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Introduction

The gut microbiota plays an essential role in human health and 
is thought to be involved in the development of numerous com-
plex diseases.1 Advances in metagenomics have made it possible 
to access the diversity of the human gut microbiota and its collec-
tive genome, the gut microbiome.2,3 Increasing evidence points to 
a connection between the gut microbiota composition and health 
and disease states, such as changes in its composition in obese or 
dieting individuals.2 Recently, the existence of enterotypes, which 
characterize the gut microbial composition of human individu-
als, has been proposed.3,68 These enterotypes also point toward 
a role of the gut microbiota in idiosyncratic human response to 
drug and diet.3

The human gut microbiota is dominated by two bacte-
rial phyla, Firmicutes and Bacteroidetes, as 90 to 99% of the 
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identified phylotypes in metagenomic analysis belong to either 
of them.4 On the genus level, the gram-negative Bacteroides of 
the Bacteroidetes phylum are the most abundant.3,5 A common 
representative of the Bacteroides is Bacteroides thetaiotaomicron. 
This beneficial human gut inhabitant has adapted to its environ-
ment by developing an impressive repertoire of enzymes target-
ing both dietary plant polysaccharides and host-derived mucosal 
glycans.6,7 Humans are well equipped to hydrolyze disaccharides, 
such as lactose and sucrose, as well as some forms of starch, but are 
limited in their ability to utilize other dietary polysaccharides.8 
Saccharolytic gut inhabitants, such as B. thetaiotaomicron, ben-
efit the human host by fermenting these otherwise inaccessible 
dietary polysaccharides to short-chain fatty acids (SCFAs), which 
are consumed by the host. SCFA absorption in the large intes-
tine is estimated to contribute 5–10% to daily caloric intake in 
humans on an average Western diet.9 Besides serving as nutrients, 
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by-products (Table S2). The model predicted gene essential-
ity with an accuracy of 86.6% (Supplemental text). We com-
pared predicted quantitative growth rates with experimentally 
reported ones and found moderate overlap, which was, at least 
in part, due to missing experimental information on substrate 
uptake rates (Table S3a). The model also released known secre-
tion products in ratios that compared well with experimental 
data (Table S3b). The final manually curated and validated 
reconstruction of B. thetaiotaomicron contains 1,213 metabolic 
and transport reactions, 275 exchange and demand reactions, 
1,152 unique metabolites and 991 genes (Table 1). The recon-
struction was deemed iAH991, where i stands for in silico, AH 
are the initials of the lead reconstructor and 991 the number 
of captured genes. Information from 150 primary and review 
papers was incorporated into the final reconstruction, ensur-
ing that it captures the known biochemistry and physiology of  
B. thetaiotaomicron.

Expansion of the genome-scale metabolic reconstruction 
of Mus musculus. The published mouse metabolic reconstruc-
tion, iMM1415, represents the metabolic capabilities found in 
any mouse cell.21 It can be employed to assess the overall growth 
capability of a mouse given some nutrient uptake rates. To enable 
the simulation of different dietary regimes as well as of mucus-
type O-glycan secretion,7 of bilirubin transport and of menaqui-
none uptake,22 we expanded iMM1415 with intestinal transport 
and absorption reactions based on literature. Altogether, we 
added 371 transport and exchange reactions, 27 metabolites and 
29 genes. When performing quality control, we identified and 
removed 67 genes in iMM1415 that were artifacts and were not 
associated with reactions. We revised the genes associated with 
the reactions and removed 23 incorrectly included human genes, 
while adding further 39 missing mouse homologous genes. Due 
to these changes, 54 transcripts were predicted to be essential 
on amino acid minimal medium supplemented with glucose in 
the updated reconstruction, compared with 53 transcripts in 
iMM1415.21 The additional essential transcript encodes a phos-
phoserine phosphatase. The updated and expanded mouse recon-
struction (deemed iSS1393) consisted of 4,091 reactions, 2,950 
metabolites, 1,393 genes and 1,778 transcripts.

An integrated model of mouse: B. thetaiotaomicron inter-
action. To model metabolic interactions, we linked the two 
metabolic models through metabolites in a common compart-
ment, the intestinal lumen, which allowed metabolite exchange 
between mouse and B. thetaiotaomicron, while providing a route 
for simulating different dietary regimes (Fig. 1A). The result-
ing B. thetaiotaomicron-associated mouse model was called iexG-
FMM_BΘ, where exGFMM stands for ex-germfree Mus musculus. 
It consists of 2,769 genes, 5,164 (non-unique) metabolites and 
7,239 reactions (Table 1) distributed over 12 compartments: 
two B. thetaiotaomicron compartments, eight mouse compart-
ments, the lumen and a compartment for secretion into mouse 
body fluids (Fig. 1A). Furthermore, to avoid biologically implau-
sible solutions, we added further constraints to iexGFMM_BΘ 
linking the flux through to one of the organism’s reactions with 
the respective biomass reaction (see Materials and Methods and  
Figs. S2–S4).

SCFAs also regulate inflammatory responses.1 Other beneficial 
roles performed by the gut microbiota include maturation of the 
host immune system and intestinal epithelial cell homeostasis.1

Several experimental approaches have been applied to study 
the relationships between a host and its gut microbiota. A com-
mon method is the use of gnotobiotic mice, which are delivered 
by caesarian section, raised germfree and then colonized with a 
defined microbiota.10 Gnotobiotic mice colonized selectively with 
B. thetaiotaomicron are particularly well studied. In combination 
with transcriptomic analysis, such humanized mouse models 
have been used to study their response to B. thetaiotaomicron,11 
and the adaptation of the latter to the gut habitat and to the pres-
ence of other gut microbes.12-14

Systems biology aims to analyze the interactions between 
cellular components by generation of high-throughput “omics” 
data and computational analysis of these data. Genome-scale 
high-quality metabolic reconstructions are frequently used to 
put omics data into context.15 They are generated in a bottom-
up manner and represent a biochemical, genetic and genomic 
(BiGG) knowledge bases for target organisms. Metabolic recon-
structions can be converted into mathematical models and used 
to simulate the organism’s phenotypic behavior given some envi-
ronmental constraints (e.g., medium compositions).16 The recon-
struction process requires intensive manual curation effort,16 
though recent progress has made it possible to automate some 
steps of the reconstruction process.17

High-throughput “omics” methods, such as metagenomics, 
metabolomics and metaproteomics, have been used to study the 
complex ecosystem residing in the mammalian gut.18-20 The met-
abolic interactions between a host and gut microbes have not yet 
been modeled using bottom-up systems biology methods. Here, 
we reconstructed and analyzed the first integrated stoichiometric 
model of murine and B. thetaiotaomicron metabolism.

Results

In this study, we manually assembled a metabolic reconstruc-
tion for B. thetaiotaomicron and expanded the published mouse 
reconstruction with an intestinal absorption module. After inte-
gration into a single model, we computed the tradeoff between 
the growth of mouse and of B. thetaiotaomicron on five differ-
ent dietary regimes. Furthermore, we investigated nutrient com-
petition and mutually beneficial cross-feeding in the integrated 
model. In silico metabolite exchange and secretion profiles were 
computed and compared with in vivo metabolomics data. Finally, 
we performed a genome-wide in silico gene deletion study for the 
integrated mouse and B. thetaiotaomicron model.

Genome-scale metabolic reconstruction of the human sym-
biont, B. thetaiotaomicron. We assembled a draft genome-scale 
metabolic reconstruction for B. thetaiotaomicron from the Model 
Seed pipeline.17 Subsequent extensive manual curation (Fig. S1, 
see Supplemental text for detailed description of the reconstruc-
tion process and content) ensured that the reconstruction-derived 
models were able (1) to produce all known biomass precursors on 
defined anaerobic minimal medium, (2) to metabolize all major 
reported carbon sources (Table S1) and (3) to secrete known 
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rate of B. thetaiotaomicron was needed for the mouse model to 
reach an optimal growth rate. On a ketogenic diet, consisting 
almost entirely of fatty acids, the growth rate of both mouse and 
B. thetaiotaomicron was poorest. To determine growth-limiting 
nutrients for each model, we repeated the analysis with iSS1393 
and iAH991 individually (Fig. 1C). The high-carbohydrate diet 
was a very good source of nutrients for the B. thetaiotaomicron 
model, which agrees with B. thetaiotaomicron being saccharolytic 
and efficient at utilizing dietary polysaccharides.24 On its own, 
iAH991 was unable to grow on a high-protein diet, in accor-
dance with the Bacteroides genus’ known incapability to utilize 
proteins as sole carbon source and the particularly low proteolytic 
capacity of B. thetaiotaomicron.25 iAH991 was also incapable of 
growing on high-fat or ketogenic diet. Accordingly, B. thetaiotao-
micron has no β-oxidation pathways annotated in its genome.6 
For the germfree mouse model, the growth rate was highest on a 
high-protein diet (75% protein) and lowest on the ketogenic diet 
(4.5% protein) (Fig. 1C), revealing that amino acid content was 
growth-limiting for the mouse model. This observation agrees 
with the known requirement for several essential amino acids in 
mice.26 In iexGFMM_BΘ, the requirement for essential amino 
acids was satisfied by B. thetaiotaomicron at low, non-competition 
inducing microbial growth rates.

Metabolic dependency between mouse and B. thetaiotao-
micron. We investigated the metabolite exchanges between 
mouse and B. thetaiotaomicron, by determining the minimal 
and maximal possible exchange flux values, while simulat-
ing growth on high-protein, high-fat and Western diets. For 
comparison, we also performed this analysis using the in silico 
germfree mouse model. When comparing the germfree with the 

The B. thetaiotaomicron-associated mouse model captures 
mutualistic growth. We investigated mutual growth dependen-
cies in five different dietary regimes varying in protein, carbo-
hydrate and fat content (Fig. 1). In all dietary regimes, at low 
growth rates of B. thetaiotaomicron, the mouse profited signifi-
cantly from the presence of B. thetaiotaomicron in the lumen. 
However, as B. thetaiotaomicron’s growth rate increased, com-
petition for nutrients increased and subsequently, the maximal 
mouse growth rate decreased rapidly (Fig. 1D). Based on iexG-
FMM_BΘ’s predictions, the ideal growth rate of B. thetaiotaomi-
cron for optimal mouse growth rate was between 0.05–0.29 h-1 
depending on the diet (Fig. 1C). In vivo, it has been estimated 
that E. coli divides about 1.2 times per day in mono-associated 
mice (equal to a growth rate of 0.05 h-1), and in conventional 
mice, the average microbial doubling time is 3.3-5.7 divisions 
per day.23 To our knowledge, in vivo growth rates for B. thetaio-
taomicron in mice have not been reported. Since iexGFMM_BΘ 
corresponds to a mouse colonized with only one microbe, the 
predicted B. thetaiotaomicron growth rates compares favorably 
with experimental data.

Presence of B. thetaiotaomicron significantly influences the 
growth phenotype of mouse. We predicted and compared the 
growth optima of mouse and B. thetaiotaomicron under differ-
ent diets (Fig. 1B–D). On a carbohydrate-rich diet, optimal 
growth rate of both B. thetaiotaomicron and mouse was achieved. 
While lower than maximal growth rates of B. thetaiotaomicron 
and mouse were reached on a high-protein diet, a lower growth 
rate of B. thetaiotaomicron was necessary for an optimal growth 
rate of the mouse model, suggesting a reduced contribution 
from B. thetaiotaomicron. On a high fat diet, a higher growth 

Table 1. Summary of the metabolic reconstructions employed in this study. BΘ, B. thetaiotaomicron

Bacteroides thetaiotaomicron Mus musculus
Integrated 

model

Acronym iAH991 iSS1393 iexGFMM_BΘ

Total reactions 1,488 4,091 7,239

Metabolic and transport reactions 1,213 3,505 5,443

Exchange and sink reactions 275 585
Internal: 728 

External: 1,068

Compartment specific metabolites 1,152 2,950 5,164

Genes 991 1,393 (1,778 transcripts) 2,769

Gene associated reactions 1,068 2,357 3,428

Reversible reactions 45% n. d. n. d.

Irreversible reactions 55% n. d. n. d.

Blocked reactions 87 784 1,219

Number of compartments 2 8 12

Usable carbohydrates as sole carbon sources 63 n. d. n. d.

Growth on minimal medium (MM) Yes, on anaerobic glucose MM67 Yes, on aerobic amino acid MM supplemented 
with glucose, fatty acids and ions21 n. d.

Oxygen requirement in silico no yes
Mouse: yes 

BΘ: no

Genes predicted to be essential on minimal 
medium

204 54 n.d.
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body fluids compartment, including a number of glycolipids and 
hormones (Table S4). The mouse model could not metabolize 
ten dietary carbohydrates in the absence of B. thetaiotaomicron 
(Fig. S5). When B. thetaiotaomicron was present, these polysac-
charides were metabolized leading to the liberation of simple sug-
ars, such as galactose and mannose, which were then used by the 
mouse model (Table S4).

Identification of competitive dietary components. To iden-
tify dietary components, for which the two organisms compete, 
we compared the minimal and maximal possible exchange flux 
values for the exchange reactions between B. thetaiotaomicron/
mouse and the lumen. We considered three scenarios: at opti-
mal mouse growth rate (diamonds in Fig. 1D), at optimal  
B. thetaiotaomicron growth rate (triangles in Fig. 1D) and during 
nutrient competition (squares in Fig. 1D). The two organisms 

microbe associated mouse model, we identified 266 nutrients, 
whose associated exchange fluxes changed in at least one diet 
(Fig. S5; Table S4). The exchanged metabolites belonged to a 
variety of subsystems, including energy, fatty acid, cholesterol, 
amino acid and nucleotide metabolism (Table S4). We predict 
that the mouse supplies nine metabolites to B. thetaiotaomicron, 
whereas B. thetaiotaomicron provided 52 metabolites to the mouse  
(Fig. S5; Table S4). Metabolites provided by B. thetaiotaomicron 
to mouse included essential amino acids, nucleotides and SCFAs, 
i.e., acetate and propionate (Table S4). Metabolic products of 
mouse consumed by B. thetaiotaomicron included hyaluronan 
and mucin-type O-gluycans, which are well known to be uti-
lized by the microbe.27 In total, the mouse and B. thetaiotaomi-
cron secreted 30 and 89 metabolites, respectively, into the lumen  
(Fig. S5). The mouse model secreted 226 compounds into the 

Figure 1. Simultaneous optimization of mouse and B. thetaiotaomicron growth rate using an integrated model of host and gut symbiont metabolism. 
(A) Schematic representation of iexGFMM_BΘ and the possible metabolite exchange between iAH991 and iSS1393. Compartments: [u], lumen; [b], 
body fluids; [c], cytoplasm; [e], extracellular. The numbers of exchanged and secreted metabolites on a Western diet are shown. Green arrows indicate 
metabolites B. thetaiotaomicron provides to the mouse model. Purple arrows indicate mouse metabolites provided to B. thetaiotaomicron. (B) Compo-
sitions of diets simulated in this study. CHO = carbohydrate. (C) Predicted growth rates for mouse and B. thetaiotaomicron in  iexGFMM_BΘ, and in the 
individual models are listed for the five dietary regimes employed in this study. Note that the computed mouse growth rates were not realistic, since 
the biomass reaction summed the required fractions of biomass precursors for a new cell but not for an entire new mouse. (D) Trade-off between the 
two organisms’ maximal achievable growth rates in iexGFMM_BΘ (Pareto optimality curve). Due to the constraints imposed by the ATP maintenance 
reactions in iexGFMM_BΘ, fixing either biomass reaction at very low growth rates produces an infeasible solution.
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fluid metabolome in the presence of the microbe. Changes in 
the in silico metabolome were similar in the three diets. Notable 
exceptions were (1) ammonia, which was only secreted by B. the-
taiotaomicron into the lumen on high-protein diet, (2) urea secre-
tion into body fluids (higher in germfree on high-protein diet, 
but lower in germfree on high-fat and Western diet) and (3) nitric 
oxide secretion into body fluids (higher in germfree mice on a 
high-protein and Western diet, but lower in germfree mice on a 
high-fat diet) (Table S4).

We compared the in silico metabolome profile with five 
metabolomics studies on conventional and germfree mice20,28-31 
(Table 2). While the in vivo measurements in lumen correspond 
to the lumen compartment in our model setup, the “biofluid” 
compartment represents serum, blood and urine (Fig. 1A). The 
in silico metabolome profile contained 266 metabolites, of which 
52 overlapped with experimental data. Our predictions agreed, 
in general, much better with metabolome changes in the lumen, 
especially for metabolites of the bile acid, fatty acid and cho-
lesterol metabolism. Moreover, 42 metabolites were measured 
experimentally but are not currently captured by our model.

B. thetaiotaomicron rescues lethal mouse gene knockouts 
and vice versa. We aimed to determine how the presence of 
mouse and B. thetaiotaomicron affected the essentiality of genes 
when both organisms metabolically interact. When perform-
ing an in silico single transcript deletion study on Western diet, 
50 transcripts were essential in the germfree mouse (iSS1393). 
When the same analysis was performed for iexGFMM_BΘ only 
29 mouse knockouts resulted in a lethal growth phenotype of 
the mouse. Thus, the presence of B. thetaiotaomicron rescued 
the growth phenotypes for 21 single knockouts by compensat-
ing for the lost enzymatic functions. As expected, the deletion 
of B. thetaiotaomicron genes did not result in any lethal growth 
phenotypes in mouse. However, 184 gene deletions in B. thetaio-
taomicron reduced the maximal possible mouse rate growth by 
more than 50%. In iAH991, 160 genes were essential for max-
imal possible microbial growth on Western diet, but only 156  
B. thetaiotaomicron genes were in silico essential in iexGFMM_
BΘ. The rescued gene knockouts were: BT_0554 (glutamine-
fructose-6-phosphate transaminase, EC 2.6.1.16), BT_0558 
(mannose-1-phosphate guanylyltransferase, EC 2.7.7.22), 
BT_1224 (GDP-D-mannose dehydratase, EC 4.2.1.47) and 
BT_1225 (GDP-L-fucose synthase, EC 1.1.1.271). The deletion 
of mouse genes did not cause any lethality in B. thetaiotaomicron, 
but reduced the maximal achievable microbial growth rate by up 
to 50% in 42 cases and by at least 50% in 31 cases.

Metabolic activity of B. thetaiotaomicron rescues on the 
mouse growth phenotypes in three in silico IEM models. To 
obtain further insight into the 21 rescued mouse growth pheno-
types, we retrieved information for known enzymopathies associ-
ated with the genes by mapping a recently assembled compendium 
of human inborn errors of metabolism (IEMs)32 onto the mouse 
model. Of the 50 lethal growth phenotypes, ten corresponded 
to known IEMs. Five IEMs are known to be lethal in mouse  
(Table S6), one of which is also lethal in humans (D-bifunctional 
protein deficiency, OMIM: 261515), and two vary in lethality 
and severity of symptoms in humans (desmosterolosis, OMIM: 

had 32 metabolite exchange reactions in common, for which 
they could compete (Fig. S5). The analysis was performed on 
high-protein diet, high-fat diet and Western diet. Under these 
conditions, 22, 24 and 25 dietary metabolite exchange reactions, 
respectively, had flux values above the cutoff (0.01 mmol.g

Dw
-1.

hr-1) and showed at least a 2-fold flux change between two or 
three scenarios (Table S5). On high-fat and Western diet, the 
production of ten and 11 amino acids, respectively, by B. thetaio-
taomicron was required to enable maximal mouse growth rate. 
These amino acids included all nine essential mouse amino acids 
and cysteine, as well as tyrosine on Western diet. For eight non-
essential amino acids, the possible flux range was more flexible, 
spanning from consumption to production by B. thetaiotaomi-
cron, highlighting that their biosynthesis by the mouse did not 
influence the maximal possible mouse growth rate. In the compe-
tition phase, the B. thetaiotaomicron model supplied lower fluxes 
of threonine and methionine to the mouse, making them major 
competition-inducing nutrients (Table S5).

When the growth rate of B. thetaiotaomicron was optimized, 
the microbe did not synthesize several essential mouse amino 
acids but took them up from the lumen. This change affected 
the maximal possible growth rate of the mouse (Table S5). 
Additionally, on Western diet, B. thetaiotaomicron was forced 
to consume some of the glucose, maltose, lactose and sucrose 
provided by the diet to achieve maximal growth rate, which 
negatively affected the maximal possible mouse growth rate  
(Fig. 1D). In contrast, on high-fat diet, the flux rate for mouse-
derived hyaluronan was increased (data not shown). B. thetaiotao-
micron in turn used hyaluronan as an energy and carbon source 
and thus the competition for dietary simple sugars was reduced. 
On a high-protein diet, the high influx of amino acids removed 
competition for dietary carbohydrates. The mouse required the 
presence of B. thetaiotaomicron for the synthesis of six essential 
amino acids for optimal growth. Phenylalanine, histidine and 
tryptophan did not need to be provided by B. thetaiotaomicron 
under these conditions (Table S5).

In silico metabolome profile in the B. thetaiotaomicron-
associated mouse model. Metabolomics analysis of biofluids 
and tissue from conventional or gnotobiotic and germfree ani-
mals has demonstrated that germ-free animals display a large 
range of differences to conventional animals, including effects 
on body metabolism, electrolysis and nutrient requirements.10 
We computed the in silico metabolome profile of germfree 
and B. thetaiotaomicron-associated mouse while simulating 
growth on high-protein, high-fat and Western diet. Numerous 
exchange reactions for metabolites known to be modulated by 
the gut microbiota, such as amino acids, fatty acids and energy 
metabolites, were found to change in flux between the germfree 
and microbe-associated model simulations. B. thetaiotaomicron 
secreted acetate, propionate, succinate, lactate, fumarate and 
phenylacetate into the lumen. In general, the germfree mouse 
was predicted to have higher secretion fluxes for metabolites 
containing carbon, nitrogen and sulfur, as its maximal possible 
growth rate was limited by availability of essential amino acids 
in absence of the microbe. Several important vitamins, such as 
folate, tetrahydrofolate and niacin, were only found in the body 
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Table 2. Comparison of in silico metabolite profiles between iexGFMM_BΘ and the germfree mouse model with in vivo measured metabolite concen-
tration differences between conventional and germfree mouse20,28-31

The in silico compartments were body fluids [b] and lumen [u]. Agreements between in silico and in vivo data are presented as follows: higher flux/ 
concentration (blue, arrow up), lower flux/ concentration (red, arrow down), equal flux/concentration (yellow), authors do not report detection of 
this metabolite in this compartment (white), zero flux (white, NF), missing exchange reaction in the model or constraints preventing flux (white, ME) 
and metabolite not in model (white, MM). Abbreviations: (1) lower levels in ileum and higher levels in duodenum of germfree mice; (2) lower levels in 
colon and higher levels in jejunum of germfree mice; (3) types of measured bile acids not specified; (4) not specified if D- or L-lactate was measured; (5) 
female animals only; (6) male animals only; (7) observed in kidney; (8) observed in liver; (9) observed in plasma; (10) flux only when B. thetaiotaomicron 
is present; and (11). not comparable (the metabolite information in iSS1393 was not specific enough).
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orotidine monophosphate decarboxylase (EC 4.1.1.23, BiGG ID: 
OMPDC) and orotate: pyrophosphoryl transferase (EC 2.4.2.10, 
BiGG ID: ORPT). The supplementation of the germfree orotic 
aciduria mouse model with uracil, uridine, deoxyuridine, cyti-
dine, or deoxycytidine rendered the enzyme deficiency non-lethal 
(data not shown). However, supplementation of other nucleosides 
or nucleobases did not restore the growth phenotype.

When AICA-ribosiduria was simulated, 28 B. thetaiotaomi-
cron reactions and 12 mouse reactions showed at least a 3-fold 
increase in flux values (Table S7b), which were in involved in 
nucleotide metabolism and transport/exchange. The most 
notable change was the 8-fold flux increase through the ino-
sine exchange reaction between the two models, followed by a > 
6-fold increase in guanosine exchange and a > 4-fold increase in 
deoxyadenosine exchange. Simulation of the ribose-5-phosphate 
isomerase deficiency produced a > 3-fold increase in D-ribose 
transport flux and increased fluxes through further 15 metabolic 
reactions involved in ribonucleoside metabolism (Table S7c).  
B. thetaiotaomicron rescued the in silico mouse growth pheno-
type of AICA-ribosiduria by supplying purine nucleosides and 
of ribose-5-phosphate isomerase deficiency through supply of 
D-ribose liberated from ribonucleosides.

602398; dihydrofolate reductase deficiency, OMIM: 126060). 
For the remaining five in silico lethal IEMs, we could not find 
information on growth phenotype in mice, but in human they 
exhibit non-lethal phenotypes. Three of the 21 rescued growth 
phenotypes overlapped with IEMs, being AICA-ribosiduria 
(OMIM: 608688), ribose 5-phosphate isomerase deficiency 
(OMIM: 608611) and orotic aciduria (OMIM: 258900). The 
enzyme-deficient iexGFMM_BΘ models had growth rates equal 
to the wildtype iexGFMM_BΘ model.

How can B. thetaiotaomicron compensate the lethal effects 
of these diseases? We analyzed the effect of the three simulated 
IEMs on the achievable fluxes in iexGFMM_BΘ. For orotic acid-
uria, the fluxes of 18 reactions in the B. thetaiotaomicron model 
and 11 reactions in the mouse model, all involved in nucleotide 
metabolism and nucleoside transport, increased more than 3-fold 
compared with the wildtype iexGFMM_BΘ (Table S7a). In par-
ticular, the flux values for uridine secretion by B. thetaiotaomicron 
into the lumen was over 5-fold increased. The mouse luminal 
uptake reaction for uridine showed a corresponding increase in 
flux value. Lumen transport reaction fluxes for cytidine and deox-
ycytidine were also more than 4-fold higher. B. thetaiotaomicron 
reactions increased in flux range included B. thetaiotaomicron’s 

Figure 2. Metabolite dependency of mouse and B. thetaiotaomicron in iexGFMM_BΘ. On a Western diet, changes in flux rates in iexGFMM_BΘ, 
when maximizing for mouse growth rate, were compared with those in the maximally growing germfree mouse model and depicted by arrows (up, 
increased flux; down, decreased flux compared with germfree mouse). For simplicity not all observed changes and related pathways are shown. 
Metabolites with increased exchange flux compared with the germfree model are shown in green, while metabolites with reduced exchange flux are 
shown in red. Metabolites that only secreted in iexGFMM_BΘ are shown in blue. Orange arrows indicate metabolites that B. thetaiotaomicron provides 
to the mouse. Purple arrows indicate mouse metabolites provided to B. thetaiotaomicron. CHO, carbohydrate;  BAs, bile acids; TCA cycle, tricarboxylic 
acid cycle;  B. thetaiotaomicron’s polysaccharide-degrading enzyme repertoire.
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of the integrated mouse-B. thetaiotaomicron model in particular 
for studying microbial contributions to host nutrition. Moreover, 
we demonstrated that this contribution could be investigated in 
the light of different nutritional regimes.

We systematically elucidated the metabolic dependencies and 
interactions between mouse and B. thetaiotaomicron in silico. 
We found that B. thetaiotaomicron supplied essential and non-
essential amino acids to the mouse model in addition to their 
availability in the diets, thus, boosting the maximum possible 
growth rate of the mouse model (Fig. 2; Table S5). While amino 
acid absorption occurs mainly in the small intestine,43 where B. 
thetaiotaomicron is normally present at lower numbers than in the 
colon,44 it is still conceivable that B. thetaiotaomicron is capable of 
providing the host with amino acids in vivo. For example, up to 
20% of lysine is provided by gut microbes.43 Our simulation sug-
gested that essential amino acids are major competition-inducing 
nutrients. Slow growing B. thetaiotaomicron synthesized amino 
acids to the benefit of the mouse. However, when B. thetaiotao-
micron grew maximally (“bacterial overgrowth”), it depleted 
dietary amino acids, as well as sugars, significantly reducing the 
maximal achievable mouse growth rate. While the predicted 
competition for amino acids may be obvious, it highlights the 
balance that has to be achieved by the host and its microbiota 
to ensure a viable, sustainable interaction. It also emphasizes the 
fine line between commensalism and parasitism. In fact, many 
commensal gut microbes are known to be pathogenic once they 
escape the gut. The question of what defines a stable microbial 
community within the gut is subject to current research and we 
believe that metabolic modeling will play an important role in 
addressing this challenge.

The human metabolome database45 reports 5,039 distinct 
metabolites in human biofluids. It can be expected that a sig-
nificant number of these metabolites are of microbial origin and 
that the gut microbiota contributes substantially. We predicted 
numerous metabolites, which were only present in the in silico 
biofluid metabolome when the mouse model was associated with 
B. thetaiotaomicron (Table S4). One example being phenylac-
etate, a product of aromatic amino acid fermentation, which is 
likely deleterious to human health and has been recently found 
to be increased in volunteers consuming a high-protein, low-
carbohydrate diet.46 We predicted similar flux values for phenyl-
acetate production on all three diets (data not shown), since B. 
thetaiotaomicron can synthesize aromatic amino acids de novo, 
independent from dietary protein input. Another example is 
tetrahydrofolate, which is produced from B. thetaiotaomicron-
derived folate. Nitric oxide secretion by mouse into body fluids 
was increased in silico, on a high-fat diet when B. thetaiotaomi-
cron was present, but decreased on a high-protein or Western 
diet. Nitric oxide is important for the motility of the gastroin-
testinal tract, and both excess and deficiency in nitric oxide gen-
eration have been associated with diseases.47 Overall, our model 
predicted changes in biofluid metabolome composition due to 
microbe association (Fig. 2, Table 2), but the prediction accuracy 
varied with the compared biofluid. The moderate agreement with 
the reported plasma metabolome can be partially explained by the 
fact that the mouse reconstruction represents the global mouse 

Discussion

In this study, we developed a constraint-based modeling frame-
work permitting to investigate systematically the metabolic inter-
actions between gut microbes and their host and demonstrated 
using mouse and B. thetaiotaomicron. Our results suggest that 
(1) our model accurately captures known growth dependen-
cies between mouse and B. thetaiotaomicron, (2) amino acids 
are major competition-inducing nutrients; (3) the model can 
predict changes in biofluid metabolome composition due to 
microbe association; (4) the association with mouse increases  
B. thetaiotaomicron’s growth fitness; and (5) gut microbes provide 
important metabolites to enzyme deficient hosts turning a lethal 
genotype into a viable one. The presented modeling approach can 
be used to further our understanding of how the gut microbiota 
contributes to human health.

A constraint-based reconstruction and analysis (COBRA) 
approach has been used to investigate symbiotic relationships 
between microbes,33 to discover previously unknown puta-
tive commensal or mutualistic microbial growth dependen-
cies,34,35 and to analyze host-pathogen interactions.36 Here, 
we expanded the COBRA approach to a modeling framework  
(Fig. 1A), which permits the systematically investigation of com-
plex metabolic host-microbe interactions. This framework can 
be easily extended to model the host’s association with multiple 
microbes. For instance, metabolic reconstructions are available 
for at least ten gut microbes.15,37,38 The reconstruction process 
has been partially automated yielding draft metabolic networks 
in a short time frame.17 However, as illustrated in the current 
work, these networks still require substantial manual refinement. 
The number of draft metabolic reconstructions for human gut 
microbes is likely to increase significantly in near future due to 
the increasing number of gut microbial genomes published by 
the Human Microbiome Project.39 Thus, the presented scalable, 
tractable modeling framework for studying symbiotic and com-
petitive interactions between the gut microbiota and its host, 
including human,40,41 will open new avenues for studying in silico 
host-microbiota interactions and their role in human health. The 
resulting hypothesis may drive experiments, which then could 
in turn inform the model. Using this combined computational-
experimental approach of hypothesis generation and testing has 
the promise to accelerate new discoveries.

The integrated model of B. thetaiotaomicron and mouse cap-
tured known growth dependencies, such as the gut microbe’s 
ability to extract energy from dietary polysaccharides, which 
would otherwise be worthless to the host8 (Fig. 1D). Acetate 
and propionate production by B. thetaiotaomicron25 and the con-
sumption by the host9 were also captured accurately by iexG-
FMM_BΘ (Fig. 2; Table S4). Moreover, the mouse model could 
not metabolize ten dietary carbohydrates in absence of B. thetaio-
taomicron (Fig. S5), including raffinose, an oligosaccharide that 
accumulates in colonocytes of germfree mice.20 The B. thetaiotao-
micron model could ferment indigestible oligosaccharides, such 
as raffinose,42 and complex carbohydrates, such as pullulan,24 ara-
binogalactan and pectins27 to SCFAs. These examples illustrate 
the predictive capacity of the presented modeling framework and 
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therapy in orotic aciduria patients is well-documented.51-53 In 
contrast, has been shown that human patients do not respond to 
uracil treatment.52 Recently, it was discovered that the ortholo-
gous gene to the rat intestinal uracil transporter is defective by 
humans, likely resulting in poor uracil absorption in the human 
intestine.54 This new finding explains the discrepancy between 
our predictions and clinical failure of uracil medication. The 
possible treatment with cytidine has been demonstrated in cell 
culture,51 but since uridine is less expensive, it may be preferred in 
clinical applications.51 To our knowledge, treatment with deoxy-
nucleosides has not been tested in vivo. It is well established that 
the gut microbiota is an important source of amino acids and 
vitamins.43,55 We predict that the gut microbiota also provides 
the host with nucleosides, which could explain the severe but 
non-lethality in orotic aciduria patients. AICA-ribosiduria and 
ribose 5-phosphate deficiency have each been described in a sin-
gle patient53,56 and no treatment methods are available. A compu-
tational system biology approach could be employed to suggest 
candidate dietary supplementations that could alleviate such rare 
inherited diseases.

While the IEMs modeled in this study are individually 
rare and to our knowledge, the effects of gut microbial activ-
ity on the disease phenotype have not been studied, the etiol-
ogy of common diseases, such as obesity, inflammatory bowel 
disease and circulatory diseases, has been directly linked to 
the gut microbiota.1 Moreover, it has been recently shown that 
enzymes carrying out specific metabolic functions are enriched 
or depleted in the metagenomes of obesity-associated microbi-
omes.57 Computational modeling of human-gut microbiota co-
metabolism will elucidate metabolic strengths and shortcomings 
that particular genera possess based on their enzymatic reper-
toire. The impact of particular genera on the caloric load con-
sumed by the human host can also be investigated. We believe 
that the presented modeling framework will contribute to the 
ongoing discussion on the relationship between diet, gut micro-
biota composition and host metabolism and the influence of the 
gut microbiota on human health. Moreover, with the increasing 
availability of omics data detailing the gut function, the pre-
sented modeling framework will enable contextualization and 
integrative analysis of diverse omic data types beyond correlative 
analysis and may lead to the discovery of previously unknown 
relationships between gut microbiota and human in health and 
disease states.

Methods

Genome-scale metabolic reconstruction of B. thetaiotaomi-
cron. The draft metabolic reconstruction was generated by 
importing the genome sequence of B. thetaiotaomicron VPI-5482 
(obtained from NCBI, ftp.ncbi.nih.gov, January 2011) into the 
RAST prokaryotic genome annotation server.58 We used the 
web-based resource Model Seed17 to obtain a draft reconstruc-
tion, deemed BΘ_Seed_v1, which was manually curated based 
on literature using our previously described reconstruction 
protocol.16 The reaction directionality was assigned in accor-
dance to the directionality listed in the BiGG database.59 The 

metabolism rather than the metabolism occurring in individual 
organs. Also, the published studies compared germfree mice with 
conventional animals possessing a complete microbiota, while we 
only modeled the presence of B. thetaiotaomicron. For example, 
consistent with B. thetaiotaomicron’s metabolic inability to syn-
thesize indole-3-propionic acid,31 we did not predict any changes 
in secretion flux for this metabolite in the microbe-associated 
mouse. A more comprehensive host-microbiota computational 
model is needed to capture more accurately the metabolic diver-
sity of the gut microbes. In addition, the simulated diets may 
not match the diets fed to animals in the experimental studies. 
Considering these simplifications in our integrated model, the 
observed agreements with the metabolome prediction are quite 
remarkable and indicate the predictive potential of the presented 
modeling framework for host-microbe interactions.

We predict that four lethal growth phenotypes of B. thetaio-
taomicron can be rescued by the presence of the murine host. 
Three of these genes (BT_0558, BT_1224 and BT_1225) were 
involved in the GDP-fucose biosynthesis pathway. Bacteroides 
species are well known for their L-fucose containing cell surface 
and mutants with deficient L-fucose synthesis cannot colonize 
the mouse intestine under competitive conditions.48 Bacteroides 
species are also capable of incorporating host-derived L-fucose 
into their capsule polysaccharides using L-fucose-1-phosphate 
as an intermediate.48 Accordingly, the mouse model provided 
L-fucose, enabling B. thetaiotaomicron to synthesize L-fucose 
containing polysaccharides. The rescue of the growth phe-
notype was also predicted when L-fucose was added to the in 
silico growth medium, which is consistent with experimental 
evidence of B. fragilis being able to incorporate medium-derived 
L-fucose into its capsule polysaccharides.48 For the fourth res-
cued growth phenotype (glutamine-fructose-6-phosphate 
transaminase, BT_0554), no information could be found for  
B. thetaiotaomicron, but in E. coli, the gene knockout causes a 
glucosamine requirement.49 When supplying either glucosamine 
or N-acetylglucosamine to the in silico diet, the growth capabil-
ity of the knockout was restored. Components of host-derived 
glycans, such as L-fucose and N-acetylglucosamine, are well 
known to serve as carbon sources for microbes colonizing the 
intestine, e.g., E. coli.50 Similarly, B. thetaiotaomicron has been 
shown to upregulate a L-fucose utilization operon in the mouse 
intestine, allowing the microbe to use mucus-derived L-fucose.11 
We predict that host supply of these important monosaccharides 
compensates for otherwise lethal gene deletions in gut microbes.

In silico, B. thetaiotaomicron was able to compensate for mouse 
gene deletions, including three inborn errors of metabolism 
(IEMs). One of these was orotic aciduria, a defect in the uridine 
monophosphate synthase, which has orotate:pyrophosphoryl 
transferase and orotidine monophosphate decarboxylase activi-
ties. In these patients, the uridine monophosphate synthesis 
pathway is blocked and orotate accumulates. B. thetaiotaomicron 
rescued the in silico enzyme-deficient mouse model by providing 
uridine and other nucleosides. Subsequent analysis revealed that 
nutritional supplementation with one of the nucleosides could also 
restore the growth phenotype of the germfree knockout mouse 
model. Consistently, the positive effect of uridine replacement 
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performed (Supplemental text, Figure S4). For all simulations, c 
was set to be 400 and u = 0.01 mmol.g

Dw
-1.hr-1, respectively. These 

constraints maintain the linear, scalable and tractable nature of 
the COBRA approach. These constraints are in analogy to the 
coupling constraints developed for non-metabolic networks.60 
Constraints for simulation of Western diet, which was used for 
sensitivity analysis of coupling constraints, are listed in Table S9.

Definition of diets. Five dietary conditions were defined: 
Western, high-protein, high-carbohydrate, high-fat and ketogenic 
(extreme high fat) diet (Fig. 1D). The simulated diets consisted 
of the same compounds, but varied in protein, fat and carbohy-
drate content. The simulated “Western” diet was based on daily 
amounts typically consumed by an average American citizen.61 
The uptake rates for the simulated media were calculated as fol-
lows: (1) carbohydrate content was defined as 50% mono- and 
di-saccharides and 50% polysaccharides; fat content was defined 
as equal fractions of glycerol, cholesterol, saturated fatty acids 
and unsaturated fatty acids; and protein was assumed to consist 
of equal fraction for all 20 amino acids. (2) The uptake rates were 
scaled to the number of carbon atoms, with glucose as reference, 
to account for differences in molecule size. (3) The uptake rates 
were multiplied with the corresponding percentages for each diet. 
In total, each diet contained carbon sources corresponding to 20 
mmol.g

Dw
-1.hr-1 of carbon skeletons with six carbon atoms. Thus, 

each diet provided the same components and the same net sum of 
carbon skeletons, only with varying amounts of protein, fat and 
carbohydrate. Details on simulation constraints and the compo-
sition of the simulated diets are reported in Table S9.

Pareto optimality analysis. We investigated the growth 
dependencies between the two organisms in the integrated model 
using Pareto optimality analysis,62,63 a bi-objective linear pro-
gramming approach to analyze the trade-off between two reac-
tions i and j. Briefly, we determined Pareto optimum curves by 
determining the minimal and maximal flux through reaction i, 
then fixing the flux through i at different steps spanning minimal 
to maximal flux and then maximizing the flux through reaction 
j for each step. The procedure was repeated with reaction i and j 
exchanged.

Analysis of metabolite exchange and secretion in iexGFMM_
BΘ. Cross-feeding and metabolite exchange in iexGFMM_BΘ 
was analyzed using flux variability analysis (FVA),64 which mini-
mizes (min

i
) and maximizes (max

i
) the flux through each reac-

tion i. At three different points of the Pareto optimality curve 
(see Fig. 1D, diamonds, squares, triangles), we performed FVA 
on the exchange and transport reactions resulting in metabolite 
exchange profiles, which were compared for identified competi-
tion-inducing nutrients. By convention, for exchange reactions 
negative flux values represent uptake, while positive flux values 
correspond to secretion. The flux span of reaction i was defined 
as ||max

i
-min

i
||. The analysis was performed on high-protein diet, 

high-fat diet and Western diet. The cutoff for exchange reac-
tions to be included in the analysis was an absolute flux value of  
0.01 mmol.g

Dw
-1.hr-1.

In silico metabolome analysis. The metabolite exchange pro-
file was determined for the in silico germfree mouse model. The 
differences in metabolite exchange and secretion fluxes between 

curation and validation process is depicted in Figure S1. Details 
on the reconstruction and curation process can be found in the  
Supplemental text. Simulation conditions and constraints for 
all growth capacity and model behavior tests are listed in Table 
S8. The complete list of reactions and metabolites included in 
iAH991 with the associated genes, notes and references can be 
found in spreadsheet format in Table S10a–g. Reactions that 
underwent changes in GPR association are listed in Table S10g.

Expanded genome-scale metabolic reconstruction of Mus 
musculus. A previously published mouse reconstruction21 was 
expanded by intestinal transport reactions based on literature 
and was improved by correcting for duplicate or nonfunctional 
reactions and erroneous GPRs. This updated mouse reconstruc-
tion was named iSS1393. We then determined gene essentiality, 
while simulating growth on amino acid minimal medium sup-
plemented with glucose and fatty acids and compared the results 
with the previous mouse reconstruction.21 All reactions, metabo-
lites and associated genes included in iSS1393 as well as a descrip-
tion of the added intestinal transport and absorption module can 
be found in Table S11a and b.

Construction of the integrated metabolic model of  
B. thetaiotaomicron and Mus musculus. The integrated model 
(iexGFMM_BΘ) was constructed by joining the two metabolic 
models, iAH991 and iSS1393 (Fig. 1A). The integrated model 
contained a separate extracellular space [e] for each model and 
the lumen [u] as a common environment. Metabolites from 
simulated growth medium entered the lumen and could be con-
sumed by either model. The B. thetaiotaomicron model secreted 
metabolic end products into the lumen. For the mouse model 
an additional compartment “body fluids” [b] was defined, which 
served as an outlet for metabolites produced by the mouse (i.e., in 
urine, blood, lymph). The uptake of metabolites from the lumen 
was unidirectional for the mouse model except selected transport 
reactions known or assumed to be reversible. Secretion by the host 
cytosol [c] into host body fluids [b] was also unidirectional, with 
the exception of oxygen transport, which could be transported 
in both directions representing the oxygen uptake through the 
lungs. Reactions and metabolites in the mouse model started with 
the letters MM, while B. thetaiotaomicron was assigned the prefix 
BT. The complete list of reactions and metabolites included in 
iexGFMM_BΘ can be found in spreadsheet format in Table S12. 
The germfree mouse model obtained by setting the bounds on all 
reactions in iAH991 to 0 mmol.g

Dw
-1.hr-1.

Addition of further constraints to iexGFMM_BΘ. To model 
the metabolic dependency between the two organisms in a real-
istic manner, additional constraints were implemented, such that 
the flux of reaction i (e.g., from the mouse) and of reaction rxn

C
 

(e.g., mouse biomass reaction) were proportional (v
i
: v

rxnC
). We 

bound the ratio between reaction i and reaction rxn
C
 using a fac-

tor c, such that for irreversible reactions: v
i
 - c × v

rxnC
 ≥ u and 

for reversible reactions: v
i
 - c × v

rxnC
 ≥ u in the forward direc-

tion and v
i
 + c × v

rxnC
 ≤ u in the reverse direction. The param-

eter u ≥ 0 allowed a small reaction flux when v
rxnC

 = 0 (Fig. S2). 
This parameter takes into account the required flux for “house-
keeping,” or maintenance, of cellular function when the cell is 
not dividing. A sensitivity analysis for different factors c was 
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LP problems, the lower constraints on the ATP maintenance 
reactions (ATPM, BTATPM, MMATPM) were set to 0 mmol.
g

Dw
-1.hr-1. We then optimized for the respective biomass reaction. 

Essential genes were those that resulted in a zero flux through 
the biomass reaction. For the three rescued IEMs, we determined 
the flux span for each reaction. We only considered reactions 
with flux values greater than 0.01 mmol.g

Dw
-1.hr-1 in at least one 

direction and with a fold change of at least three between germ-
free and B. thetaiotaomicron-associated mouse model. We con-
firmed potential dietary supplements using the enzyme-deficient 
germfree mouse model and added the metabolite to the in silico 
Western diet. Similarly, we examined B. thetaiotaomicron gene 
knockouts, which were lethal in iAH991, but not in iexGFMM_
BΘ and added candidate metabolites subsequently to the in silico 
Western diet of the enzyme-deficient B. thetaiotaomicron.

For the reconstruction process, we employed a reconstruction 
environment tool, rBioNet.65 All simulations were performed 
using the Matlab-based COBRA Toolbox.66 Tomopt (Tomlab, 
Inc.) was employed as linear programming solver. We used 
Matlab (Mathworks, Inc.) as programming environment.
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B. thetaiotaomicron-associated and germfree mouse model were 
determined. The analysis was performed on high-protein diet, 
high-fat diet and Western diet. We only considered exchange 
reactions with absolute flux values greater than 0.01 mmol.g

Dw
-1.

hr-1 in at least one direction and with at least 10% difference 
in fluxes between germfree and B. thetaiotaomicron-associated 
mouse model. We defined the in silico “metabolome” as the 
flux through internal and external exchange reactions between  
B. thetaiotaomicron and lumen (“gut”), between mouse and 
lumen, between lumen and outside (“faeces”) and between mouse 
and a separate outlet (“body fluids”). Metabolite concentrations 
reported in five in vivo metabolomic studies of conventional and 
germfree mice20,28-31 were compared with the computed flux dif-
ferences. Differences in the levels of triglyceride, phosphatidyl-
choline and sphingomyelin species30 were not considered, since 
the mouse reconstruction used for iexGFMM_BΘ did not spec-
ify fatty acid residues.

Mapping human inborn errors of metabolism (IEMs) onto 
iSS1393 and iexGFMM_BΘ. Recently, we assembled a com-
pendium of inborn errors of metabolism, which accounts for 
250 human genes and 235 hereditary human diseases,32 many 
of which have known mouse models (http://www.omim.org/). 
Using the HomoloGene database (http://www.ncbi.nlm.nih.
gov/homologene) and the mouse genome informatics database 
(http://informatics.jax.org/), the human genes were mapped 
onto the corresponding mouse homologs. We identified 243 
homologs in the mouse genome associated with 222 IEMs that 
were captured by iSS1393.

Performing a genome-scale single gene deletion study for 
iexGFMM_BΘ, iAH991 and iSS1393. An in silico single gene 
deletion study was performed for all transcripts in iSS1393 and 
all genes in iAH991. The analysis was also performed using iexG-
FMM_BΘ. In all cases, growth on Western diet was simulated 
(Table S9). An in silico knockout model was obtained by set-
ting the bounds of the corresponding reaction(s), as defined by 
the GPR association, to 0 mmol.g

Dw
-1.hr-1. To prevent infeasible 
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