated or fused 
NPM1 has been associated with certain blood 
cancers. In Anaplastic Large Cell Lymphoma 
(ALCL) the t(2;5) translocation results to NPM1–
ALK fusion oncoprotein, which anchors to cell 
cytoplasm and is detected with antibodies 
against the NPM1 N-terminus [19]. In 2005, it 
was first discovered that about 35% of adult 
AML had aberrant nucleophosmin expression 
in leukemic cell cytoplasm, as a result of NPM1 
gene insertions at exon-12 [20]. In about 80% 
of AML with mutated NPM1, the mutation is a 
duplication of the 4-base sequence TCTG at 
positions 956-959 of the NPM1 gene, the so-
called mutation A, which results in a slightly 
longer protein with a different C-terminal ami-
no-acidic sequence [21]. These C-terminal 
changes are responsible for cytoplasmic local-
ization of the NPM1 leukemic mutants through 
generation of new nuclear export signal (NES) 
motifs and loss of the two tryptophan residues 
288 and 290 which cause the unfolding of the 
C-terminal domain and thus loss of binding 
capacity to the nucleolus [21, 22]. NPM1 muta-
tions may rarely occur at exon-9 and exon-11 
and these mutants also localize in the cyto-

plasm through the same mechanism that exon-
12 NPM1 mutants dislocate [23, 24].

Cytoplasmic mutant NPM1 contributes to AML 
development by inactivating p19Arf through 
delocalization of the tumor suppressor protein. 
This results in reduced p19Arf activities, both 
p53-dependent (Mdm2 and p21cip1 induction) 
and p53-independent (sumoylation of NPM). 
p19Arf stability is compromised when coupled 
with NPM1 mutant, which may lead to weaker 
control of the p53-dependent cell-cycle arrest 
[25, 26]. Mutated NPM1 bounds to NF-kappaB 
and dislocates it in the cytoplasm, leading to its 
inactivation. This inactivation of NF-kappaB is 
thought to be responsible for the high response 
rates of AML with NPM1mutant to chemothera-
py [27, 28] NPM1c+ (cytoplasmic positive) AML 
is closely associated with normal karyotype 
and represent a provisional entity in the WHO 
2008 classification.

NPM1 targeted therapy: There are two key 
points that prompt consideration of nucleo-
phosmin as a therapeutic target: a) NPM1 
mutation is one of the most common recurring 
genetic lesions in AML with a prevalence of 
27%-35% in adult AML and 45%-64% in adult 
AML with a normal karyotype and b) normal 
karyotype AML and the genotype ‘mutant 
NPM1 without FLT3-ITD’ carry a most favorable 
prognosis when treated with intensive chemo-
therapy [29-32]. This data indicate that NPM1 
mutation behaves as a founder genetic lesion 
in a fraction of AML patients, which makes it an 
attractive target for therapeutic intervention, 
primary aiming to increase chemotherapy effi-
cacy [33]. Interestingly it has been shown that 
the favorable outcome of chemotherapy in 
NPM1 mutated non FLT3-ITD AML can be 
improved by incorporating all-trans retinoic acid 
(ATRA) [34]. Moreover specific inhibitors of 
NPM1 oligomerization such as NSC348884 
may further sensitize leukemic cells of this gen-
otype to apoptosis when exposed to the ATRA 
plus cytarabine combination [35].

CEBPA mutations in AML

CCAAT/enhancer binding protein alpha (CEBP-
alpha, CEBPA) is an intronless gene located at 
chromosome 19q13.1 that encodes for a basic 
region leucine zipper (bZIP) transcription factor, 
which can bind as a homodimer to certain pro-
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moters and enhancers but can also form het-
erodimers with the related proteins CEBP-beta 
and CEBP-gamma [36]. CEBPA functions as key 
regulator of granulocytic differentiation [37].

CEBPA mutations contribute to leukemogene-
sis by promoting proliferation and blocking dif-
ferentiation of myeloid lineage [38, 39]. The 
two most frequent mutations are: a) N-terminal 
frame-shift mutations that truncate the p42 
form while preserving the p30 form which inhib-
its the remaining wild-type CEBPA p42 protein 
in a dominant-negative manner and b) 
C-terminal in-frame insertions or deletions that 
disrupt the basic zipper region, thus affecting 
DNA binding [40]. Most cases carry both types 
of CEBPA mutations: a N-terminal frame-shift 
mutation and a C-terminal in-frame mutation, 
with the two mutations typically being located 
on different alleles [41, 42].

CEBPA-mutated AML usually displays classical 
features of AML with or without cell maturation 
but some cases may show monocytic or mono-
blastic features. Myeloid-associated antigens 
HLA-DR and CD34 are usually expressed, as is 
CD7 in a significant proportion of patients. 
About 70% of cases have normal karyotype and 
approximately 25% carry concomitant FLT3-ITD 
mutations [43].

Prognosis of cytogenetically normal (CN)-AML 
patients with CEBPA mutations in the absence 
of an FLT3-ITD or NPM1 mutation, is favorable, 
similar to AML with inv(16)(p13.1q22) or t(8; 
21)(q22; q22) [43-45]. However only patients 
with double CEBPA mutations have favorable 
clinical course, whereas single CEBPA muta-
tions not only do they not differ from CEBPA 
wild-type patients but also they have a tenden-
cy toward high-risk FLT3-ITD mutations [46]. 
However, coexistence of NPM1 mutations with 
monoallelic CEBPA mutations was shown to be 
associated with prolonged survival in CN-AML 
patients [47]. Hereditary predisposition is a 
noteworthy point related to CEBPA. Germ-cell 
mutations appear to occur in 7% of patients 
with CN AML and myeloid precursor cells from 
healthy individuals carrying single germ-line 
CEBPA mutation may evolve to overt AML by 
acquiring a second sporadic CEBPA mutation 
[46, 48]. Adult AML with CEBPA mutation is 
also a provisional entity in the current WHO 
classification.

CEBPA targeted therapy: Restoring function of 
particular dysregulated transcription factors 
appears to be a reasonable target for novel 
therapeutic strategies in AML [49]. However, no 
therapies to restore CEBPA function in dysregu-
lated CEBPA CN-AML cases have been current-
ly developed.

Gene mutations of poor prognosis

FLT3 mutations in AML

FLT3 (Fms-like tyrosine kinase 3, CD135) is a 
member of class III tyrosine kinase (RTKIII) 
receptor family, which also includes c-FMS, 
c-KIT, and PDGFR. The FLT3 gene encodes a 
993–amino acid protein in humans, which is 
composed of an immunoglobulin-like extracel-
lular ligand-binding domain, a transmembrane 
domain, a Juxtamembrane dimerization domain 
and a cytoplasmic domain with a split tyrosine 
kinase motif. It is expressed in immature hema-
topoietic cells, placenta, gonads, brain, and in 
lymphohematopoietic organs such as the liver, 
spleen and the thymus [50].

FLT3 receptor exists in a monomeric unphos-
phorylated status and turns activated when 
bound by its FLT3 ligand (FL), which promotes 
its unfolding and homodimerization. 
Homodimerization of FLT3 switches on its tyro-
sine kinase activity and recruits a number of 
intracellular proteins [SHC proteins, GRB2, 
GRB2-associated binder 2 (GAB2), SHIP, CBL, 
CBLB (CBLB-related protein)] to its intracellular 
domain. Each protein becomes activated and a 
phosphorylation cascade starts resulting in 
activation of secondary mediators (MAP kinase, 
STAT, and AKT/PI3 kinase signal transduction 
pathways), which are transported to the nucle-
us by HSP90, where they regulate transcription 
of several genes, which participate in differen-
tiation, proliferation, and apoptosis [51, 52].

FLT3 expression in the normal bone marrow is 
restricted to early progenitors, including CD34+ 
cells with high levels of expression of CD117 
(c-KIT), and committed myeloid and lymphoid 
progenitors with variable expression in the 
more mature monocytic lineage [53]. It is also 
expressed at high levels in many hematologic 
malignancies including most of AML subtypes, 
B-precursor cell acute lymphoblastic leukemia 
(ALL), some T-cell ALLs, and CML in blast crisis 
[54, 55].
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Mutations of the FLT3 are of major clinical rel-
evance in AML because they commonly guide 
treatment decisions as independent indicators 
of poor prognosis [2, 3].

FLT3 internal tandem duplications (FLT3-ITD)

The most common mutation of FLT3 in AML is 
internal tandem duplications (FLT3-ITD). FLT3-
ITD results from a duplication of a fragment 
within the juxtamembrane domain coding 
region (encoded by exons 14 and 15) of FLT3. It 
is one of the most common mutations in hema-
tologic malignancies, occurring in CML (5–10%), 
MDS (5–10%), and AML (15–35%) patients 
[56]. Nakao et al. first described FLT3-ITD in a 
high proportion of patients with AML [56]. FLT3-
ITD is rare in infant AML, but increases to 5% to 
10% in age 5 to 10 years, 20% in young adults, 
and >35% in AML patients older than 55 years 
[57]. FLT3-ITD mutations vary in size and region 
of ITD involvement that ranges from 3 to more 
than 400 base pairs [58].

Segmental duplication of the Juxtamembrane 
(JM) domain of FLT3 promotes auto-dimeriza-
tion and autophosphorylation of the receptor, 
which turns it constitutively phosphorylated 
and activating AKT [59, 60]. Some of the effects 
of FLT3-ITDs are unique to the mutated recep-
tor: cellular proliferation of FLT3-ITD trans-
duced cells is mediated by RAS and STAT5 
pathways, while ligand-induced FLT3-WT acti-
vation does not lead to STAT5 activation and no 
STAT5 DNA binding [61].

FLT3 tyrosine kinase domain mutations (FLT3/
TKD)

Missense mutations have also been described 
in the activation loop domain of the tyrosine 
kinase of FLT3 (FLT3 activation loop mutation, 
FLT3/ALM, or FLT3 Tyrosine Kinase Domain 
mutation, FLT3/TKD) [62]. FLT3/TKD are the 
second most common type of FLT3 mutations 
found in 5-10% of AML and they can rarely co-
exist with FLT3-ITD. The majority of the FLT3/
TKD occur in codon 835 with a change of an 
aspartic acid to tyrosine (D835Y or Asp835Tyr), 
however, other point mutations, deletions, and 
insertions within codon D835 (Asp835) and its 
surrounding codons have been described [60, 
62-64] FLT3/TKD promotes ligand-indepen-
dent proliferation through autophosphorylation 
and constitutive receptor activation, similar to 

that of FLT3-ITD but there are significant bio-
logical differences between the two types of 
FLT3 mutations. They promote activation of dif-
ferent downstream effectors, and trigger differ-
ent biological responses [65, 66].

Prognostic significance of FLT3-ITD

Many large studies have shown that presence 
of FLT3-ITD is an independent prognostic factor 
for poor outcome in AML [63, 67]. Kottaridis et 
al [68] examined the prevalence and prognos-
tic significance of FLT3-ITD in a cohort of more 
than 850 adult AML patients. They found FLT3-
ITD in 27% of patients and confirmed previous 
studies showing that FLT3-ITDs were associat-
ed with leukocytosis and normal cytogenetics. 
In their study, AML patients with FLT3-ITD had a 
lower remission rate, higher relapse rate (RR), 
and worse survival. Multivariate analyses 
showed that FLT3-ITD was the most significant 
prognostic factor with respect to RR and dis-
ease free survival (DFS) [68]. In other studies, 
survival for patients with FLT3-ITD was 20% to 
30% compared to 50% for those without FLT3-
ITD and allelic variation (mutant to wild-type 
ratio) in patients with FLT3-ITD seemed to influ-
ence outcome. Various thresholds of FLT3/ITD 
allelic ratio established an allelic ratio thresh-
old that demarcated patients with FLT3-ITD at 
high risk of relapse [57]. Similar work in other 
studies has shown differences in clinical out-
come for those with differing allelic ratios [69].

FLT3 targeted therapies: FLT3 tyrosine kinase 
is thought to be the most reasonable targetable 
protein in AML [70, 71]. Several potent FLT3 
kinase inhibitors are currently in development 
for AML that harbors FLT3-ITD mutations and 
first results of FLT3 inhibitors in clinical devel-
opment have already produced encouraging 
and clinical relevant activity (Table 1) [71-73].

Sorafenib is one of the most extensively investi-
gated first generation FLT3 inhibitors. It has 
shown to specifically reduce the percentage of 
leukemia blasts in the peripheral blood (7.5% 
from 81%) and the bone marrow (34% from 
75.5%) of AML patients with FLT3-ITD but not in 
patients without this mutation [74]. It has also 
shown activity in FLT3-ITD-positive AML relaps-
ing patients after allogeneic stem cell trans-
plantation [75]. However, development of resis-
tance to TKIs is a well known therapeutic 
problem [76, 77] and in the case of FLT3-ITD+ 
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Table 1. Commonly mutated or aberrantly expressed genes in non-APL AML for which targeted drugs 
are being developed
Mutated 
Gene

Gene pruduct function Com-
pound 

Targets trial 
phas-
es

combinations Trials Registered 
Clinicaltrials.gov 
(Nov 2012)

Refs

FLT3 This gene encodes a tyrosine-protein 
kinase that acts as cell-surface receptor 
for the cytokine (fms-related tyrosine 
kinase 3 ligand) FLT3LG and regulates 
differentiation, proliferation and survival 
of hematopoietic progenitor cells and 
of dendritic cells. Activation of wild-type 
FLT3 causes only marginal activation of 
proliferation, and differentiation of hema-
topoietic cells in bone marrow. Mutations 
that cause constitutive kinase activity 
promote cell proliferation and resistance 
to apoptosis via the activation of multiple 
signaling pathways

Lestaur-
tinib

FLT3, JAK2 1,2,3 chemotherapy 4 active
4 completed

[89, 
211]

PLX3397 FMS, KIT & 
FLT3

1 none 1 active [96]

Quizar-
tinib 
(AC220)

FLT3, KIT, 
PDGFRA, 
PDGFRB, 
RET

1,2 chemotherapy 6 active
1 completed

[86]

Sorafenib FLT3, cKIT 1, 2 11 active
6 completed

[212-
215]

Midostau-
rin

Multiple 
kinases

1,2,3 ATRA, 
Bortezomib, 
azacytidine, 
decitabine, 
chemotherapy

9 active
4 completed

[90]

NPM1 A nucleolar phosphoprotein that shuttles 
across cytoplasm and nucleus and 
regulates centrosome maturation and 
the ARF/p53 pathway. NPM1 leukemic 
mutants are characterized by insertions 
that cause a reading frame-shift and 
result in a longer protein with a different 
C-terminal, which is responsible for loss-
ing the binding capacity to the nucleolus. 
This may contribute to leukemogenesis 
by inactivating p19Arf through delocaliza-
tion of the tumor suppressor protein and 
dislocating NF-kappaB to the cytoplasm. 

ATRA Induces 
p53 and 
p21

1 2 active [34]

PLK1 PLK1 is the most well characterized 
member of four serine/threonine protein 
kinases, which and strongly promotes 
the progression of cells through mitosis. 
PLK1 performs several important func-
tions throughout M phase of the cell 
cycle, including the regulation of centro-
some maturation and spindle assembly, 
the removal of cohesins from chromo-
some arms, the inactivation of ana-
phase-promoting complex/ cyclosome 
(APC/C) inhibitors, and the regulation 
of mitotic exit and cytokinesis. It plays a 
key role in centrosome functions and the 
assembly of bipolar spindles. It als acts 
as a negative regulator of p53 family 
members leading to ubiquitination and 
subsequent degradation of p53/TP53, 
inhibition of the p73/TP73 mediated 
pro-apoptotic functions and phosphoryla-
tion/degradation of BORA. During the 
various stages of mitosis PLK1 localizes 
to the centrosomes, kinetochores and 
central spindle. Plk1 is found aberrantly 
overexpressed in a variety of human can-
cers and in AML, correlated with cellular 
proliferation and poor prognosis.

Volasertib PLK1 1,2,3 chemotherapy 2 active [216]

BI 2536 PLK1 1,2 chemotherapy 1 completed [207]
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AML, it appears that stromal niche cells offer 
sanctuary to early leukemic stem/progenitor 
cells protecting them from eradication by first-
generation inhibitors [78]. Several investigators 
focus their attempts in developing strategies to 
prevent or reverse ‘acquired’ resistance to 
TKIs. Recent in vitro studies have shown that 
the anti-leukemic activity of TKIs can be 
increased when combined with the proapop-
totic small molecule Nutlin-3, which inhibits the 
MDM2/p53 interaction [79, 80]. Moreover fluv-
astatin, a drug in use for the treatment of hyper-
cholesterolemia, has shown potency to reverse 
resistance and increase activity of sorafenib 
[81, 82].

Upregulation of JAK2 in FLT3-TKI-resistant AML 
cells appears to be a potential mechanism of 
resistance to selective FLT3 inhibition [83, 84]. 
Second-generation potent multi-targeted FLT3/
JAK2 inhibitors are thought to address this 
important therapeutic issue. A number of such 
compounds, such as quizartinib, lestaurtinib 
and midostaurin are currently in early phases 
of clinical development.

Quizartinib (AC220) is such a second-genera-
tion FLT3 inhibitor, which exhibits low nanomo-
lar potency, good bioavailability and exception-
al kinase selectivity [85]. Early clinical results 
of quizartinib were promising. They showed 
meaningful reductions in marrow blasts in a 
substantial proportion of patients with both 
refractory and relapsed FLT3-ITD+ AML [86]. 
Lestaurtinib (CEP701) a dual FLT3 and JAK2 
inhibitor has shown activity as monotherapy in 
AML, but although it produced high remission 
rates, it failed to increase survival in combina-
tion with cytarabine and idarubicin in young 
patients with relapsed or refractory AML [87-

89]. Midostaurin (PKC412), a semi-synthetic 
multitargeted tyrosine kinase inhibitor, has 
demonstrated activity as monotherapy in 
patients with FLT3-mutant and wild-type AML 
and high complete response and survival rates 
when given in combination with standard che-
motherapy in newly diagnosed young adults 
with AML [90, 91]. Pacritinib (SB1518) is anoth-
er novel potent JAK2/FLT3 inhibitor, which has 
demonstrated promising activity and clinical 
benefits in refractory AML patents treated in a 
phase I trial [82]. Pacritinib in combination with 
pracinostat (SB939), an oral HDAC inhibitor 
showed synergy in reduction of tumor growth 
and JAK2 and FLT3 signaling [92]. Another oral 
multikinase inhibitor that has showed antileu-
kemic activity in preclinical models is TG02 that 
inhibits CDKs 1, 2, 7 and 9 along with JAK2 and 
FLT3 [93].

In addition more specific and potent anti-FLT3 
compounds such as PLX3397 and FLT3-Aurora 
kinase inhibitor CCT137690, are in early phas-
es of clinical development [94-96] and others 
such as DCC2036, CCT241736 have produced 
in vitro very promising data for the treatment of 
FLT3-ITD+ AML [97].

KIT mutations in core binding factor leukemia 
(CBF) AML 

Core-binding factor (CBF) AML patients when 
compared to other cytogenetic groups have a 
favorable prognosis, particularly when treated 
with high-dose cyrabine consolidation regi-
mens and do not require stem cell transplanta-
tion. However, relapses do occur and approxi-
mately 50% of patients with these cytogenetic 
abnormalities are alive at 5 years [98]. 
Mutations that have been found in this group of 

MLL The MLL gene (mixed-lineage leukemia) 
encodes a protein plays an essential role 
in early development and hematopoiesis 
by acting as a histone methyltransferase 
and transcriptional co-activator. Among 
others it activates aberrant trascription 
DOT1L, which is considered a driver of 
leukemogenesis

EPZ-5676 DOT1L 1 1 active [175]

JAK2 The Janus-kinase-2 gene (JAK2) encodes 
a non-receptor tyrosine kinase involved 
in relaying signals for hemopoietic cell 
growth, development and differentia-
tion crossactivated by type I/II cytokine 
receptors

Ruxolitinib JAK2 1,2 1 active [217]
Pacritinib JAK2, FLT3 1 1 completed [82]
Lestaur-
tinib (CEP-
701)

JAK2, FLT3 1,2 1 active
3 completed

[218]



Mutations and targeted therapies in AML

35 Am J Blood Res 2013;3(1):29-51

patients and have been correlated with adverse 
outcome are related to cKIT and JAK2 genes 
[99-101].

The c-KIT gene (stem cell factor) encodes for a 
tyrosine kinase with a structure similar to plate-
let growth factor and is expressed in hemato-
poietic progenitor cells and AML blasts [102]. 
Upon binding of the ligand stem cell factor to 
c-kit, phosphorylation of several cytoplasmic 
proteins occurs and pertinent downstream 
pathways get activated. Those include the JAK/
STAT pathway, the PI-3 kinase pathway and the 
MAP kinase pathway [103]. Mutations in c-KIT 
receptor result in constitutive phosphorylation 
and activation of the receptor in absence of the 
ligand. Mutations in the KIT and FLT3 genes are 
associated with unfavourable prognosis in AML 
patients with t(8; 21). In particular, patients 
with c-KIT mutated have been reported to have 
a higher incidence of relapse (80 versus 13.5%) 
and a lower 6-year progression free survival 
(PFS) compared to unmutated [104]. Patients 
with t(8; 21), but not those with inv(16) have a 
shorter relapse free survival when harbouring a 
mutated c-kit [105]. KIT mutation was recently 
found to be related to PFS in patients with 
inv(16) or t(16; 16) AML [106]. The prognostic 
impact of c-KIT mutations in patients with 
inv(16) remains controversial since some stud-
ies failed to establish a link [105], while others 
found that exon 8 mutations increased the 
relapse rate but did not affect overall survival 
(OS) [107].

KIT targeted therapies: Multi-kinase inhibitors 
imatinib and sunitinib beside their indications 
for the treatment of CML and renal cancer 
respectively, have also been licensed for the 
treatment of gastrointestinal stromal tumors, 
because they effectively inhibit mutated c-KIT, 
which is the characteristic molecular abnormal-
ity in these tumors [108, 109]. However, not all 
c-KIT mutations respond to the same agent. 
Exon 8 and the exon 17 N822 c-KIT mutations 
but not the D816 are sensitive to imatinib in 
vitro, therefore assessment of the exact c-KIT 
mutational status is important and may have 
direct therapeutic consequences. Initial clinical 
studies with imatinib in a small number of 
patients with refractory AML did not show ben-
eficial results [110], however, when tested in 
c-KIT positive AML patients results were more 
promising [111]. Several studies have investi-
gated the activity of imatinib alone or in combi-

nation with chemotherapy in c-KIT positive AML 
patients and results are awaited.

Small molecules such as SU5416 and SU6668 
have activity against c-KIT [109] although nei-
ther is selective. Both were developed as angio-
genesis inhibitors and also inhibit FLT3, KDR 
and FGFR [109]. In addition SU5416 inhibits 
VEGFR2, while SU6668 inhibits PDGFR. 
SU6668 has shown antiangiogenic properties 
and inhibition of c-KIT in preclinical models, 
whereas SU5416 reached later stages of drug 
development; however it showed modest activ-
ity in patients with relapsed/refractory AML or 
MDS [112]. Further investigating these mole-
cules has been halted. APcK110 is a novel KIT 
inhibitor with potent proapoptotic and antipro-
liferative activity in AML cell lines and primary 
samples whereas in an AML xenograft mouse 
model it was shown to extend survival [113].

JAK2 mutations in CBF AML

The Janus-kinase-2 gene (JAK2) encodes a 
non-receptor tyrosine kinase involved in relay-
ing signals for hemopoietic cell growth, devel-
opment and differentiation [114]. JAK proteins 
consist a family of four non-receptor tyrosine 
kinases (JAK1, JAK2, JAK3 and Tyk2) that are 
closely associated with type I/II cytokine recep-
tors. When activated via association to cell sur-
face receptors they phosphorylate and translo-
cate STATs to the nucleus to activate gene 
transcription [115, 116]. Among the family 
members JAK2 associates with the IFN-1, IL-6, 
12/23 cytokine and EPO receptors [116].

JAK2 is commonly mutated in myeloid neopla-
sias. The JAK2V617F gain of function mutation 
in the cytoplasmic tyrosine kinase domain is a 
common finding in myeloproliferative neo-
plasms [117]. The same mutation has been 
found in a small number of AML patients, more 
commonly in t(8; 21) AML [100, 101, 118]. AML 
t(8; 21) patients harbouring JAK2V617F in addi-
tion to KIT and FLT3 mutations have poorer 
disease-free survival compared to wild type 
JAK2 [119-121]. Moreover activating JAK2 
gene fusions with the TEL(ETV6) (TEL-JAK2) and 
PCM1 genes have been found in leukemia 
patients [122-124]. Beside the detected muta-
tions, a recent immunohistochemical study 
found JAK2 to be invariably activated (phos-
phorylated) in AML, while high of p-JAK2 levels 
were found to be a predictor of poor response 
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to chemotherapy (45% in patients with high 
p-JAK2 vs. 78% in patients with low p-JAK2, p < 
0.003) and a factor of poor prognosis (p=0.023) 
which justifies its consideration as a therapeu-
tic target in AML [125].

JAK2 targeted therapy in AML: JAK inhibitors 
constitute a new class of drugs with activity in a 
wide range of diseases, primarily in myeloprolif-
erative neoplasias and autoimmune disorders 
[126]. Ruxolitinib, the first JAK inhibitor that 
recently received marketing authorization by 
FDA and EMA for the treatment of myelofibro-
sis, is now investigated in patients with relapsed 
or refractory acute leukemia (ClinicalTrials.gov 
Identifier: NCT01251965) [127].

Following ruxolitinib approval, several highly 
potent next generation JAK2/FLT3 inhibitors, 
such as pacritinib and lestaurtinib, entered clin-
ical evaluation for patients with advanced 
myeloid malignancies (NCT00719836, 
NCT00469859) [126]. First available data sug-
gest that blockade of JAK2 in conjunction with 
FLT3 can enhance clinical benefit for AML 
patients harboring a FLT3-ITD mutation and 
provide a strong basis for a clinical evaluation 
of these targeted small molecule therapeutics 
in AML patients particularly to those who are 
resistant to FLT3 directed TKI therapy [82].

Gene mutations of unclear prognostic value

RAS mutations in AML

RAS proto-oncogene belongs to the GTPase 
family and has 3 isoforms: N-Ras, K-Ras, and 
H-Ras. Mutant RAS isoforms are found in vari-
ous types of tumors and leukemia [128]. Point 
mutations are mostly found at codons 12, 13, 
and 61 of RAS proto-oncogene. De novo AML 
patients harbour activating mutations in the 
RAS proto-oncogenes (N-RAS and K-RAS) in 
about 25% of cases [129]. HRAS mutations are 
extremely rare in myeloid leukemia [130]. RAS 
mutations seem to contribute to leukemogene-
sis (class I mutations). Several reports have 
suggested that AML patients harboring RAS 
mutations have worse, similar or more favour-
able clinical outcomes than those with wild-
type RAS genes [129, 131, 132]. The presence 
of RAS mutations seems to sensitize AML cells 
to high-dose cytarabine therapy in vivo and 
these patients when treated with chemothera-
py alone probably benefit from high-dose cyta-

rabine postremission treatment [133]. NRAS 
mutations are frequently detected in patients 
with inv(16)/t(16; 16) [133, 134].

RAS targeted therapies: The product of mutat-
ed RAS gene is an abnormal Ras protein that is 
constitutively active. Activated Ras anchores 
on the cell membrane and stimulates a critical 
network of signal transduction pathways 
involved in cellular proliferation, survival and 
differentiation. Wild type Ras proteins require 
post-translational modifications by farnesyl-
transferase (FTase) to get attached to binding 
sites in the cell membrane to become biologi-
cally active. Farnesyl transferase inhibitors 
(FTIs) are the best-studied class of Ras inhibi-
tors in hematologic malignancies. However Ras 
can escape FTI suppression and become acti-
vated through geranylgeranylation [98]. 
Tipifarnib), is the main FTI tested in patients 
with AML. However, inceased toxicity and sub-
optimal activity in elderly patients did not justify 
further investigation of this drug [135-137]. The 
same drug was also proven inactive in young 
AML patients [138]. Negative was also a phase 
2 trial of lonafarnib, which is another FTI in 
patients with MDS or secondary AML [139].

Gene mutations in epigenetic modifiers

IDH mutations in AML

Isocitrate dehydrogynase (IDH) isoenzymes 
catalyse an essential step in the Krebs cycle 
that catalyzes conversion of isocitrate to 
α-ketoglutarate [140]. In mammalian cells 
three classes of IDH exist: nicotinamide ade-
nine dinucleotide (NAD)-dependent IDH, mito-
chondrial nicotinamide adenine dinucleotide 
(NADP)-dependent IDH, and cytosolic NADP-
dependent IDH [141]. IDH1 gene is located at 
chromosome band 2q33.3 and its product is 
NADP-dependent and localized in cytoplasm 
and peroxisomes while IDH2 gene is located at 
chromosome band 15q26.1 and encodes the 
mitochondrial NADP-dependent IDH2 enzyme 
[142, 143].

Recurring mutations in IDH1 and IDH2 have 
been described in more than 70% of World 
Health Organization grade 2 and 3 astrocyto-
mas, oligodendrogliomas, and glioblastomas 
[144-146] and in approximately 30% of patients 
with normal karyotype AML [147-150]. 
Mutations in the IDH1 occur at R132 while at 
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IDH2 at R172. The mechanisms underlying 
causal association of mutated IDH with cancer 
pinpoint to deleterious metabolic alterations 
although intervention with epigenetic homeo-
stasis through remodeling of the methylome 
has also been suggested [151-154]. Dang et al 
showed that IDH1 mutation leads to the over-
production of 2-hydroxyglutarate, a putative 
oncometabolite that has been associated with 
a high risk of brain tumors in patients with 
inborn errors [147, 155] and Zhao et al found 
that mutant IDH1 contributes to tumor growth 
by activating hypoxia-inducible factor-1α [156].

Somatic mutation at IDH1 R132 was originally 
described by Mardis et al., who sequenced the 
entire genome of a CN AML. They subsequently 
screened 187 AML cases and showed a hetero-
zygous IDH1R132 mutation in 15 cases (8.0%) 
[147]. In AML, mutant IDH enzyme activity con-
verts α-ketoglutarate to 2-hydroxyglutarate 
(2-HG), which leads in accumulation of the can-
cer-associated metabolite 2-hHG [153, 157, 
158]. Several studies have studied the IDH1/2 
mutational status in patients with AML and a 
statistically significant co-occurrence with 
NPM1 mutations has been reported [159, 160]. 
In the two largest studies correlations IDH1/2 
mutations with outcome in AML by the UK MRC, 
except for the IDH1/2 mutation enrichment in 
the NPM mutant group, it was reported that 
patients with the IDH R140Q mutation had an 
improved OS and decreased response rates. In 
contrast, IDHR172 mutations did not correlate 
to outcome or response to therapy, whereas 
presence of the IDHR132 mutation had an 
impact on worsened outcome in patients with 
the FLT3 wild type genotype [160, 161]. It 
becomes obvious that since the number of co-
occurring mutations increases, further investi-
gation is needed to better define the prognostic 
impact of the IDH1/2 mutations in patients 
with AML.

IDH targeted therapy: It is thought that small-
molecule inhibitors with a potential to block the 
synthesis of 2-HG could be developed given 
that IDH mutations lead to a gain-of-function 
mutation but to date no such therapies have 
been discovered [162]. However it has been 
observed that IDH-mutant AMLs have a unique 
methylation profile characterized by global pro-
moter hypermethylation, which renders these 

cases reasonable candidates for demethyl-
ation therapies [163].

MLL mutations in AML

The MLL gene (mixed-lineage leukemia) 
encodes a protein that plays an essential role 
in early development and hematopoiesis by 
acting as a histone methyltransferase and tran-
scriptional co-activator. One of its domains, the 
SET domain, mediates methylation of ‘Lys-4’ of 
histone H3 (H3K4me) complex and acetylation 
of ‘Lys-16’ of histone H4 (H4K16ac). H3K4me 
mediates epigenetic transcriptional activation 
of specific target genes, including many of the 
HOX genes [164, 165].

Aberrant expression of MLL is usually associ-
ated with leukemogenesis [166, 167]. 
Mutations and chromosomal translocations 
involving the MLL gene identify a unique group 
of acute leukemias, and often predict a poor 
prognosis. Partial tandem duplication of the 
MLL gene (MLL-PTD) was the first mutation 
observed in de novo AML with a normal karyo-
type or trisomy [168]. These duplications con-
sist of an in-frame duplication of MLL exons. 
MLL-PTDs are named according to the fused 
exons e.g. e9/e3. Some, PTD seem to be gener-
ated by mispairing of Alu elements, which are 
repetitive regions with high homology [169].

The incidence of MLL-PTD is around 6% in 
unselected AML cases but it is higher in cases 
with normal karyotype (up to 8%) and even 
higher in cases with trisomy 11 (up to 25%), 
while favorable karyotypes (e.g. t(8; 21), t(15; 
17), inv(16)/t(16; 16)) are MLL-PTD negative 
[170, 171]. MLL-PTD may also be associated 
with FLT3-ITD and FLT3 point mutations [171, 
172]. Patients with MLL-PTD expression seem 
to have shortened remission duration and 
shorter disease-free survival (DFS) [168].

MLL targeted therapy: MLL specific therapies 
are optimally targeting mislocated enzymatic 
activity of DOT1L, which is considered a driver 
of leukemogenesis in aberrantly expressing 
MLL leukemias. DOT1L is a histone methyl-
transferase recruited by rearranged/mutated 
MLL that methylates lysine-79 of histone H3 
and drives expression of the leukemia-causing 
genes HOXA9 and MEIS1 [93, 173, 174] The 
first small molecule inhibitor of DOT1L that 



Mutations and targeted therapies in AML

38 Am J Blood Res 2013;3(1):29-51

entered human clinical development just 
recently is EPZ-5676 [175].

EZH2 mutations

EZH2 is the enzymatic component of the the 
Polycomb repressive complex (PRC) compo-
nents and is an Histone 3 Lysine 27 (H3K27) 
methyltransferase. Overexpression of EZH2 
has been reported in both solid tumors and 
blood cancers [176, 177] and has been shown 
to be due to, at least in part, the loss of tran-
scriptional repression of specific microRNAs 
[177]. Missense, nonsense and frameshift 
mutations have been reported mainly in MDS 
[178, 179], while recently it was shown that 
almost half cases of early T-cell precursor acute 
lymphoblastic leukemia present mutations in 
histone-modifying genes, including EZH2 [180]. 
In AML, EZH2 mutations have been described 
in a single case of acute myelomonocytic leuke-
mia out of 143 cases screened [181], in a case 
with childhood AML [182] and recently in a 
male with CN-AML out of 50 screened [183]. 
The contradictory findings of overexpression of 
EZH2 in epithelial cancers and lymphomas and 
inactivating mutations in myeloid malignancies 
raises the possibilty that alterations affecting 
the methylation of H3K27 may be tumor spe-
cific. The effects of EZH2 mutations are still 
unknown and have only recently started to be 
under investigation. Initial findings though sug-
gest that except for histone modifications, DNA 
methylation might also be affected, since EZH2 
serves as a recrutiment platform for DNA meth-
yltransferases and seems to be a prerequisite 
for DNA promoter methylation [184].

EZH2 targeted therapy: Development of selec-
tive inhibitors of histone methyltransferases, 
such as EZH2 have only recently begun. An 
S-adenosylhomocysteine hydrolase inhibitor 
named 3-Deazaneplanocin A (DZNep) has been 
shown to induce efficient apoptotic cell death 
in cancer cells and not in normal cells and to 
effectively deplete cellular levels of PRC2 com-
ponents such as EZH2 while inhibiting associ-
ated histone H3K27 methylation [185, 186]. 
Combined DZNep and panobinostat treatment 
induced more depletion of EZH2 and more 
apoptosis in AML cells compared to normal 
CD34(+) bone marrow progenitor cells [187]. 
This compound has not reached yet the clinical 
trial setting.

Mutations lacking targeted therapy

It should be noted that not all known recurrent-
ly mutated in AML genes have been considered 
as possible targets for developing novel target-
ed therapeutics. A number of clinically relevant 
AML related mutations such of TET2, ASXL1, 
WT1, p53 and BCOR, although of prognostic 
significance, are currently lacking known drug 
discovery activities [183, 188-190].

Other novel targeted therapies of interest 

PLK1 aberrations in AML

Polo like kinases (PLK) are a family of four ser-
ine/threonine protein kinases that are critical 
regulators of cell cycle progression, mitosis, 
cytokinesis, DNA damage response and apop-
tosis [191]. They bind and phosphorylate pro-
teins are that already phosphorylated on a spe-
cific motif recognized by the POLO box domains 
and interplay with Aurora kinases [192, 193].

PLK1 is the most well characterized member of 
PLK1 family and considered to be a master 
player of cell-cycle regulation during mitosis 
strongly promoting the progression of cells 
through mitosis. Characteristically, PLK1 regu-
lates the mitotic licensing of centriole duplica-
tion in human cells and also DNA replication 
under stressful conditions, and anti-apoptotic 
activity through phosphorylation of Bcl-x(L) 
[194-196].

Overexressed PLK1 is thought to behave as 
oncoprotein [197]. PLK1 is commonly found 
overexpressed in a majority of samples from 
patients with acute myeloid leukemia com-
pared with normal progenitors [198].

PLK1 targeted therapy: Early observations that 
PLK1 depletion could induce apoptosis in can-
cer cells led to discovery and development of 
PLK1 inhibitors with potent antitumor activity 
against solid and blood cancers [199-204]. 
PLK inhibition is now considered a promising 
strategy for the treatment of AML preferably 
combined with conventional antileukemic che-
motherapy [205, 206]. First PLK1 inhibitors are 
currently in early clinical development in AML 
with promising early results. The first PLK1 
inhibitor BI 2536 showed interesting clinical 
activity in patients with relapsed and treatment 
refractory AML in an early clinical trial [207]. Its 
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successor volasertib (BI 6727) demonstrated 
more favorable toxicity profile and potent anti-
leukemic activity as monotherapy and in combi-
nation with low dose aracytin in heavily pre-
treated AML patients and was taken to a 
current phase III clinical investigation [208, 
209].

Conclusions

AML is a highly agressive heterogenous malig-
nant disease, classified by recurrent genetic 
abnormalities that define subgroups of distinct 
biological and clinical features. However, thera-
peutic approaches have stuck to “one-size fits 
all” conventional chemotherapy because of 
lack of targeted therapeutic options. Although 
in solid cancers a few targeted therapies have 
advanced to the clinical practice during the last 
decade, AML has notoriously been left behind 
despite the fact that this disease was the first 
human cancer genome to be sequenced and 
molecularly characterised. Advancements of 
applied technologies in molecular biology and 
drug discovery offer hopes that progress will be 
made towards more rational therapeutic 
approaches in AML patients. This milestone in 
AML therapy can only be reached through well-
designed clinical trials conducted by expert 
teams and targeted to well characterized dis-
ease subsets. Such studies must follow 
resource sparing approaches because of the 
rarity of target patient subgroups and the highly 
demanding nature of such trials [210].
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