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ABSTRACT
Objective To try to lower patient re-identification risks for
biomedical research databases containing laboratory test
results while also minimizing changes in clinical data
interpretation.
Materials and methods In our threat model, an
attacker obtains 5e7 laboratory results from one patient
and uses them as a search key to discover the
corresponding record in a de-identified biomedical
research database. To test our models, the existing
Vanderbilt TIME database of 8.5 million Safe Harbor de-
identified laboratory results from 61 280 patients was
used. The uniqueness of unaltered laboratory results in
the dataset was examined, and then two data
perturbation models were applieddsimple random
offsets and an expert-derived clinical meaning-preserving
model. A rank-based re-identification algorithm to mimic
an attack was used. The re-identification risk and the
retention of clinical meaning for each model’s perturbed
laboratory results were assessed.
Results Differences in re-identification rates between
the algorithms were small despite substantial divergence
in altered clinical meaning. The expert algorithm
maintained the clinical meaning of laboratory results
better (affecting up to 4% of test results) than simple
perturbation (affecting up to 26%).
Discussion and conclusion With growing impetus for
sharing clinical data for research, and in view of
healthcare-related federal privacy regulation, methods to
mitigate risks of re-identification are important. A
practical, expert-derived perturbation algorithm that
demonstrated potential utility was developed. Similar
approaches might enable administrators to select data
protection scheme parameters that meet their
preferences in the trade-off between the protection of
privacy and the retention of clinical meaning of shared
data.

INTRODUCTION
Electronic medical record systems (EMRs) can
facilitate patient safety,1 improve quality,2 boost
organizational productivity,3 4 and promote busi-
ness process efficiency.5 Individuals and organiza-
tions increasingly use EMR-derived data for
secondary purposes beyond direct care delivery,
such as insurance claim processing, public health
research, and pharmacovigilance.6 7 To investigate
relationships among phenotype, genotype, and
other biological markers, researchers combine EMR
data with data derived from biological samples,8e12

creating biomedical research databases. This trend
coincides with recent federal personalized medicine

initiatives, including NIH programs supporting
genome-wide association studies and whole-
genome sequencing investigations.13e17

Many biomedical database projects deposit de-
identified patient data combined with research-
derived biological data (eg, genomic information)
into shared research repositories. Investigators
increasingly disseminate this data to authorized
collaborators locally and at external sites.13e15

Member sites of the eMERGE (electronic MEdical
Records and GEnomics) network,11 an NIH
consortium, link EMR data (eg, diagnostic codes,
medications, and laboratory test results17) and
genetic information for research purposes. After de-
identification, they subsequently deposit datasets
in the database of genotype and phenotype
(dbGaP),16 an NIH-managed resource that central-
izes data from various genome-based studies.14

With approval from an institutional review board
and NIH data access committee, scientists beyond
the eMERGE network can download datasets from
dbGAP.
Motivation to share de-identified, patient-level

data18 competes with obligations to protect the
privacy of patients.19 20 To enhance privacy while
supporting biomedical research, regulators19 21 and
ethicists22 recommend that patient data be de-
identified before disclosure. However, as summa-
rized below, investigations have shown that
residual information in de-identified records can
permit re-identification of named patients. In the
context of biomedical research databases, successful
re-identifications could disclose biological informa-
tion about patients not present in their clinical
records.
We investigated the extent to which patterns in

the laboratory test results within biomedical
research databases are unique and may enable
patient re-identification. Additionally, we evaluated
a computational approach to lowering patient re-
identification risks in databases containing labora-
tory test results. Our approach strives to minimize
changes of the clinical meaning (interpretation) of
altered data. We recognize that the formal privacy
protection models, such as differential privacy and
k-anonymization,23 24 can provide explicit guaran-
tees of privacy for biomedical data. Nevertheless,
without significant amendments to their defini-
tions, such models neglect expert knowledge about
the clinical significance or interpretation of altered
data. Thus, we adapted a privacy model based on
additive random noise, which allowed us to
focus on maintaining the clinical meaning of data.
This study demonstrates the feasibility of an
expert-derived data perturbation model to reduce
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re-identification risk for biomedical datasets while minimizing
changes in data interpretation.

We recognize that laboratory test results constitute a rela-
tively low risk for re-identification, since they are not disclosed
publicly like other patient-specific data, such as demographic
data. The potential to re-identify data through distinguishing
patterns is insufficient for re-identification. A successful re-
identification additionally requires a mechanism to link de-
identified patterns to an identifying resource. The latter may
exist in the public realm, such as voter registration lists, birth
databases, and obituaries, as well as in the private realm, such as
in patients’ clinical charts in EMRs.25e29 When considering the
risk of re-identification of health information, one should addi-
tionally consider replicability of the data (ie, the extent to which
patient data consistently occurs in multiple resources) and
resource availability (ie, the extent to which a recipient of de-
identified data can access the information necessary to perform
an identification).30 Nevertheless, the minimum necessary
principle suggests that entities should disclose the minimum
amount of personal health information necessary for the
intended application.31 Thus, it is worthwhile to explore tech-
niques to mitigate the re-identification risk of laboratory results
in a manner that enables biomedical research.

Background
Regulations at the federal and state levels permit healthcare
entities to share patients’ data in a de-identified format19 for
secondary purposes. The Privacy Rule of the Health Insurance
Portability and Accountability Act (HIPAA) specifies several
mechanisms for de-identification of patient data. HIPAA requires
that either (1) 18 features be suppressed through the Safe Harbor
standard, including explicit identifiers (eg, names or social
security numbers), “quasi-identifiers” (eg, dates and geocodes),
and unique keys (eg, medical device identifiers) or (2) an expert
certifies that the dataset harbors a small risk of individually
identifying the corresponding patients.19 This legislation came
about after investigators demonstrated that commonly available
quasi-identifiers, such as patients’ birth dates, genders, and
residential ZIP codesdand present in research records at the
timeduniquely distinguished a significant portion of the US
population.32

Current regulations do not mandate complete elimination of
risk of re-identification of patients in biomedical research data-
bases.33 Patterns which uniquely distinguish a patient may
remain in data derived from EMRs, such as the set of hos-
pitals visited by a patient,34 the billing codes assigned during
a visit,35 36 the durations between hospital visits,37 and the
prescription records of a patient.38 In population-based research,
the family structure reported in a pedigree may also be unique.39

In genome-related databases, central to emerging biomedical
research, fewer than 100 single nucleotide polymorphisms can
uniquely characterize an individual.40 41 From genetic data, one
might also infer familial relationships, ancestral origin, disease
risk, and other patient characteristics.42e45

While the HIPAA Privacy Rule was an important initial step
toward ensuring patient data privacy, the Health Information
Technology for Economic and Clinical Health (HITECH) Act46

goes further. The HITECH legislation extends the privacy and
security rule to business associates, requires public disclosure of
data privacy breaches, toughens data privacy standards, and
increases penalties on institutions violating the law.47e49

Importantly, HITECH extends the minimum necessary standard
that requires releasing only the minimum amount of personal
health information necessary for the purpose of use. Healthcare

institutions facing this quandary might interpret this to mean
they cannot release a full specific set of original clinical data to
a shared biomedical research database.31 50

Our study developed a specialized expert-derived data
perturbation algorithm for laboratory test results. Over several
decades, a variety of formal disclosure control methods,
including randomization, have been proposed. Disclosure
control methods seek to minimize the inadvertent release of
sensitive information (ie, re-identification through residual or
inferred patterns) while maximizing the utility of the datadfor
example, maintaining overall statistical properties of the shared
dataset or preserving truthfulness for individual-level records.
Common disclosure control methods include, but are not limited
to, generalization, suppression, and rounding.51 For protection at
the patient level, studies adjust data to mitigate re-identification
risks through generalization (eg, transformation of demographic
features into less specific terms) or suppression, or controlled
randomization (eg, transformation of specific values to different
specific values).25 52e54 Recent statistical disclosure control
studies have dealt with composite data characteristics such as
skew and distribution.55 56 By specializing data randomization
with expert-derived controls, this study attempts to maintain
the clinical meaning of perturbed laboratory results.

METHODS
Our project entailed two phases: (1) evaluation of the uniquely
distinguishing nature of laboratory results data and (2) evalua-
tion of perturbation methods to lower re-identification risks
while minimizing alterations in the clinical meaning of the data.

Re-identification threat model
Our threat model, depicted in figure 1, follows the prosecutor
model57 where an adversaryda clinician or researcherdhas
authorized access to a de-identified biomedical research database.
We assume phenotype information in the de-identified database
derives from still-existing records in primary-source EMRs. The
de-identified database contains the test names, the temporal
sequential order of the test results (excluding specific time
stamps for each test), and the numerical test result values as
they appear in the EMR system from which they were derived.
The shared database also contains patient-specific, research-
derived biological data (eg, genomic information) that is not
a part of the patient’s EMR record. The attacker has obtained, by
legitimate or surreptitious means (from clinical records or other
sources), a small amount of laboratory results data (5e7 indi-
vidual test results) on a specific patient, which the attacker
applies as a search key in the de-identified database.
The threat model assumes that the attacker has access to the

entire biomedical research dataset to conduct the attack. To
identify the closest match to the known search key that the
attacker possesses, the attacker sorts all research dataset results
for each laboratory test type into ascending rank order. For the
search key, the attacker determines a vector comprising the
relative rank of each search key test result within the corre-
sponding dataset ranked results. After obtaining potential
dataset matches that come closest in rank to ranks in the search
key, the attacker evaluates the candidate matches based on the
Euclidian (root mean square) distance between the search key
raw data and each vector corresponding to the raw results in the
dataset candidate matches. To compute useful distances, the
attacker beforehand normalizes (ie, expresses each result as
a multiple of the stated normal value for the test) the original
raw laboratory data in the search key and normalizes the
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laboratory values corresponding to candidate matches. Candi-
dates are ranked based on shortest distance to search key data.
The question at hand is how accurate such rank-based attack
results would be, and whether perturbing the data in some
manner could decrease re-identification risks.

The search key may comprise a patient’s set of 5e7 sequential
results for a single laboratory test, or a single multicomponent
result from a common laboratory test panel, such as a complete
blood count. Consecutive results for a single test might come,
for example, from a patient’s log of glucose results for diabetes
mellitus control or from the set of repeated prothrombin times
(international normalized ratio for prothrombin time (PT-INR))
for a patient receiving warfarin. A single panel result might be
conveyed in a letter sent from a physician to a patient, or
obtained from an EMR.

Materials
The existing NIH-funded, institutional review board-approved
Vanderbilt TIME database, containing Safe Harbor de-identified
inpatient laboratory results formed a convenient test bed for our
study.58 The database includes various individual test results, or
panels such as the CBC (complete blood count) or CHEM7
(blood test measuring electrolytes, glucose, and renal function).
A full CBC includes: hematocrit (or packed cell volume (PCV)),
hemoglobin, mean corpuscular volume, red blood cell count,
white blood cell count, platelet count. The CHEM7 includes:
sodium, potassium, chloride, bicarbonate, blood urea nitrogen,
creatinine, glucose results. Note that this study eliminated the
hemoglobin results from its analyses of the CBC panels because
in almost all cases the PCV (hematocrit) was 3.0 times the
hemoglobin result.

The TIME study included 61 280 adult inpatients hospitalized
between August 1999 and July 2003. The TIME dataset
comprises 8.5 million laboratory results; of those are 211 777
CBC panels with 1 058 885 results and 239 253 CHEM7 panels
with 1 674 771 results. Supplemental table 1 of the online
appendix details TIME database characteristics. Current study
re-identification attacks did not attempt to retrieve actual
patient identities (eg, names, medical record numbers, or
demographic information) from an EMR. Such information was
not present in the TIME dataset. The TIME dataset used
randomly generated pseudo-identifiers to identify patients. Our
study only assessed if an attack could re-identify patients’
pseudo-identifiers.

Re-identification risks of unaltered laboratory results
To gauge the re-identification risk of a system without protec-
tion, we calculated the uniqueness of each sequence of four, five,
and six consecutive unaltered results for 10 commonly ordered
individual and numerical tests, as well as for unaltered single
CBC and CHEM7 panels. The 10 blood tests were: arterial pH,
glucose, total calcium, absolute lymphocytes (LymAbs), PCV,

PT-INR, total cholesterol, serum glutamic pyruvic transaminase
(SGPT) e also known as alanine aminotransferase (ALT),
creatine kinase, and albumin.

Algorithms to alter laboratory result values
We applied a “simple perturbation algorithm” to create random
offsets for laboratory results. Separate analyses varied the
perturbation rate p (ie, maximum perturbation percentage
applied), where p ˛ {2, 5, 7, 10, 15, 20}. We identified a test-
specific clinically established normal result, n, and determined
a test-specific minimal increment size, s. We calculated the
alteration amount (ie, offset), a, for a given laboratory result as
a randomly selected value where (�pn/100) # a # (pn/100). The
resulting offset, a, is rounded to the nearest value 6sN, where N
is an integer. The offset added to the original laboratory result
produces its perturbed value. For example, with perturbation
rate p¼5%, a normal glucose result n¼100 mg/dl, and a minimal
increment size of s ¼1 mg/dl, the simple perturbation algorithm
applied to an initial glucose result of 212 mg/dl would produce
an integer value between 207 and 217.
In an iterative testeevaluateerefine manner, an experienced

clinician-informatician developed the “expert-derived perturba-
tion algorithm” (full details in online appendix A). By
constraining perturbations in a specific manner, the algorithm
attempts to minimize changes in the clinical meaning of labo-
ratory results. The algorithm follows from two observationally
derived principles. First, the farther a laboratory result lies from
its normal test range, the more uniquely identifiable that result
is for a given patient. Fortunately, the farther a test is from
normal, the greater the range of results into which it can be
mapped without changing the clinical meaning of the result. For
example, perturbing a life-threatening serum potassium (K)
result from 12.0 mEq/l to 10.5 mEq/l (normal range
3.5e5.0 mEq/l) would not diminish its clinical meaning in the
manner that altering a result of 4.0 mEq/l by the same absolute
magnitude to become 2.5 mEq/l (an alarmingly low result)
would. Second, most laboratory test results do not distribute
symmetrically around their normal values. For example,
a normal white blood cell result of 4000/mm3 can only be
lowered by 4000 to the absolute minimum of 0. Conversely,
patients with severe infections or leukemia can have values
>50 000. Owing to this asymmetry, to preserve clinical meaning
of test results, one should apply different perturbation offsets to
low and high results.
The expert perturbation algorithm employs a binning

strategy to define the clinical interpretation of a test result. For
each named TIME dataset laboratory test, Vanderbilt’s
CLIAdcertified testing laboratorydprovided (a) the normal
value for the test and (b) the upper and lower limits of the
normal range. Using the judgment of clinician-members of our
research team, we additionally determined (c) “very high” and
“very low” thresholds for each test, indicative of implausible or
dangerous results. We derived cut-off points for these

Figure 1 Illustration of the threat
model in this study. The attacker
leverages a known patient’s laboratory
panel as a search key to discover
a corresponding record in a biomedical
research database. EMR, Electronic
medical record; HIPAA, Health
Insurance Portability and Accountability
Act.
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thresholds, in part, by determining thresholds above or below
which fewer results existed in the TIME dataset. A given test
result falls into only one bin: (a) below very low; (b) between
very low and the lower limit of normal; (c) within the normal
range; (d) above the upper limit of normal to very high; and (e)
above the very high threshold. The bin thresholds can be found
in supplemental table 2 of the online appendix. The expert
perturbation algorithm attempted to randomize original result
values to their bin of origination. The expert algorithm
included the same set of maximal percentage perturbations as
the simple algorithm.

Assessing protection afforded by simple and expert perturbation
To gauge the protection strength of the perturbation algorithms,
we used a rank-based re-identification algorithm according to
the threat model described above. We applied the re-identifica-
tion algorithm to the unaltered dataset and to perturbed data-
sets. For each perturbation algorithm, we calculated the number
of times that (a) an unaltered panel’s corresponding perturbed
value was matched within the top 10 ranks; (b) the average rank
of the match within the top 10 matches; and (c) the normalized

root-mean-square distance between the unaltered panel and its
corresponding perturbation. We tested for the significance of the
rate of re-identification within the top 10 ranks between the
simple and expert perturbation algorithms using the test of
equal or given proportions with a 95% confidence level and two-
sided alternative hypothesis.
Although we could not subject our data to any formal

research protocol analyses, we used two proxies to assess the
extent to which perturbation algorithms might influence the
utility of altered laboratory results for scientific research
studies. We first examined the frequency with which perturbed
results moved to different range bins than the original values,
using the proportion test. Second, we selected unperturbed
sequences of five consecutive patient-specific tests results x1,
x2, x3, x4, x5 that were originally monotonically increasing or
decreasing (ie, either x1 # x2 # x3 # x4 # x5 or x1 $ x2 $ x3 $ x4
$ x5). We assessed the rate at which each perturbation algo-
rithm disrupted the monotonic nature of these result
sequences. We evaluated the difference in the rates at which
perturbed test results maintained their monotonic sequence
nature. For the monotonic sequences, we also analyzed
whether the perturbation algorithms changed the slope and
Pearson correlation coefficient of a linear regression line
through them. Not all monotonic sequences are linear, but
linear regression provides a coarse method to analyze changes
in monotonically varying data sequences. We grouped mono-
tonic sequences for analysis based on the number of result bin
boundaries spanned by initial and final sequence results (x1,x5)
of the five-point series. One would expect perturbation
disruptions in monotonicity to occur more often in sequences
with relatively flat-sloped (ie, traversing only one bin)
sequences than in steeply rising or declining sequences. The
five-point sequences came from randomly selected TIME
patients’ serial CBC and CHEM7 results that met criteria for
monotonicity.
We assessed how perturbation algorithms influenced the

trade-off between re-identification risk and clinical meaning of
the laboratory test results. Measuring change in clinical meaning
via bin changes and assessing re-identification risk as rate of
correct matches of search keys within the top 10 candidates, we
summarized our results in a disclosure risk-data utility (RU)
confidentiality map.59

Table 1 Uniqueness for four, five, and six consecutive results of 10 representative laboratory tests and two panels (CBC and CHEM7)

Individual laboratory tests

Number of consecutive laboratory tests and proportion unique (with number of items qualifying for analysis)

Test name 4 5 6

pH 0.590 (N¼83 941) 0.937 (N¼75 954) 0.994 (N¼69 175)

Gluc 0.996 (N¼133 259) 1.000 (N¼110 669) 1.000 (N¼93 693)

Ca 0.723 (N¼51 905) 0.974 (N¼41 140) 0.998 (N¼33 283)

LymAbs 0.986 (N¼27 591) 0.998 (N¼22 361) 1.000 (N¼18 615)

PCV 0.195 (N¼201 941) 0.575 (N¼172 619) 0.886 (N¼149 514)

PT-INR 0.343 (N¼47 768) 0.559 (N¼38 875) 0.725 (N¼32 188)

Chol 1.000 (N¼780) 1.000 (N¼613) 1.000 (N¼478)

SGPT 0.996 (N¼12 655) 0.999 (N¼9807) 1.000 (N¼7850)

CK 0.963 (N¼6509) 0.979 (N¼3659) 0.986 (N¼2219)

Alb 0.649 (N¼11 520) 0.924 (N¼8606) 0.989 (N¼6580)

Panel name Laboratory panels

CBC (five components) 0.988 (N¼211 777)

CHEM7 (seven components) 0.989 (N¼239 253)

Alb, albumin; Ca, calcium; CBC, complete blood count; CHEM7, blood test measuring electrolytes, glucose, and renal function; Chol, cholesterol; CK, creatine kinase; Gluc, glucose; LymAbs,
absolute lymphocytes; PCV, hematocrit (packed cell volume); PT-INR, international normalized ratio for prothrombin time; SGPT, serum glutamic pyruvic transaminase.
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Figure 2 Top-10 match rate as a function of perturbation level for the
protection algorithms. CBC, complete blood count; CHEM7, blood test
measuring electrolytes, glucose, and renal function.
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RESULTS
Distinguishability of unprotected laboratory results
Table 1 indicates the uniqueness of unaltered laboratory results
for 10 representative tests using sequences of four, five, and six
consecutive results, as well as for single CBC and CHEM7
panels. Sequences of five and six results were greater than 95%
unique within the 61 280 patient dataset for glucose, calcium,
LymAbs, cholesterol, SGPT, and creatine kinase. Sequences with
six results were >98% unique for all tests except PCV and PT-
INR. Any given CBC and CHEM7 panel had a 99% chance of
being unique in the dataset.

Protection afforded by perturbation algorithms
Figure 2 illustrates the CBC and CHEM7 re-identification risks
for the simple and expert perturbation algorithms. Supple-
mental table 3 of the online appendix shows corresponding
original and perturbed average test values, first quartiles, third
quartiles, maximums, and minimums. The average perturbed
test results were close to the original means for both algo-
rithms. Figure 2 shows how often the re-identification algo-
rithm matched the actual search key values to their
corresponding perturbed values within the top-10 matches. As
the degree of perturbation increased, the re-identification rates
decreased. For both perturbation algorithms, the top-10 match
rates fell below 20% when the perturbation rate exceeded
5e7% for the CBC and exceeded 10e15% for the CHEM7. The
expert and simple algorithm re-identification rates differed

significantly (p value <2.2e-16) for test perturbation rates of
$5, although the absolute magnitudes of the differences were
small. Data underlying this graph appears in supplemental
table 4 of the online appendix.

Preserving the clinical meaning of perturbed laboratory results
To assess changes in the clinical meaning of laboratory results
introduced by perturbation, we analyzed the proportion of
original results that moved to different result range bins from
their initial bins. Figure 3 depicts the proportion of individual
test results from CBC and CHEM7 panels moved by perturba-
tion to an adjacent bin. As the perturbation level increased, the
proportion of results that switched bins increased. The expert
algorithm had fewer shifts than the simple algorithm (p value
<2.2e-16) at perturbation rates of $2%. The bin crossover rate
never exceeded 4% for expert perturbation or 26% for the simple
perturbation algorithm. Perturbation displacements of two bins
occurred only with the simple algorithm, and in <5% of
instances. Data underlying this graph appears in supplemental
table 5 of the online appendix.
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Figure 3 Proportion of CBC and CHEM7 laboratory results where
a perturbation algorithm changed result range bins. CBC, complete blood
count; CHEM7, blood test measuring electrolytes, glucose, and renal
function.

Table 2 Impact of perturbation algorithms on slope and coefficient of correlation for five consecutive monotonic results for patients’ hematocrit (PCV,
packed cell volume) tests

Laboratory
test

Result
sets (n)

Perturbation
rate

Perturbation
algorithm

Bins
spanned

Original
slope

Perturbation
slope

Slope
difference (%)

Original
R

Perturbation
R

R difference
(%)

PCV 1407 5 Simple 1 �2.49 �2.21 12 �0.97 �0.90 7.2

PCV 1407 5 Expert 1 �2.49 �2.28 8.4 �0.97 �0.91 6.5

PCV 1407 15 Simple 1 �2.49 �2.33 6.4 �0.97 �0.73 25

PCV 1407 15 Expert 1 �2.49 �2.66 6.6 �0.97 �0.78 19.2

PCV 951 5 Simple 2 �3.42 �3.06 11 �0.96 �0.92 5.1

PCV 951 5 Expert 2 �3.42 �3.11 9.1 �0.96 �0.92 4.9

PCV 951 15 Simple 2 �3.42 �3.15 7.8 �0.96 �0.80 17.3

PCV 951 15 Expert 2 �3.42 �3.33 2.8 �0.96 �0.83 14

PCV 98 5 Simple 3 �5.35 �5.03 6.0 �0.95 �0.90 5.2

PCV 98 5 Expert 3 �5.35 �4.82 9.9 �0.95 �0.89 5.7

PCV 98 15 Simple 3 �5.35 �4.86 9.0 �0.95 �0.86 8.6

PCV 98 15 Expert 3 �5.35 �5.44 1.7 �0.95 �0.87 7.7
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Figure 4 The proportion of consecutive laboratory pairs that retained
their original monotonic trajectory after perturbation.
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We also assessed potential changes in clinical meaning of
perturbed data by identifying sequences of monotonically
increasing or decreasing results for a patient. We compared the
slope and Pearson’s R before and after perturbation. Table 2
shows results for PCV tests, which were representative of all
tests. Supplemental table 6 of the online appendix contains
results for all 12 components of the CBC and CHEM7 labora-
tory panels. The expert perturbation algorithm especially at
higher perturbation rates, tended to more closely maintain the
Pearson coefficient of correlation (R2) and the slope.

Figure 4 presents analysis of the perturbation algorithm’s
disruptions of monotonic sequences. The expert perturbation
algorithm maintained monotonic sequences more often than the
simple algorithm. Figure 4 shows the influence of the number of
bins spanned by the sequence. Statistically significant differ-
ences occurred at all tested perturbation rates of $7. Data
underlying this graph appears in supplemental table 7 of the
online appendix.

Comparing retention of clinical meaning and re-identification risk
for two algorithms
Figure 5 is a disclosure RU confidentiality map. It illustrates how
re-identification rates change in comparison rates of preservation
of clinical meaning (in bin changes) for each algorithm at various
perturbation levels. At each perturbation rate, the simple-
to-expert algorithm differences in re-identification rates were
small. In contrast, the expert algorithm maintained clinical
meaning substantially better than the simple algorithm,
especially at larger perturbation rates.

DISCUSSION
This study used 8.5 million test results from 61 280 inpatients to
illustrate how biomedical research databases carry the potential
for re-identification based on the laboratory results they include.
Most sequences of five and six consecutive patient laboratory
results were at least 95% unique; two common test panels’
results, CBC and CHEM7, were over 99% unique. To address
such risks, we developed and evaluated two laboratory test

result protection algorithmsd“baseline” simple perturbation
and a clinical knowledge-derived expert perturbation scheme.
The expert algorithm compensated for asymmetry and skews in
the distributions of test result values and attempted to maintain
the clinical meaning of the results.
For all perturbation rates, the expert algorithm exhibited

slightly higher re-identification risk than the simple algorithm.
However, for several metrics, the expert perturbation algorithm
was disproportionately better in maintaining the meaning of
test results (eg, figure 5).59 Authors envision future institutions
using similar approaches to meet protection goals while main-
taining the clinical meaning of the shared laboratory results. Our
approach enables institutions to determine acceptable re-iden-
tification risk levels, specify acceptable data permutation limits,
and then use an RU confidentiality map to determine in an
informed manner what the trade-offs are.
Our investigation had several limitations. The study used

laboratory results derived from a single tertiary-care medical
center. Referral hospitals with exceptionally ill patients might
have atypical laboratory result distributions. Others should
replicate our study using different populations. Additionally, if
a biomedical research database remains within the confines of
one institution, administrators can, and typically do, set strict
disciplinary policies and monitor data access by employees.
When penalties are high, detection mechanisms sound, and
attack rates low, the robustness of protection schemes need not
be very high. Better protection is desirable, however, when
institutions share data across local boundaries. Monitoring is
more difficult then, since shared research dataset administrators
know who downloads the dataset, but they cannot know how
researchers remotely analyze downloaded data. Lacking an audit
trail, one might not detect a re-identification attack. Further-
more, while the data perturbation algorithms proposed in this
work provide increased re-identification risk protection
compared with the absence of data perturbation, they do not
guarantee protection. Additional studies should determine the
degree of protection provided by algorithms similar to ours, and
further research may allow better algorithms to evolve. In
addition, future studies should employ a wider range of attack
models. Re-identification risks do not solely derive from labo-
ratory datadtrue risk assessment must consider triangulated
attacks that also incorporate other pieces of information (eg,
demographics). Future studies should ideally assess the degree to
which data perturbation algorithms might affect scientific study
results by applying analyses to both unaltered and perturbed
datasets obtained by the research protocols.

CONCLUSION
This feasibility study developed and evaluated a practical,
expert-derived perturbation algorithm for reducing re-identifi-
cation risks for research datasets containing laboratory results
data. With a growing need for research-related clinical data
sharing, and in view of healthcare-related federal privacy regu-
lation, methods to mitigate risks of re-identification are impor-
tant. Laboratory results data in biomedical research databases
are highly distinguishable in the absence of data perturbation.
Our study demonstrated the ability of expert-derived data
perturbation algorithms to reduce laboratory result distin-
guishability while potentially minimizing the changes in clinical
meaning of the perturbed data. Our preliminary study results
merit further investigation.
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Figure 5 Disclosure risk-data utility map that compares the proportion
of results that retain their clinical meaning after perturbation and the rate
of correctly re-identifying a search key in a dataset. The points along the
lines represent the perturbation rates of, from left to right, 20, 15, 10, 7,
5, and 2%. The rightmost point represents analysis of unaltered test
panel results. CBC, complete blood count; CHEM7, blood test measuring
electrolytes, glucose, and renal function.
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