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Abstract
Congestive heart failure is an inexorable disease associated with unacceptably high morbidity and
mortality. Preclinical results indicate that gene transfer using various proteins is a safe and
effective approach for increasing function of the failing heart. In the current review, we provide a
summary of cardiac gene transfer in general and summarize findings using adenylyl cyclase 6 as
therapeutic gene in the failing heart. We also discuss the potential usefulness of a new treatment
for congestive heart failure, paracrine-based gene transfer.
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INTRODUCTION
Congestive heart failure (CHF) is a major cause of morbidity and mortality with increasing
social and economic costs.1 CHF is the only cardiovascular disease that is increasing in
prevalence, and there are currently 6 million people in the United States and >23 million
worldwide with CHF. Patients with CHF who have symptoms with mild activity or at rest
(Class III and Class IV) have a poor long-term outcome, with up to 50% of patients dying
within 4 years of symptom onset despite advanced pharmacological and device therapies.2

Heart transplantation has an 80% 5-year survival rate, but fewer than 2500 cardiac
transplants are performed in the United State each year. Because the prevalence of CHF is
increasing and outlook remains dismal, new therapeutic approaches for CHF, including gene
transfer, are warranted.

Several factors have impeded the advancement of clinical gene transfer for the treatment of
CHF. These impediments include selection of (a) an effective gene; (b) suitable vectors and
promoters with high efficiency and long-term expression with minimal toxicity and
immunogenicity; and (c) delivery methods that are easy to deploy and result in safe and
effective expression in the heart with minimal adverse effects. It is encouraging that virus-
mediated gene transfer of a number of genes appears to increase cardiac function in animal
models of heart failure.3–7 At present, clinical trials using virus-mediated gene transfer of
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sarcoendoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) and adenylyl cyclase 6 (AC6) for
CHF are in progress. Other potential gene transfer proteins, with preclinical data indicating
efficacy in CHF treatment, include βARKct, an inhibitor of G-protein-coupled receptor
kinases, and S100A1.8

We now will review cardiac gene transfer briefly, discuss cardiac AC6 gene transfer for
CHF, and introduce an alternative approach, paracrine-based gene transfer. The exciting
findings from preclinical studies using other potentially therapeutic proteins to increase
function of the failing heart are reviewed elsewhere in this issue of Gene Therapy.

CARDIAC GENE TRANSFER
For CHF treatment, the goal has been to deliver vectors encoding therapeutic genes safely
and effectively to the heart. Although we will discuss separately the selection of therapeutic
genes, vectors, promoters and delivery methods, these components ultimately must be
considered collectively to select the most effective gene transfer approach.

Selection of therapeutic genes for CHF
Cyclic AMP (cAMP; 3′-5′-cyclic adenosine monophosphate) and Ca2+ handling profoundly
influence left ventricular (LV) contractile function and relaxation. It is not surprising that a
majority of promising therapeutic genes for CHF target defective cAMP or Ca2+ handling in
cardiac myocytes. Additionally, decreasing myocardial ischemia by increasing myocardial
blood flow is an attractive approach for myocardial infarction-induced CHF and also for
CHF in general. Although myocardial ischemia most commonly is treated by coronary
artery bypass graft surgery and percutaneous coronary interventions, there may be a role for
angiogenic gene transfer.9–11 This strategy has been reviewed elsewhere12,13 and will not be
discussed further here. Manipulation of RNA stability and protein synthesis by small RNAs
(for example, microRNA) may provide new options for CHF gene transfer. However,
concerns about specificity must first be resolved.14

β-Adrenergic receptor signaling pathway—CHF is generally associated with
impaired β-adrenergic receptor (βAR) responsiveness, and elevated circulating
catecholamine levels. Changes in LV contractility are associated with βAR downregulation
and desensitization, βAR uncoupling, reduced expression or function of adenylyl cyclase
(AC), and impaired cAMP generating capacity.15

Pharmacological attempts to increase LV function in clinical CHF by increasing cAMP
signaling have failed. In animal studies, chronic infusion of isoproterenol (a βAR agonist)
and cardiac-directed expression of β1AR, Gαs and cAMP-dependent protein kinase A all
have resulted in cardiomyopathy. Dobutamine (a βAR agonist) and milrinone (a
phosphodiesterase inhibitor that increases intracellular cAMP levels) increase cardiac
contractile function in clinical CHF, but patients do not get a survival advantage, and
milrinone increases mortality.16 These deleterious effects are presumed to result from
sustained increases in cAMP production. Indeed, cardiac-directed expression of
constitutively active human β1AR is associated with cardiomyopathy.17,18

Deletion of G-protein-coupled receptor kinase 2 (a kinase that attenuates βAR signaling)
restores βAR responsiveness in the failing heart and increases cardiac function and
survival.19 Inhibition of G-protein-coupled receptor kinase 2 by βARKct, a 195 amino-acid
C-terminal fragment of G-protein-coupled receptor kinase 2, also increases contractile
function in several animal models of CHF and in failing human cardiac myocytes.8 These
effects are associated with normalization of βAR density and βAR signaling. Importantly,
βARKct and βAR blockade appear to act synergistically to increase βAR signaling to
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normal levels,20 although βARKct also may increase cardiac function by regulating Gβγ
and apoptosis signaling.21,22

It is surprising that expression of AC6, the enzyme catalyzing cAMP formation, shows
beneficial effects on the failing heart. These beneficial effects reflect unique feature of AC6,
not shared by other elements of the βAR–Gs–AC pathway. For example, AC6 expression
does not affect basal cAMP production in the normal heart, and may increase cardiac
function through cAMP-independent mechanisms. These features of AC6 will be discussed
in more detail below.

Ca2+ handling—Ca2+ directly regulates cardiac contraction and relaxation. CHF is
associated with defective sarcoplasmic reticulum (SR) Ca2+ uptake and Ca2+ release. Ca2+

sensitivity of the contractile apparatus is also impaired in CHF. It is therefore logical to
consider strategies to improve cardiac function by correcting defective Ca2+ handling using
gene transfer.

Preclinical studies in animal models of CHF have identified SERCA2a as a promising
candidate for gene transfer.23,24 A study of transgenic rats with cardiac-directed SERCA2a
expression showed provocation of cardiac dysrhythmias,25 but similar problems were not
apparent in subsequent studies using SERCA2a gene transfer.26,27 Intracoronary delivery of
adeno-associated virus (AAV) encoding SERCA2a appears to be safe in a trial of 39
subjects with CHF.27 These results indicate the potential safety of intracoronary delivery of
AAV vectors in patients with CHF.

S100A1 belongs to the family of S100 EF-hand Ca2+-binding proteins. Expression of
S100A1 increases SERCA2a Ca2+ uptake activity, and also stabilizes the release of Ca2+

channel ryanodine receptor in the failing heart.28 Interestingly, S100A1 expression and βAR
blockade act synergistically to improve LV function.

Other Ca2+ handling regulators (for example, protein phosphatase inhibitor 1, sorcin and
parvalbumin) also show favorable effects on LV function in animal models of
cardiomyopathy after virus-mediated gene transfer. Further studies are warranted to
establish their usefulness in clinical CHF.

Selection of vectors
The ideal vectors for cardiac gene transfer should exhibit (1) high level expression; (2)
limited off-target expression; (3) long-term expression; and (4) minimal toxicity and
immunogenicity. In general, virus vectors provide superior cardiac transgene expression to
non-virus vectors. Regulated expression is also desirable, but the limited capacity of vectors
and large size of transgenes currently used in intracoronary delivery generally preclude its
use.

The commonly used virus vectors for cardiac gene transfer are adenovirus, AAV and
lentivirus. More detailed information regarding commonly used vectors have been reviewed
elsewhere,29 and only brief mention will be made here. AAV has less immunogenicity and
may provide long-term expression. However, its small packaging capacity limits the size of
gene expression cassette (including promoter, regulatory elements and transgene) to less
than 5 kb. Lentivirus has larger packaging capacity and also low immunogenicity, but
cannot easily move across the endothelial cell, thus lentivirus is unsuited for intracoronary
delivery.30
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Selection of delivery methods
Detectable gene transfer to the heart has been achieved by several delivery methods. Direct
intramyocardial injection provides transgene expression along the injected area.
Intracoronary delivery of adenovirus is not typically associated with myocardial
inflammation, except at extremely high doses,31 but direct myocardial injection can cause
inflammation.32,33 Intracoronary delivery of AAV2 is less efficient than adenovirus,34

providing a rationale for selection of adenovirus in the AC6 clinical trial. Although
intravenous delivery of newer AAV vectors (AAV6, AAV8 and AAV9) appears to provide
substantial cardiac gene transfer, expression in the liver and other organs is also robust.35

The use of the term ‘cardiotropic’ for these vectors is misleading because it suggests cardiac
specificity, which clearly does not occur. A potential shortcoming for intravenous delivery
of AAV vectors is that the high dose of AAV required to ensure adequate cardiac gene
transfer, which limits its clinical application.

Indirect intracoronary delivery is required in rodents, because the small caliber of the
coronary arteries in mice and rats precluded direct intraluminal insertion. In this procedure,
the ascending aorta and pulmonary artery are clamped, and virus vectors injected into the
LV chamber are forced into the coronary arteries. In conjunction with hypothermia, indirect
intracoronary delivery enables prolonged dwell time without ischemic injury to the heart and
brain. These methods have been invaluable in cardiac gene transfer in rodents, and provide
superior levels of cardiac transgene expression compared with intravenous delivery, even
with AAV5, AAV6 and AAV9 (unpublished data).

Pharmacological agents that promote transcytosis after vascular delivery of vector can
increase gene transfer efficiency. Such pharmacological agents, including histamine,
nitroprusside, serotonin, acetylcholine, sildenafil, vascular endothelial growth factor and
substance P, facilitate transvascular movement of virus vectors across the endothelial border
into the cardiac interstitium. Finally, a percutaneous closed-loop recirculation system has
been used to increase AAV-mediated cardiac gene transfer in sheep.7

Selection of delivery method should be considered in the context of several factors,
including vector type, species and organ targeted, to obtain optimal results. Because of the
safety concerns, invasive methods requiring thoracotomy, cross-clamping of the aorta or
cardiopulmonary bypass are not applicable in clinical settings. Refinements in methods of
delivery have improved transgene expression. The vector delivery method easiest to apply,
safest and most effective will ultimately be the one adopted for clinical applications.

AC6: A PROMISING CANDIDATE FOR GENE TRANSFER
AC is the enzyme that converts ATP to cAMP. In cardiac myocytes, AC6 and AC5 are the
two dominant AC isoforms. AC5 and AC6 have 65% amino-acid homology, and each
contribute equally to cAMP generation in cardiac myocytes and LV membranes.36,37

Deletion of AC5 mildly increases SR Ca2+ handling and LV function.36 In contrast, deletion
of AC6 is associated with marked impairment of Ca2+ signaling and LV function.37 These
observations suggest that modulating cardiac AC6 content would have favorable effects on
the failing heart (Table 1).

AC6 Increases LV responsiveness to βAR stimulation
As previously alluded to, cAMP signaling is of pivotal importance in LV contraction and
relaxation. AC6 protein content sets a limit on βAR-dependent cAMP generation in cardiac
myocytes.38 Transgenic mice with cardiac-directed expression of AC6 show increased
cAMP generating capacity in cardiac myocytes after βAR stimulation, but no change in
cardiac βAR density or protein contents of Gαs and Gαi2.39,40 Associated with increased
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cAMP generating capacity is increased LV contractile function and relaxation in response to
βAR stimulation. Conversely, AC6 deletion is associated with decreased LV function and
βAR responsiveness.37 Moreover, AC6 gene transfer via intracoronary delivery increases
LV function in response to βAR stimulation in mice and pigs.41,42 AC6 expression has no
effect on basal LV function or basal cAMP production in LV membranes or cardiac
myocytes.41 When expressed at high levels (10- to 20-fold increase in AC6 protein) for >20
months, no abnormalities are seen in LV size or basal function, and such mice have normal
longevity.40 Unaltered basal cAMP production is unique to the AC6 transgenic mouse: it is
not seen when other elements of the βAR signaling pathway are expressed in the hearts of
transgenic lines (β1AR, Gsα, protein kinase A). This unique feature of cardiac AC6
expression may in part explain why cardiac-directed AC6 expression is beneficial rather
than deleterious.

AC6 improves defective Ca2+ handling in the failing heart
Mimicking important aspects of clinical CHF, Gαq cardiomyopathy is associated with
impaired cAMP production, defective Ca2+ handling, LV hypertrophy, dilation, and
abnormal LV systolic and diastolic function.43 Expression of AC6 in this cardiomyopathic
background increases LV contractile function and relaxation, attenuates LV hypertrophy and
dilation, and increases survival.44–46 AC6 expression is not associated with increases in
heart rate or arrythmias.47 Correction of defects in βAR-stimulated cAMP production and
SR Ca2+ uptake by AC6 expression are of mechanistic importance for these functional
improvements.48 In addition, patch clamping shows that AC6 expression corrects prolonged
action potential associated with Gαq cardiomyopathy, suggesting a possible beneficial role
of AC6 in attenuating ventricular arrythmias.49

AC6 expression also increases survival by two fold after acute myocardial infarction,
although it has no effect on infarct size.50 This favorable effect of AC6 on survival may be
resulted from increased LV function and reduced LV dilation. Increased LV function is
associated with increased phospholamban (PLB) phosphorylation, SR Ca2+ uptake and
SERCA2a affinity to Ca2+, in addition to reduced AV block. AC6 expression also increases
engraftment of inducible pluripotent stem cells in the infarcted area, suggesting a novel
function of AC6 in the setting of myocardial ischemia.51

In mice with severe CHF induced by myocardial infarction, activation of cardiac AC6
expression increases LV contractility and reduces LV dilation, as shown by increases in LV
ejection fraction, pressure development (LV +dP/dt), cardiac output and slope of the
endsystolic pressure–volume relationship. Diastolic function is also improved by the
activation of cardiac AC6 expression. Similarly, AC6 gene transfer in pacing-induced CHF
in pigs shows favorable effects on LV function and reduces LV chamber dilation, thereby
reducing LV end-systolic wall stress.42 Associated with these favorable effects are increases
in βAR-stimulated cAMP production, protein kinase A activity and cardiac troponin I
phosphorylation at Ser23/24.3 No change is found in protein contents of other signaling
elements important for LV function. As cardiac troponin I phosphorylation at Ser23/24 is
critical for increase of off-rate for Ca2+ exchange with cTnC and also for improvement of
LV function in CHF,52,53 these results suggest that increased cardiac troponin I
phosphorylation is important for AC6 function in the failing heart.

A recent publication indicated that constitutive cardiac expression of AC6 has a deleterious
effect on LV function in mice 4 weeks after proximal aortic constriction,54 but a subsequent
paper showed beneficial effects in the same model using regulated AC6 expression.55
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AC6 increases function in the aged heart
Cell senescence is associated with reduced LV function and impaired βAR responsiveness
in aged myocardium.1,2 LV contractile reserve at age 80 years is less than one-half of that at
age 20 years. This age-related reduction of cardiac function affects the severity and
prognosis of CHF in the elderly.2 Epidemiological studies have found that CHF is a
common disease of the elderly.1,2 The incidence of CHF in the United States is 1% in people
aged 65 years and older and increases to over 30% at age 80 years.2

In the aging heart, reduced LV function and βAR responsiveness occur in the presence of
increased plasma catecholamine levels,56 indicating an abnormality in AC signaling.
Reduced cardiac AC6 expression and impaired LV cAMP generation capacity is associated
with advanced age. The hypothesis that increased AC6 protein content in the aged
myocardium increases LV function was tested using a transgenic mouse line with regulated
AC6 expression.57

Activation of cardiac AC6 expression in aged mice (aged 20 months) improves LV +dP/dt,
stroke work, end-systolic pressure–volume relationship and −dP/dt.57 These changes in
contractile function and relaxation are associated with increased SR Ca2+ uptake and
SERCA2a affinity for Ca2+. There is no evidence of LV hypertrophy or fibrosis after
activation of AC6 expression in the aged myocardium. Activation of AC6 expression is also
associated with increased cAMP generating capacity, cAMP-dependent protein kinase
activity, cardiac troponin I phosphorylation and PLB phosphorylation. There are no changes
in fetal gene expression, SERCA2a protein content, calsequestrin protein content and Na+–
Ca2+ exchanger protein content. Interestingly, activation of AC6 expression has no effect on
LV contractile function and relaxation in young mice (aged 7 months).

AC6 and cAMP-independent effects
In addition to cAMP-dependent events, AC6 expression affects cell signaling through
mechanism independent of cAMP generation (Figure 1). For example, AC6 gene transfer
increases protein content of ATF3 (activating transcription factor 3), which in turn
suppresses gene transcription of atrial natriuretic factor (ANF) and PLB. These effects of
AC6 occur in the absence of catecholamines and in the presence of specific protein kinase A
inhibitors, suggesting that they are independent of cAMP signaling.58–60 Decreased PLB
content would be predicted to increase SR Ca2+ uptake by SERCA2a and have a favorable
effect on cardiac myocyte contractile function and relaxation. AC6 also directly binds to
PHLPP2 (pleckstrin homology domain leucine-rich protein phosphatase 2) and prevents
PHLPP2 inhibition on Akt activity in cardiac myocytes.59 Activated Akt can phosphorylate
PLB at Ser16 site, although PLB is not a good substrate for Akt.60 Like native form of AC6,
an AC6 mutant (AC6mut) with marked impairment in cAMP generation, influences
intracellular signaling events. AC6mut also activates Akt, increases ATF3 expression and
reduces PLB expression. These data confirm that many of the effects of AC6 on cell
signaling do not require increased cAMP generation. Additional studies are warranted to
investigate the relative importance of cAMP-dependent versus cAMP-independent cell
signaling in regulating cardiac myocyte and LV function.

In summary, these studies demonstrate that AC6 expression has protean cardiac effects, both
cAMP-dependent and cAMP-independent, and safely increases function of the failing heart
(Table 1). Based on these results, a clinical trial of cardiac AC6 gene transfer in CHF
patients is in progress (ClinicalTrials.gov, NCT00787059). This randomized, double-
blinded, placebo-controlled trial will evaluate the safety and clinical effectiveness of
ascending doses of human adenovirus-5 (E1/E3-deleted, replication incompetent) encoding
human AC6 (Ad5.hAC6) by intracoronary delivery.
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PARACRINE-BASED GENE TRANSFER
Gene transfer for the treatment of cardiovascular diseases is conceptually attractive, but
difficulty in obtaining a high-yield transgene expression in the heart, in a manner that can be
easily and safely applied, has been a chief impediment to progress. Current potential
methods of gene transfer for clinical heart disease include intramuscular injection into heart
muscle, intracoronary delivery or percutaneous recirculation—methods that typically
provide limited expression or are cumbersome to apply. Consequently, clinical cardiac gene
therapy trials have been somewhat disappointing likely because of failure to obtain adequate
gene expression in the heart to attain a beneficial effect.

To circumvent this problem, we have considered the usefulness of a vector encoding a
paracrine-type transgene, which affects cardiac function after being released to the
circulation from distant sites. For example, systemic delivery of a long-term expression
vector encoding a paracrine gene would enable sustained release of the transgene to serum,
where it could exert beneficial effects on the heart ‘from a distance’. Such an approach
would limit the number of candidate genes—insulin-like growth factor-I (IGF-I), growth
hormone, B-type natriuretic peptide, urocortin-2 (to name a few)—but may enhance the
prospects of successful clinical gene therapy for CHF. An additional advantage of this
approach is that it would enable CHF patients to be treated by a simple intravenous injection
during an office visit, circumventing the need for more expensive and potentially hazardous
invasive procedures such as cardiac catheterization and intracoronary vector delivery.

A seminal paper in clinical gene therapy recently reports that intravenous delivery of an
AAV vector increases serum levels of transgene in a sustained manner safely and
effectively.61 This is demonstrated in human subjects with hemophilia B using AAV8
encoding human Factor IX, which is deficient in such patients. Although this study is by
necessity limited to a few subjects (n=6), sustained increases in serum levels of Factor IX
are documented, and transfusion requirements are reduced, demonstrating a clinical benefit.
This paper documents proof of concept for the paracrine approach, and could be tailored
easily for application to clinical CHF.

In considering such an approach, the use of a long-term expression vector such as AAV
necessitates regulation of transgene expression. Integrating a regulation system (for
example, tetracycline-regulated or rapamycin-regulated system)62,63 into the AAV vector
would enable turning transgene expression off in the event of untoward effects. For
example, if such effects occur, the subject would simply stop taking the activating
compound (tetracycline or rapamycin analog). Regulated expression would also enable
intermittent rather than constant transgene expression, allowing the physician and patient to
tailor therapy by altering the oral dose of activating agents. Doses as low as 10–20 mg
doxycycline on alternate days could be adequate to activate the more recent tetracycline-
regulation systems.64

To test the feasibility of paracrine-based gene transfer in the failing heart, we injected an
AAV5 vector encoding IGF-I under tetracycline-regulated expression (AAV5.IGFI-tet) into
skeletal muscle of rats with myocardial infarction-induced severe CHF.63 IGF-I is a peptide
with protean favorable cardiovascular effects (inotropic, angiogenic, antiapoptotic). Five
weeks after gene transfer, 50% of the rats were randomized to receive doxycycline in their
water supply (to activate IGF-I expression; IGF-On); the remaining rats did not receive
doxycycline and served as controls (IGF-Off). IGF-On rats showed increased LV ejection
fraction (P=0.02) and reduced LV end-systolic diameter (P=0.03). Furthermore, LV
contractile function, assessed by the rate of pressure development (LV +dP/dt) during
dobutamine infusion, is increased after initiation of IGF-I expression (P=0.001). In addition,
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favorable changes in cardiac output (P=0.007) and stroke work (P=0.003) are observed.
Serum IGF-I is increased 5 weeks after transgene activation (IGF-Off: 164 ± 24 ng ml−1;
IGF-On: 218 ± 11 ng ml−1; P=0.008; n=9 each group). These data indicate that skeletal
muscle injection of AAV5.IGFI-tet enables tetracycline-activated expression, increases
serum IGF-I levels and improves function of the failing heart.63

Translation of these studies to clinical trials will require selection of the optimal AAV vector
(likely to be AAV8 or AAV9 rather than AAV5), and intravenous rather than intramuscular
delivery. For example, clinical trials in hemophilia that employed intramuscular delivery of
AAV vectors are associated with immune responses that abrogated therapeutic Factor IX
levels,65,66 a problem that is subsequently circumvented by intravenous delivery.61

Paracrine-based gene transfer may be suitable for any circulating peptide with beneficial
cardiovascular effects. For example, in addition to IGF-I and growth hormone, B-type
natriuretic peptide is another biologically effective peptide used for the treatment of clinical
CHF that could be delivered in a similar manner. Moreover, prostacyclin analogs can be
effective in treating pulmonary hypertension. Current agents (epoprostenol and trepostinil)
require constant systemic injection, and the treatment itself is associated with high
morbidity.67 A regulated expression vector encoding prostacyclin synthase is a plausible
paracrine-type gene therapy of pulmonary hypertension.

CONCLUSION
Gene transfer for the treatment of CHF is justified because there is an unmet medical need
for treating CHF, and gene transfer, based on preclinical studies, has the potential to meet
that need. Preclinical studies have documented the therapeutic potential in CHF of many
genes, two of which have advanced to clinical trials: SERCA2a and AC6. However, the
major impediment to progress has been the difficulty in obtaining a high-yield transgene
expression in the heart. One approach that could potentially circumvent this problem is
paracrine-based gene transfer, in which systemic injection of a long-term regulated
expression vector encoding a paracrine gene with favorable cardiovascular effects. Whether
this approach can overcome numerous obstacles and improve prospects for successful
cardiovascular gene therapy is unknown, but preclinical studies are promising. A final note:
cell-based therapy has not yet been demonstrated to be effective in double-blinded, placebo-
controlled, randomized clinical trials of CHF. Gene transfer is simpler, easier to regulate,
and, based upon preclinical studies just as promising as cell therapy. It will be interesting to
see which of these approaches is more useful in the treatment of clinical CHF.
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Figure 1.
Hypothetical model of cAMP-independent effects of AC6 gene transfer. Cardiac AC6
expression has beneficial cardiac effects, through both (a) cAMP-dependent and (b) cAMP-
independent events. The hypothetical mechanistic model summarizes data from experiments
using adenovirus-mediated gene transfer of AC6 in cultured cardiac myocytes. Transgene
AC6, widely distributed in the cytoplasm owing to gene transfer, has access to previously
inaccessible intracellular proteins and cytoplasmic compartments. For example, AC6 is
associated with the nuclear envelope and increased nuclear ATF3 expression is observed,
which reduces PLB expression.58 Association of transgene AC6 with PHLPP2 (an Akt
phosphatase) reduces its phosphatase activity, promoting Akt activation and subsequent PLB
phosphorylation.59,60 The effects of transgene AC6 on PLB, which promote calcium
handling and contractile function, are cAMP independent. α, Gαs subunit; βγ, Gβγ
subunits; Akt-P, Akt phosphorylation; ATF3, activating transcription factor 3; C1, AC6
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catalytic domain 1; C2, AC6 catalytic domain 2; LV, left ventricular; M1, AC6
transmembrane domain 1; M2, AC6 transmembrane domain 2; PHLPP2, pleckstrin
homology domain leucine-rich repeat protein phosphatase 2; PKA, cAMP-dependent protein
kinase A; PLB, phospholamban; PLB-P, phospholamban phosphorylation.
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Table 1

AC6 expression and cardiac function

Model Findings Ref

Transgenic mice

   AC6 No change in basal cAMP production and LV function; increased LV function in response to βAR stimulation 39

   AC6 Facilitation of atrioventricular nodal conduction without altering sinus node function 68

   AC6 and acute MI Reduced mortality in acute MI; improved SR Ca2+ uptake; normalized PLB phosphorylation 50

   AC6 and MI Decreased fibrosis and increased engraftment of iPS cells in the infarcted area 51

   AC6 × Gαq Restored cAMP generation capacity; increased LV function and βAR responsiveness 44

   AC6 × Gαq Decreased LV hypertrophy, increased LV function and prolonged survival in Gαq cardiomyopathy 45

   AC6 × Gαq Normalized LV SR Ca2+ uptake and PLB phosphorylation in Gαq cardiomyopathy 48

   AC6 × Gαq No alteration in heart rate regulation 47

   AC6 × Gαq Corrects prolonged action potential duration in Gαq cardiomyopathy 49

   AC6-tet Increased LV responsiveness to βAR stimulation after activation of cardiac-directed AC6 expression 40

   AC6-tet in CHF Increased LV function of failing heart (CHF induced by MI); normalized cTnI phosphorylation 3

   AC6-tet and aging Improved Ca2+ handling and increased LV function in mice aged 24 months, but not in young mice 57

   AC6 deletion Marked adverse effects on Ca2+ uptake; reduced LV function in response to βAR stimulation 37

Gene transfer in cells

   NRCM AC6 amount determines NRCM response to βAR stimulation 38

   NRCM AC6 reduces PLB expression by increasing ATF3 content through cAMP-independent pathway 58

   NRCM AC6 increases PLB phosphorylation by activating Akt (cAMP independent) 60

   NRCM AC6 regulates Akt activity in NRCM (cAMP independent) 59

   NRCM AC6 vs β1AR: differences in intracellular distribution—an important determinant of biological effects 69

   ARCM AC6 and AC6mut (catalytically inactive) have similar benefits in ARCM 70

In vivo gene transfer

   C57BL/6 mouse Indirect intracoronary delivery of Ad.AC6: increased LV function in response to βAR stimulation 31

   Gαq mouse Intracoronary delivery of Ad.AC6: increased LV function in Gαq cardiomyopathy 46

   Normal pig Intracoronary delivery of Ad.AC6: increased LV function in response to βAR stimulation 41

   CHF pig Intracoronary delivery of Ad.AC6: increased function of failing LV 42

   Normal pig Intracoronary delivery of Ad.AC6: persisted cardiac AC6 expression for 10 weeks without toxicity —a

Abbreviations: AC6, adenylyl cyclase 6; ARCM, adult rat cardiac myocytes; ATF3, activating transcription factor 3; βAR, β-adrenergic receptor;
cAMP, 3′,5′-cyclic adenine monophosphate; CHF, congestive heart failure; cTnI, cardiac troponin I; iPS cells, induced pluripotent stem cells; LV,
left ventricular; MI, myocardial infarction; NRCM, neonatal rat cardiac myocytes; PLB, phospholamban; SR, sarcoplasmic reticulum.

a
Food and Drug Administration (FDA) Investigational New Drug (IND) application.
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