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A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is

not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-

Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and

acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well

as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble

radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent

modeling assumptions for these cases. Micro-bubble response with acoustic parameters is

consistent with experiments and provides physical insight to the micro-bubble oscillation

dynamics. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773909]

Micro-bubbles in the form of encapsulated contrast

agents are conventionally used in ultrasound diagnostics.

The contrast agents undergo oscillations when sonicated.

Their acoustic response primarily depends on ultrasound pa-

rameters, location in the vasculature, and on the properties of

the surrounding fluid. The oscillations of micro-bubbles

result in linear backscatter frequencies at low acoustic pres-

sure, in nonlinear signals with harmonic backscatter frequen-

cies at medium acoustic pressure, and in micro-bubble

disintegration at high acoustic pressure.1 These micro-

bubble acoustic signatures at various levels aid in better

opacification. As such, enhanced ultrasound images can be

reconstructed for diagnostic purposes. Recently, contrast-

enhanced ultrasound research has focused on exploring new

frontiers of perfusion imaging, drug and gene therapy, mo-

lecular imaging, and targeted imaging.2–6 Apart from imag-

ing, micro-bubble sonication is being recently utilized in

several other applied areas, such as thrombus dissolution,

gas embolotherapy, sonoporation, and micro-pumping.7–9

These new developments require consistent mathematical

and physical knowledge of sonicated micro-bubble oscilla-

tion in vessels and of the parameters affecting it.

Several experimental studies10–17 have investigated bub-

ble dynamics in confined spaces. Significant dampening in

bubble oscillation dynamics is observed when considering

bubble sonication in a confined space. Theoretical attempt to

model bubble sonication in a confined configuration usually

utilizes boundary integral method18–20 or method of images,21

which describes the nonlinear oscillations of gas bubble.

However, these models have underlying assumptions of invis-

cid surrounding fluid, which results in, neglected the viscous

effects when investigating bubble oscillation dynamics with

these models. Further, these methods are not applicable for

vessels (circular cross-sections) and are only valid for bubble

sonication in vicinity of flat or inclined plates.

For decades, predictive models of micro-bubble sonica-

tion have been based on bubble oscillations in an infinite

pool of fluid by the Rayleigh-Plesset (RP) equation.22

However, most of the recent aforementioned applications

require micro-bubble sonication in finite-diameter vessels.

Several variants of the RP equation based models, incorpo-

rating a dampening term to model the encapsulated shell, are

available in literature.22 These shell models are still based on

the fundamental assumption that the micro-bubble is in an

infinite domain. Moreover, physical insights into shell

behavior during sonication have not yet been adequate.22

These models therefore require further improvement in shell

modeling based on experimental findings.

From a fluid mechanics perspective, the RP equation is

derived from an integration of the radial Navier-Stokes equa-

tion from the bubble surface to the conditions at infinity. At

infinity, pressure is assumed to be atmospheric and the radial

velocity component vanishes. However, when the bubble is

constrained by the vessel wall, which is not at infinity, the

radial velocity component is zero owing to no slip, but pres-

sure conditions are unknown. As a result, analytical or semi-

analytical solutions like those of the RP equation appear to

be intractable. Moreover, when walls are present, wall fric-

tional losses occur, which are not taken into account in all

the conventional variants of the RP models.22 Thus, existing

models have inherent shortcomings; they are not mathemati-

cally and physically consistent when applied to micro-

bubble sonication inside a vessel or tube. In this work, we

present a model for micro-bubble oscillation dynamics in a

rigid tube which is derived from the reduced Navier-Stokes

equation. This model is not a variant of the RP equation and

is a super-set of all the conventional RP variant models.22

The schematics of the model are shown in Fig. 1. The

underlying assumption of the model is that the micro-bubble,

during sonication, remains spherical. This assumption is jus-

tified for micro-bubbles that are small compared to the tube

diameter and is consistent with experimental observations.15

As the micro-bubble oscillates, a flow field is set up inside

the tube. It is noteworthy here that if the micro-bubble

remains spherical, the evolving flow field would be symmet-

ric along the centerline of the tube. Vorticity would, thus, be

zero along the tube centerline. Therefore, a reduced
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Navier-Stokes equation in the form of an unsteady Bernoulli

equation can be applied along the streamline at the tube cen-

terline, from the micro-bubble interface to the exit of the

tube. The unsteady Bernoulli equation, including the fric-

tional head loss term, is given by

ðL=2

RðtÞ

@V

@t
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2
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where V is the fluid velocity, HL is the head loss, PR is the

fluid pressure just outside the micro-bubble interface, and

PL=2 is the pressure at the exit of the tube. The unsteady term

can be integrated using the Leibniz integral rule along vessel

center streamline coordinates (as the bubble radius is a func-

tion of time) and can be co-related with the average flow

velocity in the phantom vessel. Utilizing mass conservation

and Poiseuille pipe flow theory yields a nonlinear ODE for

micro-bubble radius as a function of time representing bubble

dynamics in the phantom vessel, explicitly given by,
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where b; l, and q represents the number of outlets, fluid vis-

cosity, and fluid density, respectively. In this derived model,

the driving pressure source term on the right hand side can

be easily computed. In most of the benchtop experiments,

L� Ro and ends are open to atmosphere or open in a bed of

fluid where hydrostatic pressure can be neglected. Thus, a

reasonable approximation is that PL=2 is atmospheric pres-

sure (PL=2 � Patm). The fluid pressure at the micro-bubble

interface can be obtained by the dynamic Young-Laplace

law.23

The proposed model for bubble dynamics Eq. (2) inside

the rigid phantom vessel is fundamentally different from the

conventional models that are variants of the RP equation.22

The current derivation yields the original RP equation, when

proper mass conservation and far-field boundary conditions

are applied. This ensures that the proposed model is mathe-

matically consistent and incorporates approximately the rele-

vant physical nature of the induced fluid flow, as apposed to

the conventional models that exist in the literature.

The prediction capabilities of the model are tested by

comparing the results obtained from the experimental study

of Zheng et al.15 The model in Eq. (2) is solved using the

fourth order Runge-Kutta method. In all the earlier models,

the only length scale that can be varied was the initial micro-

bubble size (Ro), whereas in the proposed model apart from

initial bubble radius, bubble-dynamics can also be co-related

with vessel diameter and length. Results are computed for

three vessel diameters D¼ 12, 100, and 200 lm. The length

of the vessel, L¼ 5 cm, is kept the same as in the experi-

ments. A sinusoidal acoustic pulse of 2.25 MHz with 20

cycles at various peak negative pressure (PNP) is utilized,

which is same as that, used in the experiments.15

Figure 2 shows the plot of the maximum bubble radius

gained during the sonication at various acoustic PNP for

FIG. 1. Schematic of the model.

FIG. 2. Maximum bubble radius as

a function of PNP of acoustics at Ro

¼ 1:5 lm (left) and Ro ¼ 2 lm (right)

for various vessel diameters.
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the initial bubble radius, Ro ¼ 1:5 and 2 lm. It can be seen

that as the diameter of the vessel is decreased for fixed Ro,

there is a significant reduction in the amplitude of bubble

oscillation. Results compare well with the experimental data

for D¼ 200 lm (% error¼ 0.9, for best case when

PNP¼ 320 kPa and Ro ¼ 1:5 lm), whereas, for the case of

D¼ 12 lm, the results predicted by the model are apparently

damped out. For each PNP, the experimental discrepancy in

either tube is approximately 0.75 lm. The model predictions

of either vessel show similar level of discrepancy when com-

pared to experimental data at each PNP. These discrepancies

in the experimental data are attributed to high non-linear

response of the bubble with the acoustic frequency and PNP

(discussed later). Furthermore, it appears that the current

model breaks down at large Ro=D values, as the bubble

radius approaches the vessel radius. When the bubble is close

to wall, the inherent assumption of bubble remaining spheri-

cal usually breaks down and the developing flow field

changes drastically such the wall frictional losses are modi-

fied and simple Posieullie theory cannot suffice. The predic-

tions of the standard Rayleigh- Plesset equation are also

presented for two initial droplet sizes. Clearly, the Rayleigh-

Plesset solution overshoots the experimental data and

predictions cannot be done with respect to the geometric

parameters of the vessel, therefore, further signifying the im-

portance of the proposed model.

The proposed model also predicts, quite accurately, the

onset of bubble fragmentation, which is important for ultra-

sound diagnostic purposes.1,13 The experimental data show

bubble fragmentation for PNP � 325 KPa for Ro ¼ 1:5 lm

and PNP � 500 kPa for Ro ¼ 2 lm when D¼ 200 lm. For

Ro ¼ 2 lm, this model predicts onset of bubble fragmenta-

tion for PNP � 500 onwards. Figure 3 shows the temporal

evolution of bubble radius for Ro ¼ 2 lm at PNP¼ 500 and

495 kPa. It can be seen that at PNP¼ 500 kPa, the model pre-

dicts a zero radius indicating onset of bubble fragmentation,

whereas, if the PNP is slightly reduced (PNP¼ 495 kPa), the

bubble does not undergo fragmentation and continues its

oscillation (Fig. 3). Similar results are obtained for

Ro ¼ 1:5 lm, where fragmentation occurs at a much lower

PNP. Apart from the prediction of bubble fragmentation, the

model can also predict the bubble oscillation dynamics as a

function of the length of the vessel. The conventional

model22 fails to possess this advantage because vessel geo-

metric parameters cannot be related to the bubble dynamics.

Figure 4 shows the variation of maximum bubble radius for

Ro ¼ 1:5 and 2 lm at PNP¼ 175 kPa. As the length of the

vessel increases, the maximum bubble radius decreases. The

increase in tube length is associated with an increase in the

wall frictional losses that result in dampening the bubble

oscillations. As a result, an increase in vessel length requires

higher acoustic pressure amplitudes (PNP) to excite the

micro bubble.

From an applied perspective, the quantities of interest

are the bubble oscillation radius and the associated backscat-

ter. In most applied situations, the behavior of these quanti-

ties with acoustic parameters is required. Therefore, the

current model is utilized to elucidate the role of acoustic pa-

rameters (PNP, frequency, and number of cycles) on bubble

oscillation dynamics. Figure 5 shows the variation of maxi-

mum bubble radius and the energetically dominant sub-

harmonics backscatter frequencies for various input acoustic

FIG. 3. Temporal evolution of bubble

radius as a function of time for Ro

¼ 2 lm at PNP¼ 500 kPa (left) and

PNP¼ 495 kPa (right).

FIG. 4. Maximum bubble radius as a function of vessel length for Ro ¼ 1:5
and 2 lm.
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parameters. For each PNP, driving frequency and number of

acoustic cycle, the model is temporally solved until the bub-

ble oscillation dynamics is over and the bubble achieves its

equilibrium condition. The results are computed for two

phantom vessel diameters, D¼ 100 and 200 lm and for a

fixed initial bubble radius Ro ¼ 2 lm. The backscatter fre-

quencies are computed by performing the fast Fourier trans-

forms (FFTs) of each time history obtained by varying the

three acoustic parameters.

Figure 5(a) shows the variation of maximum bubble ra-

dius and the dominant backscatter frequency as a function of

acoustic driving frequency. For both the vessel diameters,

the dominant backscatter frequency response is highly non-

linear. For D¼ 200 lm, some of the dominating frequencies

are close to the driving frequency whereas some are much

lower than the driving frequency. For D¼ 100 lm, all the

dominant backscatter frequency are close to the driving fre-

quency. This suggests that for imaging (harmonic imaging)

smaller size vessel higher frequency filtering resolution is

required as opposed to larger diameter vessels. The maxi-

mum bubble radius response, with respect to the driving fre-

quency, is also highly non-linear (Fig. 5(a)). For a minor

variation in the driving frequency, a drastic response in max-

imum bubble radius for both the vessel diameters is

observed. This behavior as predicted by the present model

potentially explains the scattering in the maximum bubble

radius data as observed in experiments.10,11,15 In experi-

ments, it is difficult to control minor fluctuations in the input

parameters, therefore, a non-linear response would show up

in the form of scattered data in the experiments.10,11,15 Fur-

ther, for both the vessels, the maximum bubble radius shows

large amplitude response at low frequencies indicating that

FIG. 5. Acoustic parameter response on

bubble dynamics for Ro ¼ 2 lm (a)

Maximum bubble radius (left) and dom-

inant backscatter frequency (right) as a

function of acoustic driving frequency

for fixed PNP¼ 175 kPa and 20 acoustic

cycles, (b) maximum bubble radius

(left) and dominant backscatter fre-

quency (right) as a function of peak neg-

ative pressure for fixed acoustic driving

frequency of 1.5 MHz and 20 acoustic

cycles, and (c) maximum bubble radius

(left) and dominant backscatter fre-

quency (right) as a function of number

of acoustic cycles for fixed acoustic

driving frequency of 2.25 MHz and

PNP¼ 175 kPa.
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the driving frequency is approaching bubble natural fre-

quency (approaching resonant condition).

For contrast agents, it is well known24 that the acoustic

response can either be linear, nonlinear, or bubble fragmen-

tation depending on the acoustic intensity. Figure 5(b) shows

the variation of maximum bubble radius and the backscatter

sub-harmonic frequency as a function of PNP. It is notewor-

thy that the model predictions are similar to those of experi-

mental observations. For low acoustic PNP, the maximum

bubble size behaves linearly. As the PNP is further

increased, nonlinearity is manifested, and eventually a limit

is achieved when bubble fragmentation occurs. For small di-

ameter vessel (D¼ 100 lm), the linear response phase is sev-

eral fold as compared to larger vessels (D¼ 200 lm). This is

attributed to larger friction losses in the smaller vessel as

compared to the larger diameter vessels. Besides, the back-

scatter frequencies are almost constant in linear phase,

whereas the other dominant frequency starts appearing when

the fragmentation point is achieved (Fig. 5(b)).

The effect of number of acoustic cycles (N) on the bub-

ble dynamics and backscatter is not very significant as

opposed to the driving frequency and PNP of the acoustic

wave. Figure 5(c) shows the variation of maximum bubble

radius and the dominant backscatter frequency as a function

of acoustic cycles. The maximum bubble radius achieves an

asymptotic value within a small number of acoustic cycles.

For both vessel diameters, the dominating backscatter fre-

quency is much lower than driving frequency when a smaller

number of acoustic cycles is used. As the number of acoustic

cycles is increased, the dominant backscatter frequencies

shift towards the driving frequency. This behavior suggests

that smaller number of cycles should be used for diagnostic

purposes as the backscatter signature is more distinct and

can be easily detected in harmonic imaging technique.

To conclude, we have proposed a model for bubble os-

cillation dynamics inside a rigid vessel subject to sonication.

Results obtained by this model compare well with experi-

mental data. Model performs quite well until tube walls are

very close to the initial bubble radius. Further development

of the proposed model is required at smaller tube diameter

via incorporating proper flow dynamics that is induced when

bubble is sonicated in a very narrow tube. In addition, the

bubble is assumed spherical and free, without having any

shell encapsulation. Also, the proposed model only applies

for rigid vessel and does not take into account the vessel

elasticity. Future work along these lines are required to fur-

ther develop this model to overcome these limitations.
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