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Abstract

The concept of similarity, or a sense of "sameness" among things, is pivotal to theories in the
cognitive sciences and beyond. Similarity, however, is a difficult thing to measure.
Multidimensional scaling (MDS) is a tool by which researchers can obtain quantitative estimates
of similarity among groups of items. More formally, MDS refers to a set of statistical techniques
that are used to reduce the complexity of a data set, permitting visual appreciation of the
underlying relational structures contained therein. The current paper provides an overview of
MDS. We discuss key aspects of performing this technique, such as methods that can be used to
collect similarity estimates, analytic techniques for treating proximity data, and various concerns
regarding interpretation of the MDS output. MDS analyses of two novel data sets are also
included, highlighting in step-by-step fashion how MDS is performed, and key issues that may
arise during analysis.

Similarity is a pervasive concept, one that is central to understanding and engaging in the
world around us. A sense of "sameness" between two things allows us to appropriately
generalize and discriminate: We can detect when two situations (or stimuli) are similar
enough to be acted upon as the same, and when they are dissimilar enough to require
different actions (1-2). For example, a basset hound and a dachshund will both chase a
thrown toy, but a cat will respond by staring. Brake lights on a semi-truck and a sedan may
be visually dissimilar, but both signal stopping behavior. Conversely, the sedan’s brake
lights and turn signal may look comparatively more alike, but signal very different actions.
As a theoretical construct, similarity is ubiquitous, with broad implications in fields such as
memory (3-4), language (>-6), categorization ("-9), and perception (1%-11), to name but a
few. As researchers, it is often of benefit to have not just a sense, but a quantitative estimate
of the similarity between two items (or among a larger set of items). A language scientist
may wish to know precisely how alike two different phonemes are perceived, and a music
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researcher may seek to estimate the degree to which Mozart is more like Beethoven than he
is to Chopin, Vivaldi, or Bach. But similarity is difficult to quantify. Psychological
measurements may be imprecise or “noisy”, and perceived similarity relations change
dramatically given different environments for comparison (12-13). For example, a rabbit and
a salmon may seem fairly dissimilar upon context-free consideration, but they appear more
alike when both are featured on a chef's tasting menu.

Multidimensional scaling (MDS) is a tool by which to quantify similarity judgments.
Formally, MDS refers to a set of statistical procedures used for exploratory data analysis and
dimension reduction (14-21). It takes as input estimates of similarity among a group of items;
these may be overt ratings, or various “indirect” measurements (e.g., perceptual confusions),
and the stimuli may be perceptual or conceptual in nature. The outcome of MDS is a “map”
that conveys, spatially, the relationships among items, wherein similar items are located
proximal to one another, and dissimilar items are located proportionately further apart. From
this map, one may infer the underlying dimensions of a data set (or confirm prior
hypotheses) by subjectively examining the organization of the space (22). For example, if
one were to apply MDS to pairwise similarity ratings among a set of color patches (e.g., “On
a scale from 1-9, how similar are these two colors?”), the outcome would likely resemble
Netwon’s famed “color wheel” (23), with blue being located close to purple, but far from
yellow, and so on. MDS maps are valuable because they reduce potentially complex data
sets to the primary dimensions along which the items differ, and because they permit visual
appreciation of the relationships that are present. Moreover, by assessing the distance
between items on the map, one can obtain a quantitative measurement of their perceived
similarity, relative to other items in the space. The applicability of MDS is broad, with
potential utility across many disciplines, such as cognitive (24), social (2°), developmental
(%6 and clinical psychology (¢7), as well as psychophysics (28), neuroscience (%), marketing
(30), political science (31), sociology (32), ecology (33) and others. The current article
provides a tutorial for performing MDS (using two novel data sets for a step-by-step
demonstration), and discusses important practical considerations for those with interest in
this technique.

The data: Form and methods of collection

To conduct MDS, a “proximity matrix” is required; that is, a collection of similarity
estimates between each pair of items in the stimulus set. For a set composed of kitems, (k *
(k — 1)) / 2 proximities must be acquired, such that each item is compared to every other at
least once. This means that the number of comparisons grows rapidly as a function of the
stimulus set size. For a set of 10 items, 45 comparisons must be made. For sets of 20, 40,
and 80, the comparisons grow to 190, 780, and 3160 (respectively), and so on. With large set
sizes, it becomes impractical to collect a completed matrix from each person, so data may be
concatenated across people to form a single, aggregate matrix. Ideally, the complete matrix
will be collected from multiple participants (34), so that each pair of items can be rated
several times (to safeguard against measurement noise). Commonly, the data are organized
into a half-triangular (or square-symmetric) matrix, with the names of each of the stimuli
ordered across rows and columns. The similarity rating for each pair of items is then placed
at the intersection of the appropriate row and column (although some software packages
provide an option to compute proximities from raw data). This matrix (or matrices, for
multiple participants) is then analysed in statistical software packages, such SPSS (39).

Proximity data may take the form of similarities or dissimilarities (e.g., “How alike /
different are these two items?”), and can be collected in a variety of ways. Broadly, methods
for data collection can be categorized as direct or indirect (see 36 for a review). In direct
methods, people knowingly assess the items. The simplest technique is to provide people
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with two items at a time, and ask them to rate how similar they are to one another, using a
Likert scale or a slide-bar. People do this many times — at least once for every pairwise
combination of items — and the mean ratings then comprise a proximity matrix for each
participant. Alternative direct methods have people categorize items according to some
criteria (37), or sort them into “piles” based on their similarity (38). Proximities are then
calculated by counting how often items are sorted into the same category across participants.
Higher degrees of similarity are indicated by items being categorized together more often.

In indirect methods, proximities are derived from secondary empirical sources. For instance,
stimulus confusions or generalizations are commonly obtained from speeded same-different
judgment tasks. Here, proximities can be estimated by identifying the proportion of times
that items are mistakenly identified as the same (39), or by the speed of accurate
discriminations (49). Higher degrees of similarity are indicated by higher rates of confusion,
or slower discrimination times.

A demonstration of MDS

To provide clarity, we demonstrate the process of performing MDS, using data from two
new experiments. Volunteers rated the similarity of either a set of perceptual or conceptual
stimuli: Our perceptual items were 16 door-knockers, presented as pictures (obtained from
the “Massive Memory” database; 41). The conceptual stimuli were 12 different crimes,
presented as words. There were 22 and 26 participants in each experiment, respectively.

The data were obtained using a spatial arrangement method, originally proposed by
Goldstone (#2; see also 43 44), This technique involves presenting all stimuli to the
participant at once, randomly arranged on a computer screen. The participant uses the
computer mouse to arrange the items (which are manipulated using simple drag-and-drop)
on the screen in such a way that all inter-item distances reflect the participant’s perception of
object similarity. Items that are considered similar are placed closer together; those
considered dissimilar are placed proportionately further apart. Conceptually, it is as if
participants project their own “psychological spaces” onto a two-dimensional plane (i.e., the
computer monitor). After the organization is complete, a proximity matrix is derived from
the location of the items on the screen. Each proximity value for a pair of stimuli is
measured by taking the item-to-item Euclidean distance, measured in pixels. The results of
these experiments are presented below, following a discussion of the analytic process for
MDS.

Analysis and interpretation of the space

MDS data can be analyzed in various ways, using any of the numerous instantiations of
scaling algorithms, such as PROXSCAL (*®), or ALSCAL (*5). Each of these algorithms
treat the proximity data in a subtly different way, and some — such as /NDSCAL (*") and
PREFSCAL (*8) — achieve secondary purposes, as well. What is shared among them is their
primary goal: They seek to create geometric representations of the data, wherein the
distances between each pair of items respects (as well as possible) the proximity data. That
is, points in the output space should faithfully reflect the rated similarity between each pair
of items.

To visualize how this is achieved, imagine that you possess a table with the distances among
four cities: Los Angeles, New York, Chicago, and Dallas (see 4% 36 for a more thorough
treatment of this example). This is a proximity matrix, telling you how far each city is from
every other (it is approximately 2500 miles from Los Angeles to New York, 1500 miles
from Dallas to New York, and so on). Using this set of proximities, an MDS algorithm will
attempt to spatially recreate the original configuration of the objects. For someone familiar
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with American geography, this is fairly simple: One may start by placing Los Angeles on
the far left of the map, and New York on the right. But scaling algorithms do not possess
information about where to start placing the items. In fact, many begin with completely
random starting configurations. Los Angeles may start somewhere near the center of the
map, for example. The process of “moving” the points is an iterative procedure. In each
iteration, the distance between each pair of items in the space is compared to their intended
distance specified by the proximity matrix. Going back to our example, assume that Dallas,
Chicago, and New York are all where they should be. If Los Angeles is in the center of the
map, then it is too close to New York, and must be moved farther away, but in what
direction? Los Angeles could be placed 2500 miles from New York simply by moving it to
the top of the map, but this would also change its relationship to other cities in the space: It
would still be closer to Chicago than it should be, and even farther from Dallas than is
appropriate. Thus, the challenge of “placing” the items is in finding locations that appreciate
all individual relationships among the points (it is not surprising, therefore, that this process
often requires many “moves”).

Of course, in this example, a “true” solution exists wherein the distances between each pair
of cities perfectly matches the proximity data. But with experimental measurements, this is
rarely the case. Psychological estimates are often noisy or imprecise. Participants may not
agree with one another, and at times, a participant’s own ratings may be in conflict (see 0
for a review). Suppose someone is using a Likert scale to rate the similarity of three items:
A, B, and C. They rate the A-B pair as  (most similar), and the A—C pair as 9 (least
similar). Assuming the points are plotted on a two-dimensional plane, the B—C rating should
therefore also be highly dissimilar (i.e., B is like A, which is unlike C). But, because
participants usually only see two items at a time, they may not consider their earlier ratings,
and may therefore create a conflict, such that the relationships among all the items are not
perfectly accommodated. To quantify the amount of conflict that is present in the data, a
stress function is calculated (the particular function varies across different scaling
algorithms), which measures the agreement between the estimated distances and the input
proximities. Lower stress values indicate a better fit; thus, the algorithms attempt to increase
the fidelity to the input data by minimizing this stress function. The iterative process (i.e.,
moving the points in space) is repeated until the configuration has reached some
optimization criterion. Again, the criteria vary across algorithms, and can often be modified
by the researcher: For example, the iterations may cease once the stress has reached a pre-
determined value, once it ceases to change significantly across iterations, or once a specific
number of iterations have been completed. Finally, because a “true” solution rarely exists,
each scaling attempt may result in a different configuration of points. A good solution is
stable, such that the relationships among points are consistent across scaling attempts.

Model selection

Selection of the specific MDS “model” to be used can be complex; it should be tailored to
the particular circumstances under which the proximity data were collected, and to the
researcher’s analytic goals. (A full discussion of model selection is beyond the scope of this
brief article, but see 34, 37, 49 for thorough treatment.) The models vary in many ways,
including (but not limited to) the geometry used to map the data, the calculations of — and
algorithms used to optimize — model “fit,” and the ability to handle singular or multiple
proximity matrices. At a gross level, a distinction is made between models that implement
metric versus non-metric algorithms for scaling the original proximities (similarity or
dissimilarity data) into the “disparities” that are used for comparison to the distances derived
from the analysis (34). Metric MDS uses a linear function to map the proximities onto
disparities (°1), whereas non-metric models use any positive monotonic function, without
the constraint of linearity (1-19). For quantitative data (i.e., interval or ratio level values),
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metric MDS is used, but for qualitative data (i.e., ordinal level values), non-metric MDS is
performed.

To be more precise, models can be identified by their specific properties and sub-goals.
Classical MDS uses a single matrix of raw (or averaged) data and is not especially robust.
By comparison, replicated MDS accommodates multiple matrices; it is more robust due to
using increased data. When the analyst is interested in between-subjects differences in
judgments, /individual differences scaling (or weighted MDS) can be implemented. This
model treats data from multiple sources, and produces a secondary output in addition to the
standard common space plot (i.e., the aggregate MDS plot using all data). This secondary
output indicates the degree to which each participant (assuming each matrix represents a
different person) weighted the dimensions that are revealed in the common space. For
example, Janal, Clark and Carroll (°2) applied electric stimulation to the skin of healthy
volunteers who judged the similarity between 16 stimulations (which varied only in
intensity), and also rated each on 16 different “property scales” (e.g., “On a scale from 0-9,
how briefor /lasting was the stimulus?”). Individual differences scaling suggested that the
first two dimensions of the common space were sensory magnitude (e.g., slight sensation,
strong sensation), and pain intensity (e.g., faint pain, intolerable), respectively. Moreover,
the degrees to which participants weighted these dimensions mapped onto their choices of
stimulus descriptors: For instance, participants with high weighting on the pain dimension
frequently described the stimuli as “cruel” or “piercing”.

Another scaling approach that respects individual differences is multidimensional unfolding.
This procedure is similar to individual differences scaling, but assumes that each observer
has a different “vantage point.” For example, Roskam (°3) had 39 faculty in the University
of Nijmegen each rank how relevant their 9 shared research areas were for their own work.
Unfolding techniques allow a common space to be derived, while remaining sensitive to
wide individual variations in rank-orders. Papesh and Goldinger (19) used an unfolding
technique to assess similarity judgments of computerized faces in an experiment wherein
different participants viewed different subsets of faces, and therefore had different
perspectives on the full set. The technique is not commonly used in cognitive science,
however, as most researchers assume normality in their sampled participants and objects,
and usually obtain full (or randomly chosen subsets of) data from each observer. Several
other techniques may be classified under the umbrella term of “multidimensional scaling,”
such as Procrustes’ analysis (which enables comparison of two configurations that were
derived from different methods), unidimensional scaling (which configures the points along
a single dimension), and correspondence analysis (which represents categorical data in a
Euclidean space). This is not a comprehensive list of MDS models, but this sampling
highlights an important point: Namely, that MDS procedures vary widely, and can be used
to provide more than simple data visualization.

Finally, there are close correspondences (both mathematically and conceptually) between
MDS and other methods used to reduce the dimensionality of complex data. Principal
components analysis (PCA) for example, is a widely used method that achieves similar
results. PCA is a technique that seeks orthogonal, linear fits to complex data, such that
maximum variance is explained (with the first principal component explaining the most
variance, followed in order by the second, third, etc.). The underlying approach of PCA is
mathematically identical to metric MDS based on Euclidean distance (see 53 for extensive
discussion; also related articles). By comparison, nonmetric MDS is better able to preserve
inter-point distances in a final configuration. In essence, the difference can best be described
in terms of the research goals: PCA is more focused on the dimensions themselves, and
fitting the variance as closely as possible, whereas MDS is more focused on relations among
the scaled objects. In nonmetric MDS, we seek to discover the best orthogonal dimensions

Wiley Interdiscip Rev Cogn Sci. Author manuscript; available in PMC 2014 January 01.



1X31-)lew1a1ems 1X31-){Jewiaremsg

1Xa1-)lewarems

Hout et al.

Page 6

that describe the data, without losing too much information about point-by-point relations.
For certain research purposes, such information may constitute mere noise, and PCA may be
preferred. Also closely related to PCA is exploratory factor analysis, like MDS, factor
analysis does not necessarily seek to maximize explained variance, but is intended to
discover causal factors that organize the data.

Interpreting the solution

Returning to the American cities example, interpretation of the output map is simple,
because we already know the underlying solution. Some are located farther south, others
farther east: The dimensions of the map are clearly latitude and longitude. However,
psychological data are rarely so straightforward, and interpretation of MDS solutions is
subjective. The analyst must examine the organization of the space and attempt to infer the
primary dimensions by which similarity estimates were given (or decides whether or not a
priori hypotheses are confirmed). For instance, an MDS space for a group of animals may
show dogs located close to cats, with both located far from wolves and tigers. From this, the
analyst may infer that domesticity was a dimension by which the animals were rated.
Alternatively, dogs and wolves may be close in space, both located far from cats and tigers.
In this case, the analyst would not infer a dimension of domesticity, but perhaps canine
versus feline.

A central point to remember is that MDS spaces convey information about relationships, not
about particulars. First, the layout of the dimensions is unimportant. In the cities example, an
MDS treatment might flip the dimensions, with east on the left or north on the bottom, but
the relative positions among the cities should be consistent. Thus the interpretation of the
dimensions (latitude, longitude) holds, regardless of the particular placement of the items in
the space. Second, the units provided in an MDS space are arbitrary. Dogs may be located
one unit away from cats, and four units away from wolves. But those units tell us little about
perceived similarity without the context of the larger set. Similarity, as a construct, does not
come with standard units of measurement. Rather, by inspecting the space, one can infer that
dogs are perceived to be four times more similar to cats than they are to wolves.

Choosing the right dimensionality

When MDS is performed, the analyst must specify how many dimensions the algorithm
should use when locating the points in space (i.e., how many coordinate values). By
increasing the dimensions, more degrees of freedom are added to the movement of
individual points. This has two consequences. First, it increases the information represented
by the solution. For instance, if dogs, cats, wolves and tigers were plotted on a line, one
could only appreciate the animals’ likeness based on domesticity or feline/canine nature
(based on whichever emerged as the “primary” dimension). If, however, a second dimension
were added to the space, one could appreciate both aspects that were used for comparison.
Second, because increasing the dimensionality adds degrees of freedom, it also decreases the
stress of the solution. The lowest stress value will, of course, result from a space with as
many dimensions as there are items in the set. But the goal of conducting MDS is not to
reduce the stress to zero, but rather to strike a balance between finding a good solution (i.e.,
one with a sufficiently low stress value) and one that is interpretable. Beyond three
dimensions, interpretation of a space can become very difficult, so analysts are often
conservative in choosing a dimensionality, such that visual examination of the data remains
possible.

Scree plots are often used to determine how many dimensions are appropriate. To create a
scree plot, analysts scale the data several times (with higher dimensionality each time), and
plot the stress values as a function of dimensions. A common heuristic is to look for an
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“elbow” in the plot, which is the value at which added dimensions no longer improve the fit
substantially (36). Sometimes, an elbow is not immediately apparent. In these situations,
analysts must rely on prior hypotheses about the likely dimensions of the space, and must
consider how important visualization is to their goals. For instance, if visualization is
relatively unimportant, then one may decide to plot the data in a high dimensionality (e.g.,
the point at which stress values plateau). By contrast, if the analysis is purely exploratory, a
two- or three-dimensional plot may be more useful, as it allows simple visual inspection of
the space. Recently, Bayesian approaches to dimension selection have been developed
(54-55); these take a more empirical approach by mathematically addressing the trade-off
between the fit of the data and the complexity of the solution.

A MDS analysis of door-knockers and crimes

To provide a concrete example of MDS analysis, and to highlight several of the issues
already discussed, we now return to the experiments with crimes and door-knockers. (For
interested readers, we provide the data and a step-by-step tutorial on the first author’s web
site (www.michaelhout.com). First, we scaled each data set six times, with increasing
dimensionality, using the ALSCAL scaling algorithm provided in SPSS 20. This algorithm
minimizes a stress function called Kruskal’s S-Stress (specifically, the Takane-Young-de
Leeuw formula; %), and it provides an R2 measure that indexes the proportion of variance of
the scaled data explained by the fitted distances. The iterations of this algorithm terminate
once they have converged on a layout of points with a stress value that improves by less
than .001, relative to the previous iteration. Figure 1 shows the scree plots for each data set,
with similar plots of the R2 values. For both data sets, stress values decrease as
dimensionality increases, and R? values tend to rise. Note that these measures do not
necessarily improve with each added dimension, however, because with higher
dimensionality the algorithms may attempt to accommodate noise in the measurements
(rather than true features, per se). The scree plot for the door-knockers shows a likely elbow
at dimension 2, but stress continues to fall as more dimensions are added to the solution.

For demonstration purposes, we plotted the door-knocker solutions on a two-dimensional
plane. The left panel of Figure 2 shows the results of the ALSCAL analysis; the right-panel
shows a similar analysis, derived using the PROXSCAL scaling algorithm (also in SPSS
20). The organizations of the spaces are largely consistent with one another, although they
are not in perfect agreement (e.g., the first solution shows tighter “clustering” of the objects;
the second more evenly distributes them in space). Both solutions show (on the X-axes) a
clear distinction between door-knockers with faces, and those without. There are also (on the
Y-axes) color dimensions, showing that metallic colors (silver, gray) tend to be removed
from the softer colors (gold, bronze). Thus, although the particular inter-item distances differ
across the two scaling attempts, the overall arrangement of the spaces is largely consistent.

One way to quantify the agreement across solutions is to correlate the inter-item distances
from one solution to another. We therefore collected vectors of distances from each point to
every other in each space, and calculated their correlation. To the extent that the spaces have
similar arrangements of points, the correlation will be strongly positive. We conducted this
analysis for each data set (door-knockers and crimes), comparing the coordinates derived
from ALSCAL and PROXSCAL. Figure 3 shows the results: The correlations were strongly
positive (RZ= .67 and .54 for door-knockers and crimes, respectively). This technique can
also be applied to repeated attempts of a single scaling algorithm (recall that each attempt
results in a different configuration), to index the stability of a solution (see 43).

For the crime data, we scaled the solutions in three-dimensions, shown in Figure 4. In this
case, interpretation of the space is less straightforward, due to the conceptual nature of the
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stimuli. Dimension 1 is perhaps the clearest. Highly violent crimes (e.g., rape, murder) tend
to cluster on one side of the space, far from less violent crimes (e.g., speeding, jaywalking).
Thus, we may infer a primary dimension of violence. However, this interpretation overlaps
with other feasible explanations. The layout of crimes across dimension 1 could also reflect
“interpersonal interaction,” because the violent crimes necessarily require personal
interaction, whereas the “victimless” crimes do not. Interpreting dimensions 2 and 3 is even
more challenging. One may reflect the extent to which money factors into the crimes, as
those committed for financial gain (e.g., forgery, fraud, kidnapping) tend to be located near
each other, as are those that do not involve money (e.g., DUI, speeding). Moving away from
dimensional interpretations (i.e., the extent to which points fall along continua), it is also
useful to examine the space for “clusters.” For instance, violent crimes tend to be grouped
together, as are the “financial” crimes, and the driving violations. Again, interpretation of
the space is subjective and, although there may not be a “correct” interpretation, inspection
of the solutions provides the analyst with a wealth of information regarding the ways people
perceive the similarity of these crimes.

Indeed, it should be noted that MDS may not be the optimal avenue for representing the
similarity space of crimes. There are other methods for obtaining similarity structures that
are not spatial in nature. For instance, it is possible to portray the crimes by their shared
features, or in a hierarchical fashion. Shepard (°7) suggests that additive trees (°8-9) are
especially well-suited to representing the structure of semantic stimuli. Items in an additive
tree are not represented by meaningful coordinates; rather, the distance (i.e., similarity)
between any two items in an additive tree is indicated by the sum of the length of the links
between those two items. For example, Shepard (°7) produced an additive tree for 30 species
of animals (69-61). One branch linked the carnivores together and further sub-divided
canines from felines. One may envision a tree structure for crimes that has different
branches for financial crimes, violent crimes, and moving violations, and perhaps further
branching delineating vehicle moving violations (e.g., speeding, DUI) from walking
violations (e.g., jaywalking). When hierarchical structures are not desired or appropriate,
additive clustering may employed. Imagine, as before, that you are interested in representing
the similarity of a dog, cat, wolf, and tiger. A hierarchical approach would necessarily
obstruct classification based on one characteristic (e.g., feline vs. canine) at the expense of
another (potentially equally salient) characteristic (e.g., size, domesticity). Additive
clustering is not based on a distance construct, but assumes instead that similarity can be
measured by the weighted sum of the shared properties between two items (62). This
analysis identifies clusters of similar items, allowing each item to be included in several
clusters; moreover, each cluster is ranked according to its estimated weight. For example,
Shepard (°7) applied additive clustering to data for 20 names of body parts. From this
analysis, one can appreciate the similarity of an elbow to a hand (i.e., both are part of the
arm), and can also appreciate the (albeit weaker) similarity between an elbow and a knee
(i.e., both are joints). With respect to the crime stimuli, a potential additive clustering
analysis may reveal a strong grouping of DUI with the other moving violations, but also a
weaker grouping with murder (i.e., some DUIs result in wrongful death). Simply put,
although MDS is a particularly useful tool for representing similarity structures, it is only
one of many ways that analysts can reveal the underlying structure of data.

Conclusion

Multidimensional scaling is a useful tool to help quantify the ubiquitous, but slippery, notion
of similarity. Although we all know what it means for two things to share a sense of
closeness, similarity is difficult to estimate empirically. An argument could be made that any
two items are similar because they share a potentially infinite number of arbitrary features. It
seems likely that most people judge a pencil and a remote control to be dissimilar. But how
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dissimilar, exactly, might they be? Both items are solid objects that exist on earth, can be
held in your hand, and can be used to scratch between your shoulder blades. Only when
these objects are placed in the context of a larger set of items (e.g., other writing utensils,
other electronic devices) can one begin to appreciate the ways in which they differ. By
subjecting similarity estimates to MDS, researchers acquire maps of the relationships among
a set of stimuli. This map reduces the complexity inherent to a large table of proximities,
and can be used to explore a space about which no prior hypotheses exist, or to confirm a
priorinotions about the organization of psychological space. MDS can be performed in
various ways, using data obtained from overt ratings or indirect methods. Although there are
important subtleties regarding the treatment of data, dimensional selection, and the
interpretations of solutions, MDS analyses all share a key purpose: They reveal the
relational structures among the rated items. The technique has broad applicability, and is of
the utmost value to researchers in the cognitive sciences and beyond.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Verifying the interpretation of dimensions

When researchers use MDS for confirmatory purposes (i.e., when the analyst has prior
hypotheses regarding the likely dimensions of the space) it is possible to indirectly verify
the interpretation of the resulting dimensions by using linear regression (% 63). For
instance, suppose we are interested in the degrees of similarity among a group of animals.
A reasonable hypothesis would be that people appreciate the animals based on
domesticity (domestic vs. wild). To test this hypothesis, in addition to collecting pairwise
similarity estimates, individual domesticity ratings would be obtained for each animal
(e.g., “On a scale from 1-9, how domesticated is this animal?”). These ratings would
then be regressed over the coordinates derived (per item) from each dimension in the
resulting MDS plot. A high regression weight could then be taken as evidence that a
particular dimension reflects the hypothesized construct.
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Figure 1.

Stress values (top panels) and explained variance (bottom panels), plotted as a function of
dimensions used to locate the points in space, from door-knockers (left panels) and crimes
(right panels), scaled using the ALSCAL algorithm.

Wiley Interdiscip Rev Cogn Sci. Author manuscript; available in PMC 2014 January 01.




1X31-)lew1a1ems 1X31-){Jewiaremsg

1X3]-){Jewtarems

Hout et al.

<&
(3
%
O

‘-Ir- & E :

Figure2.

& g OO

Page 14

\LXy -

Two-dimensional MDS plots for the door-knocker stimuli. The left panel shows a solution
derived using the ALSCAL scaling algorithm, and the right panel shows the same data set

analyzed using the PROXSCAL scaling algorithm.
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Figure 3.

Inter-item distance correlations from door-knocker (left panel) and crime (right panel)
stimuli. The correlations show the agreement between the organizations of the spaces
derived using ALSCAL and PROXSCAL.
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Three-dimensional outcome of the crime data (scaled using ALSCAL), shown as three

separate two-dimensional plots.
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