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Abstract
Voltage gated calcium channels (Ca2+ channels) are key mediators of depolarization induced
calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological
responses. This review focuses on the inhibition of CaV2 (N- and P/Q-type) Ca2+-channels by G
protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over
synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most
widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1
subunit of CaV2 channels. GPCRs can also recruit several other distinct mechanisms including
phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-
independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the
molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell
signaling pathways. A summary of recent developments in understanding the voltage-independent
mechanisms prominent in sympathetic and sensory neurons is also included.
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1. Voltage gated calcium channels
Voltage gated calcium channels (Ca2+ channels) are key mediators of depolarization
induced calcium influx into excitable cells, which in turn mediates a wide array of
physiological responses including the activation of calcium dependent enzymes, smooth
muscle contraction, pacemaker activity and neurotransmitter release [1-8]. Ca2+ channels are
also associated with a wide range of pathologies, including pain, epilepsy, migraine, cardiac
arrhythmias and autism [9-14]. It is widely known that there are subtypes of Ca2+ channels
with different pharmacological and biophysical properties, and distinct cellular and
physiological functions [15-17]. In neurons, certain L-type Ca2+ channel isoforms are
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expressed at cell bodies and dendrites, and one of their key functions is the initiation of
calcium dependent gene transcription events [18-22]. Other L-type channel subtypes are
expressed in cochlear hair cells and photoreceptor nerve terminals where they regulate
neurotransmitter release at ribbon synapses [23, 24]. T-type calcium channels are expressed
in cell bodies as well as dendrites and one of their key functions is to regulate cellular
excitability and neuronal firing properties [25-27], in addition to participating in secretion
[28-30]. N-type and P/Q-type calcium channels are expressed at synaptic nerve terminals
where their opening results in the release of neurotransmitters [1, 19, 31-34].

All Ca2+ channels are comprised of a pore forming Cavα1 subunit that contains the major
structural features required for permeation, activation, and inactivation. The mammalian
genome encodes ten different Cavα1 subunits that fall into three major families - Cav1 (L-
type channels), Cav2 (N, P/Q- and R-types), and Cav3 (T-types) [17, 35]. The CaV1 and
CaV2 families are high voltage activated (HVA) channels, and are heteromers comprised of
a pore forming Cavα1 subunit as well as Cavα2-δ and Cavβ subunits [36-38] (Fig 1). In
addition, these channels associate with calmodulin which is now considered part of the HVA
channel macromolecular complex [39-44]. The Cavα1 subunit determines the Ca2+ channel
subtype and is a large (~175-225 kDa) protein with four homologous transmembrane
domains that are connected by cytoplasmic loops and bracketed by cytoplasmic N- and C-
termini [37] (Fig 1). These cytoplasmic regions are key targets for second messenger
regulation including protein kinases and G proteins, as we discuss here in detail. The Cavβ
subunits are cytoplasmic proteins that associate with HVA α1 subunits at a highly conserved
region within the domain I-II linker (termed the Alpha Interaction Domain – AID) [45-47].
These subunits are encoded by four different genes (for review see [48, 49]). The Cavα2-δ
subunits are transcribed from one of four different Cavα2-δ genes, proteolytically cleaved
and then reconnected via a disulfide bond (for review, see [50]). The α2 portion is located at
the extracellular side of the channel, whereas the δ portion either spans the membrane or
may be linked to the extracellular leaflet of the plasma membrane through a
glycosylphosphatidylinositol (GPI) anchor [51]. The function of these ancillary subunits is
to regulate channel properties and promote Cavα1 subunit trafficking to and stabilization at
the plasma membrane [52-54] (for reviews see [48, 49, 55-57]. As we will outline below,
Cavβ subunits also alter second messenger regulation the channel complex [58-61]. Finally,
it should be noted that most Ca2+ channel subunits are subject to alternate mRNA splicing,
thus greatly increasing the functional diversity of calcium channels [62-65]. Recently
described RNA editing events that alter channel function add further complexity [66]. This
then makes it challenging to precisely reconstitute all specific features of native calcium
currents in transient expression systems. In this review, we focus on the CaV2 family of
channels, and in particular their regulation by G protein coupled receptors.

2. G protein coupled receptors and heterotrimeric G proteins
G protein coupled receptors (GPCRs) are a large family of membrane proteins encoded by
almost 800 human genes, and represent an important class of therapeutic targets [67, 68].
GPCRs are characterized by an extracellular N-terminus, seven transmembrane spanning
alpha helices, and an intracellular C-terminus which couples to heterotrimeric G proteins.
Extracellular ligand binding to the receptor leads to activation of the G proteins and a
myriad of downstream intracellular signaling cascades. In human, sixteen genes encode G
protein α subunits (Gα), and these are classified into four major families: Gs, Gi, Gq, and
G12, in addition to transducin (Gαt) which is found in the retina. Five genes encode Gβ
subunits, and twelve genes encode Gγ subunits (for reviews see[69-72]. Binding of agonist
to the GPCR catalyzes the exchange of GDP to GTP on Gα causing conformational
changes/dissociation of the Gα and Gβγ heterodimer [71, 73]. The liberated Gα and Gβγ
are both capable of signaling to multiple downstream effectors, including voltage-gated
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Ca2+-channels as discussed in this article. Signaling is terminated by intrinsic GTPase
activity of Gα and subsequent reassociation of the Gα-GDP subunit with the Gβγ
heterodimer. This GTPase activity can be accelerated by a family of RGS proteins (regulator
of G protein signaling) which thus influence the extent and duration of downstream events
[74]. Receptor desensitization in the continued presence of agonist can also terminate
signaling. Desensitization is complex, involving phosphorylation by PKA, PKC, or G
protein coupled receptor kinases (GRKs) and uncoupling of the receptor from the
downstream G proteins. Endocytic removal of the GPCR from the plasma membrane can
also occur. GRKs recruited by Gβγ phosphorylate the C-terminus of the GPCR leading to
recruitment of arrestins and the endocytic machinery [75, 76]. As discussed below (section
10), direct interaction of GPCRs and Ca2+ channels might result in co-internalization adding
another dimension to channel modulation.

4. Inhibition of CaV2 channels by G protein coupled receptors
Neurotransmitter mediated inhibition of Ca2+ channels was first demonstrated ~30 years ago
by Dunlap and Fischbach who reported that norepinephrine reduced the duration of action
potentials [77] and the amplitude of ICa [78] in chick sensory neurons. It is now apparent
that a variety of different neurotransmitters/neuromodulators acting on their cognate GPCRs
inhibit ICa, and that this is important for controlling neurosecretion (for reviews see [79-85]).
It is also known that GPCRs can recruit several distinct signaling pathways that converge on
Ca2+ channels. The most widespread and intensively studied of these involves direct binding
of Gβγ to the α1 subunit of CaV2 channels. As detailed below (section 5), Gβγ-mediated
inhibition shifts the voltage-dependence of channel activation, is less prominent at
depolarized membrane potentials, and is transiently relieved by large depolarizing voltage
steps. Consequently, this mechanism is often termed voltage-dependent inhibition. GPCRs
can also elicit voltage-independent inhibition of ICa which is mediated by several other
distinct and generally less well characterized pathways including phosphorylation, lipid
signaling pathways, and channel trafficking (see sections 10-12). While voltage-dependent
inhibition is widespread throughout the nervous system, voltage-independent inhibition is
more variable in extent and mechanism but seems particularly prominent in sensory and
sympathetic neurons. In this review we first consider Gβγ-mediated inhibition, including
recent developments and crosstalk with other cell signaling pathways. Then we outline some
of the voltage-independent mechanisms prominent in sympathetic and sensory neurons.

5. Voltage-dependent inhibition mediated by Gβγ
Voltage-dependent inhibition primarily targets CaV2.1 (P/Q-type) and CaV2.2 (N-type)
channels, although CaV2.3 channels are also inhibited by similar mechanisms (see section
5.4 below). The voltage-dependent nature of the inhibition was first demonstrated by Bean
[86], who showed that the decrease in current amplitude was not due to a loss of channels
per se, but rather a shift in the gating properties that could be overcome by strong
depolarization. Several hallmarks are characteristic of this voltage-dependent mechanism: In
whole cell recordings, the inhibition of peak ICa amplitude is diminished at depolarized
membrane potentials; activation kinetics are slowed; the voltage-dependence of activation is
shifted to more depolarized potentials; a conditioning prepulse to depolarized potentials
relieves most of the inhibition and normalizes channel kinetics (termed prepulse relief or
prepulse facilitation). Figure 2 shows an example of voltage-dependent inhibition of ICa.
Prominent slowing of activation kinetics and prepulse relief of the inhibition is clearly seen.
Voltage-dependent relief of the inhibition can also occur at least to some extent during more
physiologically relevant stimuli such as high frequency trains of action potential-like
waveforms [87-92]. In turn, this might contribute to short term synaptic plasticity at some
synapses [93].
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Bean also introduced the “willing and reluctant” model to explain these functional effects
[86], a framework that persists to this day [94-97]. The channels exhibit two functional
gating states, “willing” and “reluctant”. In the absence of Gβγ, the “willing” state
predominates, whilst binding of Gβγ favors the “reluctant” state which displays the shifts in
channel gating noted above. Voltage-dependent relief of the inhibition is thought to reflect a
shift of the channels from “reluctant” to “willing” due to transient dissociation of Gβγ (Fig
2B). This was supported by kinetic analyses of prepulse relief as a function of agonist or
Gβγ concentration. Increasing the concentration of Gβγ did not alter the rate of relief
during the prepulse, but did accelerate the rate of reinhibition following the prepulse
[98-101], as expected for voltage-dependent dissociation and rebinding of Gβγ. Further
investigations revealed that the kinetics of reinhibition were consistent with binding and
unbinding of a single Gβγ dimer with the channel [101].

5.1. Single channel investigations
Single channel studies provided early evidence that the inhibition did not involve a
diffusible second messenger. In the “cell-attached” (“on-cell”) recording configuration, bath
application of agonist did not inhibit the channels whereas agonist in the patch pipette did
[99, 102, 103]. This led to the conclusion that the inhibition was “direct” or “membrane
delimited”. Single channel recording also directly revealed “reluctant” gating of inhibited
channels. Upon membrane depolarization, the latency (delay) to first channel opening was
increased during inhibition whereas there was little impact on other single channel
parameters [95, 104]. As a result, the inhibited (“reluctant”) channels appeared essentially
silenced, unable to open until Gβγ dissociated and the channels shifted to the “willing”
state. Subsequently it has been reported that CaV2.2 (N-type) but not CaV2.1 (P/Q-type)
channels can display very brief channel openings from the “reluctant” state (i.e. without
Gβγ unbinding), although the probability of such events was low [96, 97].

Overall, the dominant effects of inhibition observed in all studies are the shift in activation
and prolonged latency to first channel opening. The slow activation kinetics seen in whole
cell recording (Fig 2) and longer latency in single channel recordings reflect the
conformational changes and subsequent dissociation of Gβγ from the channel upon
membrane depolarization. This diminished binding of Gβγ at depolarized potentials also
results in little inhibition of whole cell ICa when neurotransmitter agonists are rapidly
applied during a depolarizing voltage-step [105].

5.2. Alteration of gating currents by Gβγ
Further evidence for altered activation comes from recording of channel “gating currents”.
Gating currents are not due to ionic flux through the channel pore, but rather reflect
movement of the charged voltage-sensor domain of the channels in response to membrane
potential changes. Expression of recombinant CaV2.2 in HEK293 cells enables recording of
these gating currents in isolation as the cells lack other endogenous voltage-gated channels.
G proteins were found to reduce the amplitude, and shift the voltage-dependence of gating
currents to more depolarized potentials [106]. G proteins also produced a significant
separation in the voltage-dependent activation of gating current and ionic current [106].
These data suggest that Gβγ binding slows movement of the voltage-sensor and uncouples
this movement from opening of the activation gate. Modulation of gating currents by G
proteins has also been reported in rat sympathetic neurons [107, 108].

5.3. Gβγ and channel inactivation
In addition to these dominant effects on channel activation, evidence supports the idea that
Gβγ can also modulate inactivation of CaV2.2 channels [109, 110]. Inactivation of Ca2+

channels is complex and mediated by several voltage-dependent and Ca2+-dependent
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mechanisms [111-113]. The precise molecular correlates remain somewhat unclear, but fast
voltage-dependent inactivation might involve a “hinged lid” type mechanism in which the
intracellular loop connecting domains I and II of the α1-subunit serves as the “inactivation
gate” [112, 114] (but see [115]). The I-II loop is also an important binding site for Gβγ on
the channel [116-119] (Fig 1) (see section 7 for more discussion). Therefore, it is possible
that binding of Gβγ disrupts movement of this putative inactivation gate, or its interaction
with other channel domains. Inactivation of CaV2.2 can also occur from intermediate closed
state(s) of the channel favored during trains of brief repetitive stimuli [104]. If Gβγ were to
reduce the probability that the channels populate this state (from which inactivation is
preferred) it might reduce the cumulative inactivation throughout a stimulus train. Further
investigations are needed to determine quite how G protein modulation and channel
inactivation interact.

Ca2+-dependent inactivation is mediated by calmodulin bound to the C-terminus of the
channel α1 subunit [42, 120-123]. Strong intracellular Ca2+ buffering (EGTA or BAPTA in
the patch pipette solution) blocks Ca2+-dependent inactivation of CaV2 channels indicating
that it is mediated by a “global” elevation rather than a “local” microdomain of Ca2+. The
reduction of Ca2+-dependent inactivation by Gβγ [109] might therefore result from fewer
channels opening and a diminished “global” Ca2+ signal, although more complex
interactions are also possible, and direct in vitro binding of Ca2+-calmodulin to Gβγ has
been reported [124].

5.4. Differential inhibition of CaV2 channels by Gβγ
Originally demonstrated for N-type channels (CaV2.2) in sensory and sympathetic neurons
(for example, [78, 125-127]), it subsequently became clear that CaV2.1 (P/Q-type) channels
are also modulated by Gβγ in a similar manner [128]. Initially it was thought that CaV2.3
channels were insensitive to G proteins [129-131], although other studies did find some
degree of inhibition [132-135]. Chimeric approaches suggested that the lack of (or poor)
responsiveness of CaV2.3 resided in several regions within the N-terminus, domain I, and I-
II linker of the channels [136-138]. Subsequently it was discovered that alternative splicing
of the N-terminus conferred G protein sensitivity to the channels [139]. Truncation of 50
amino acids abolished inhibition, whereas a splice variant with full length N-terminus did
display inhibition, albeit to a lesser extent than CaV2.2 channels [139]. While inhibition of
CaV2.3 channels can occur (depending on splice variation), it is generally to a lesser extent
and remains less well understood than for CaV2.1 and CaV2.2 channels. In part this might be
due to difficulty in isolating these channels in neuronal cell types. The focus on CaV2.1 and
CaV2.2 channels is also driven by their prominence in triggering neurotransmitter release,
and most of the following discussion revolves around those two channels.

Although the basic mechanism of inhibition is similar for CaV2.1 and CaV2.2 (direct binding
of Gβγ to the channel), subtle differences have emerged. As noted above, single channel
recording showed that CaV2.2 but not CaV2.1 channels display very brief duration, low
probability “reluctant openings” [96, 97]. Differences are also apparent with macroscopic
(whole-cell) recordings: activation of GPCRs or expression of Gβγ reduces the peak
amplitude of ICa to a significantly greater extent for CaV2.2 than CaV2.1 [129, 140, 141].
Moreover, trains of action potential-like stimuli reverse a greater proportion of CaV2.1
inhibition than CaV2.2 inhibition [92]. These effects can be explained by differences in the
affinity of Gβγ binding to the channels. The apparent affinity of Gβγ for the channel can be
inferred from prepulse relief and re-inhibition experiments, and is quite similar for the two
channels at hyperpolarized or very depolarized potentials. However, at moderately
depolarized potentials (< +30mV), within the physiologically relevant range of action
potentials, there is a significant divergence in the affinity of Gβγ binding to the two channel
types [96]. Subtle differences in binding of Gβγ to the channels is also suggested when
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comparing the inhibition produced by different Gβ subunits (Gβ1-5), all paired with the
same Gγ2 subunit. Such experiments revealed a different rank order of inhibition for CaV2.1
and CaV2.2 channels [142]. Point mutations on the Gβ1 subunit also have distinct effects on
the inhibition of CaV2.1 and CaV2.2 channels [143].

It would appear that subtle differences in the binding affinity of Gβγ to the CaV2.1 and
CaV2.2 channels results in differential inhibition: CaV2.2 ICa is inhibited to greater extent
and this inhibition is more resistant to reversal by high frequency bursts of action potentials.
The relative expression level of the two channel types varies between neurons, and even
between neighboring synapses arising from the same neuron. Therefore, differential
inhibition of CaV2.1 and CaV2.2 could lead to cell and/or synapse specific neuromodulation
by GPCRs. Functional differences might also arise from variable interactions or crosstalk
with other signaling pathways such as PKC (see section 9).

6. Structural determinants on Gβγ that govern modulation of CaV2 channels
Gβγ is thought to be an obligate heterodimer and there are several high resolution crystal
structures in isolation or bound to interacting proteins including Gα, GRK2, and phosducin
[144-148]. Figure 3 shows a rendering of the heterotrimer (Gαiβ1γ2) (Fig 3A), and
heterodimer (the Gβ1γ2 ) (Fig 3B) based on the structure reported by Wall et al [144] (PDB
ID: 1GP2). Gβ adopts a seven blade β-propeller structure with an α-helical N-terminal
domain that binds to the α-helical N-terminus of the Gγ subunit (Fig 3B). In the
heterotrimeric complex, Gα interacts with multiple residues on the top face of Gβ and the
side aspect of propeller blade 1 (Fig 3A). Gβγ interacts with multiple downstream effectors
and mutagenesis approaches have been used to map the interaction sites important for
binding to these targets. Many effectors bind to a protein interaction “hot spot” on the
surface of Gβ that interacts with Gα, with overlapping subsets of residues involved in
binding to different effectors [149]. A number of residues identified in mutagenesis studies
to contribute to inhibition of Ca2+ channels are highlighted in figure 4. Most of these are on
the Gα interacting surface (Fig 3C) and are masked when Gα is present [85, 109, 150-152],
although residues on the reverse face of Gβ1 have also been implicated [152-154] (Fig 3D).
Also of note, Asn35 and Asn36 on Gβ1 mediate the ability of PKC to antagonize inhibition of
CaV2.2 [153]. Thr422 on the rat CaV2.2 I-II linker has been identified as the phosphorylation
site for PKC that mediates this effect [155], so it is tempting to speculate that this region of
the channel and Gβγ come into close proximity with one another (see section 7).

Another study reported that a peptide mimicking the N-terminal 25 amino acids of Gβ2
reduced inhibition of CaV2.1 [156]. The Gβ N-terminal peptide disrupted FRET interaction
between the Gβ2 and Gγ3 subunits suggesting a conformational shift or reorientation of the
heterodimer that could disrupt interaction with the channels. A few studies have also shown
that the subtype of Gγ within the Gβγ heterodimer can influence the extent of inhibition,
with Gγ2 generally eliciting greater inhibition than Gγ1, Gγ3 or Gγ13 [157, 158]. The
molecular basis for why the Gγ subtype influences inhibition of ICa is not clear, but it is
interesting to note that the II-III linker (of the channel α1 subunit) contains a G-gamma-like
(GGL) domain [159].

7. Structural determinants on the channel α1 subunit that govern
modulation by Gβγ

Although there is currently no crystal structure for voltage-gated calcium channels that
could be used to visualize their interactions with G proteins, site directed mutagenesis,
chimeric, and biochemical approaches have been used to elucidate channel structural
determinants involved in modulation. The first investigations involved chimeras between
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Cav2.1 and Cav2.2 channels [140]. These chimeras were expressed in Xenopus oocytes and
their sensitivities to G proteins assessed via two electrode voltage clamp. These experiments
identified domain I as a key determinant of G protein inhibition, along with the C-terminus
of the channel. Subsequent biochemical studies using in vitro translated Gβγ subunits
revealed two spatially distinct regions on the I-II linker of CaV2.1 as possible Gβγ targets
[117]. The existence of two separate Gβγ binding domains in the domain I-II linker was
also observed in functional assays. Zamponi et al. [160] showed that intracellular dialysis of
tsA-201 cells with ~20 amino acid peptides directed against different regions of the I-II
linker of both Cav2.1 and Cav2.2 channels prevented the ability of exogenously delivered
Gβγ subunits to mediate voltage dependent inhibition of the channels. The first site contains
a QXXER consensus sequence (QQIER in all three CaV2 family members) found in other
Gβγ binding partners. This site also overlapped partially with the putative Cavβ subunit
binding domain on the channel (the AID). Subsequent co-crystal structures of the Cavβ
subunit bound to its interaction site on the isolated domain I-II linker revealed that only part
of the 20 amino acid stretch forming the putative Gβγ interaction site is likely to be
accessible in the presence of a bound Cavβ subunit [46]. This may suggest two possibilities:
Either the Cavβ subunit partially dissociates from regions involved in Gβγ binding, or
alternatively Gβγ interacts with those residues that remain exposed after Cavβ docking.

Further support for the involvement of the I-II linker came from scanning mutagenesis of the
amino acids in each of the two binding regions in rat CaV2.2 channels [161]. Mutation of
two residues (Arg376 and Val416 to alanine) out of thirty tested significantly reduced the
magnitude of voltage-dependent inhibition while mutation of Arg376 to phenylalanine
increased inhibition. Irrespective of the precise nature of the Gβγ interaction on the domain
I-II linker, this general region has been implicated as being important for functional channel
inhibition by a number of other groups [116, 131, 136]. These studies contrast with work
from Qin and colleagues [134] whose data implicated the C-terminus rather than the domain
I-II linker as the critical element for G protein modulation. While likely playing an auxiliary
role, the C-terminus region does not appear to be essential for N-type channel inhibition as
large parts can be deleted with only small consequences on the extent of receptor mediated
voltage-dependent modulation [155, 162, 163]

Several other groups attributed an important role to the N-terminus of the channel based on
site directed mutagenesis work [136, 138, 151, 164]. The Dolphin lab identified the N-
terminal 55 amino acids of CaV2.2, and in particular an eleven amino acid stretch (45-55)
that is predicted to form an α-helix [165], to be critical for Gβγ-mediated inhibition of the
channels. The Yue group demonstrated direct interaction of the N-terminus with Gβγ [151]
and that the N-terminus (residues 56-95) also binds directly to the I-II linker. Thus, the N-
terminus contributes both to binding of Gβγ, and as an “inhibitory module” which binds the
I-II linker to perhaps mediate the shift from willing to reluctant gating states. Finally, a
recent study revealed that a point mutation (S218L) in the domain I S4-S5 linker of Cav2.1
that is found in patients with familial hemiplegic migraine (FHM) facilitates recovery of the
channels from Gβγ inhibition, perhaps by facilitating the dissociation of the G protein dimer
[166]. Two other FHM mutations (R192Q, Y1245C) have also been reported to diminish
Gβγ-mediated inhibition [167, 168].

Taken together, several sites on both the CaV2 α1 subunit and the Gβγ heterodimer have
been implicated in voltage-dependent inhibition. On the Cav2 α1 subunit, the domain I-II
linker and N-terminus are essential structural elements (Fig 4). Ultimately crystal structure
data will be needed to precisely determine how G protein subunits interact with these
channel loci in the presence and the absence of the Cavβ subunit.
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8. Contribution of the CaVβ subunit to voltage-dependent inhibition
The subtype of CaVβ can influence the extent and kinetics of Gβγ-mediated inhibition and
this depends on the subtype of Gβ involved [169, 170]. However, the precise role of CaVβ
subunits in voltage-dependent inhibition of ICa has been unclear (for reviews see [49, 79]).
Overlapping binding sites for the two proteins have been identified on the I-II linker, and
one fundamental question that arose was whether CaVβ and Gβγ can bind to the channel at
the same time, or whether they compete in a mutually exclusive manner. Seemingly
contradictory data including FRET analyses suggested either competition [171] or
synergistic binding [172]. Some of this confusion might stem from endogenous CaVβ
subunits found in some heterologous expression systems (including Xenopus oocytes), or
confounding shifts in the voltage-dependence of activation by some CaVβ subunits (see
[79]). Evidence from the Dolphin and Yang labs outlined below now suggest that both
proteins can interact with the channel simultaneously, and that binding of the CaVβ subunit
is required to confer voltage-dependent reversal to Gβγ-mediated inhibition (Fig 4)
[173-176].

The Dolphin lab introduced a mutation (W391A) into the AID on the I-II linker of CaV2.2
channels which reduces CaVβ subunit binding affinity by ~1000 fold. [174]. While the
extent of Gβγ-mediated inhibition was similar for mutant (W391A) and wild-type channels,
prepulse reversal of the inhibition was almost abolished in the mutant. Expression of wild
type CaV2.2 along with α2δ but without CaVβ resulted in similar findings, and the voltage-
independent inhibition in the absence of the CaVβ was blocked by overexpression of
transducin which acts to scavenge free Gβγ subunits [175]. Thus, in the absence of CaVβ
binding to the I-II linker, Gβγ-mediated inhibition of the channels was still present but
could no longer be reversed in a voltage-dependent manner. The experiments outlined above
used the β1b subunit, but when β2a was expressed with the W391A channels voltage-
dependent relief of the Gβγ mediated inhibition was restored. Unlike β1b, the β2a subunit is
palmitoylated at two N-terminal cysteine residues, and mutation of these residues led to loss
of voltage-dependent relief (i.e. the data resembled β1b). The authors proposed that
palmitoylation increased the local plasma membrane concentration of β2a such that low
affinity interaction with α1 could still take place and permit voltage-dependent relief of the
inhibition.

The Yang lab came to similar conclusions for CaV2.1 channels [176]. In this case the
authors mutated CaVβ to reduce the affinity for the AID. The channels were expressed in
Xenopus oocytes and macroscopic currents were recorded from giant inside-out patches that
contained many channels. Washing the cytoplasmic face of the patches resulted in
dissociation of CaVβ (due to the reduced binding affinity of the mutant), and this was
confirmed by the expected shifts in channel kinetics compared to wild type. In these
channels lacking CaVβ, purified Gβγ still inhibited the currents but prepulse reversal was
abolished.

The CaVβ subunit consists of SH3 and GK domains separated by a variable HOOK region
[48, 49]. Binding to the AID on the I-II linker of α1 is mediated by the GK domain,
although interaction between the SH3 and HOOK domains elsewhere on the α1 subunit
might also modulate functional properties. In terms of Gβγ effects, voltage-dependent
reversal was restored even by binding of the isolated GK domain of CaVβ to the AID [175,
176]. In the absence of such binding the AID adopts a random coil, but the presence of
CaVβ induces an α-helical conformation that extends back to the interface with IS6 [46, 47,
177, 178]. The Yang lab introduced seven glycines between the AID and IS6 to disrupt this
α-helical structure and found that this prevented the ability of CaVβ to confer voltage-
dependence to the inhibition [176]. Conversely, introducing seven alanines (not expected to
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disrupt the α-helix) maintained the ability of CaVβ to confer voltage-dependence to Gβγ-
mediated inhibition. It is possible that binding of CaVβ to the AID induces a rigid α-helical
link with domain IS6, and this transmits movement of the voltage-sensor and activation gate
(including IS6) to the I-II linker to alter the Gβγ binding pocket at depolarized potentials. It
is also worth noting that Gβγ-mediated inhibition was still present in both channel types
lacking CaVβ, and in the CaV2.1 channels containing the seven glycine insert [175, 176].
Apparently the rigid α-helical link to the upstream activation gate and voltage-sensor is not
required per se to transduce binding of Gβγ into functional inhibition. CaVβ might also
influence Gβγ-mediated inhibition in other ways. For example, deletion of the HOOK
domain promoted tonic inhibition of CaV2.2 channels, perhaps due to increased affinity for
the basal level of free Gβγ in the cells [175].

9. Crosstalk between N-type channels, Gβγ, kinases and synaptic proteins
9.1. Protein kinase C

Most cell signaling events do not occur in isolation, but instead in an integrated fashion. G
protein regulation of voltage-gated calcium channels is no exception. This is exemplified by
the modulation of voltage dependent Gβγ inhibition of N-type channels by protein kinase C
( PKC). In peripheral neurons, activation of PKC was shown to reduce the extent of
subsequent G protein modulation by a number of different receptor pathways, including
GABA-B, adenosine and muscarinic receptors [179-181]. Such an interference with G
protein inhibition could be due to PKC dependent phosphorylation of the G protein
interaction site on the channel, the G protein coupled receptor, or the G protein itself. The
first hint supporting the first mechanism came from experiments showing that in vitro
phosphorylated domain I-II linker peptides could no longer effectively interact with Gβγ
peptides [160]. Subsequent work showed that a threonine residue within the putative I-II
linker Gβγ interaction site was responsible for this effect. When phosphorylated, or
substituted for glutamic acid, this residue destabilizes the interaction of the channel with
Gβγ, and its substitution for alanine precludes the antagonistic effects of PKC [155].
Interestingly, only Gβ1 mediated signaling (not other Gβ isoforms) was subject to this type
of PKC crosstalk [182], and this was attributed to a single locus unique to Gβ1 [153] (Fig
3C). This observation suggests that activation of Gq-coupled receptors can modulate
signaling of certain types of Gβ1 linked receptors to N-type calcium channels. It should also
be noted that PKC activation not only results in antagonistic effects on Gβγ-mediated
inhibition but, depending on N-type channel splice variant, can also promote direct
enhancement of current activity [155]. This is mediated by phosphorylation of both the
above noted threonine residue and an adjacent serine and adds further complexity to the
PKC-G protein signaling crosstalk.

9.2. Synaptic proteins
The two types of calcium channels that are most susceptible to the effects of Gβγ also
control neurotransmitter release at CNS synapses [1]. Both Cav2.1 and Cav2.2 channels
physically associate with proteins that are involved in synaptic vesicle release, such as
syntaxin 1A and SNAP25. These SNARE proteins bind directly to a synaptic protein
interaction (synprint) site on the II-III linker (Fig 1) which serves to bring the channels into
close proximity of the synaptic vesicle release sites [183-189]. RIMs (rab3 interacting
molecules) have also emerged as important organizers of the presynaptic active zone [190],
and bind CaV2 channels both directly and through RIM binding proteins to control their
density and localization at release sites [191-195]. Binding of syntaxin 1A to both Cav2.1
and Cav2.2 also results in a hyperpolarizing shift in the voltage dependence of channel
inactivation [185, 196-198] (for review see [199]). In addition to this effect on channel
gating, syntaxin 1A modulates G protein regulation of the channels. Coexpression of
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syntaxin 1A with N-type channels in tsA-201 cells induces tonic inhibition mediated by
Gβγ [200]. Syntaxin 1A physically associates with Gβγ at a site distinct from that involved
in binding to the N-type channel [198, 201], suggesting the possibility that syntaxin 1A
serves to colocalize the channels and Gβγ to ultimately promote a form of tonic inhibition.
In contrast, syntaxin 1B does not mediate such an effect, even though it is capable of
binding to both the channel and Gβγ [202]. This may suggest that the spatial orientation of
the syntaxin/G protein complex relative to the N-type channel complex is critical for
functional modulation. Gβγ interaction with SNARE proteins might also serve to directly
regulate neurotransmitter release in both lamprey and mammalian neurons and
neuroendocrine cells [203-206].

Several other types of synaptic proteins have been shown to alter G protein regulation of N-
and P/Q-type channels. Cysteine string protein (CSP) interacts with G proteins and the
synprint site and mediates an effect similar to that seen with syntaxin 1A [207]. In addition,
CSP appears to stimulate Gα subunit activity by promoting the exchange of GTP for GDP in
a receptor independent manner [208]. In contrast to these enhancing effects of syntaxin 1A
and CSP, coexpression of Rim1 with Cav2.2 in HEK293 cells promotes “deinhibition”
(recovery from Gβγ-mediated inhibition during depolarization) in addition to substantially
slowing channel inactivation [209].

9.3. Calcium channel γ subunits
Another protein of note is stargazin, a member of the calcium channel γ subunit family.
Skeletal muscle CaV1.1 channels have been shown to associate with a γ1 subunit in addition
to β and α2δ subunits. Several neuronal γ subunits have been identified although it remains
uncertain that these constitute bona fide channel subunits. Indeed the γ2 isoform (also called
stargazin) and related proteins (γ3-7) associate with and modulate glutamatergic AMPA
receptors [210]. However, it has been shown that stargazin can bind Gβγ in vitro, and acts
to scavenge Gβγ and reduce inhibition of CaV2.2 channels in Xenopus oocytes [211].
Altogether, these findings highlight the notion that Gβγ modulation of calcium channels
does not occur in isolation, but is tightly controlled by a wide range of cellular processes and
signalling pathways.

10. Direct GPCR/N-type calcium channel interactions
Efficient signaling necessitates close proximity between GPCRs and effectors such as ion
channels. This can be accomplished through the formation of large macromolecular
signaling complexes between receptors, channels, G proteins, and kinase anchoring proteins
[212-215]. In addition, a physical association between receptors and channels provides for a
possible mechanism by which receptors can control channel function in an agonist
independent manner. This was first shown by Kitano and colleagues [216] who identified a
physical association of Cav2.1 channels with metabotropic glutamate receptors that results
in altered P/Q-type channel function. For N-type channels, the formation of a signaling
complex between Cav2.2 and the NOP (a.k.a. nociceptin) receptor was demonstrated in
dorsal root ganglion neurons, and shown to promote tonic voltage-dependent modulation in
the absence of receptor ligand, presumably reflecting constitutive receptor activity [217].
Similar observations have been reported for δ- and μ-opioid receptors coexpressed with N-
type channels in tsA-201 cells [218, 219].

Association of channels with receptors also provides for an additional level of control
through regulation of channel density in the plasma membrane. NOP receptors coexpressed
with N-type channels not only promote the cell surface expression of the channels (Fig 5A),
but also trigger an agonist mediated co-internalization of the channel/receptor complex into
lysosomes [219, 220], thus giving rise to a new form of voltage-independent inhibition (Fig
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5B). The extent to which this occurs in neurons is up to some debate. While imaging studies
show a clear NOP receptor mediated internalization of channels in cultured DRG neurons,
and reduced calcium entry in response to prolonged activation of receptors [220], there do
not appear to be clear effects on whole cell current densities in nociceptin treated neurons
[221]. It is possible that receptor mediated internalization is offset by kinase pathways that
augment the activities of channels remaining in the plasma membrane. D1 and D2 dopamine
receptors also associate with N-type calcium channels [222, 223], but while NOP receptors
and Cav2.2 channels interact via their C-termini, D1 and D2 receptors also interact with
other regions of the Cav2.2 channel α1 subunit such as the domain II-III linker. As with the
NOP receptor, D1 or D2 receptor coxpression facilitates trafficking of the channels to the
plasma membrane, and allows for receptor-channel co-internalization. In prefrontal cortex
neurons, the D1 receptor appears to target N-type channels to dendritric sites [222]. It is
likely that other types of GPCR may form complexes with N-type and perhaps P/Q-type
calcium channels, however this will need to be confirmed experimentally. Altogether, the
formation of macromolecular signaling complexes between receptors and channels provides
for previously unrecognized means for controlling channel activity/density.

11. Voltage-independent inhibition of CaV2 channels by Gq-coupled GPCRs
Sympathetic neurons have been used extensively to investigate modulation of CaV2.2 (N-
type) channels, and at least two distinct pathways have been identified: the “fast” pathway,
mediated by pertussis toxin sensitive Gi/o-coupled GPCRs, is due to direct, voltage-
dependent inhibition by Gβγ; a “slow”, voltage-independent pathway takes tens of seconds
to develop, is mediated by Gq-coupled GPCRs, involves a diffusible second messenger, and
is sensitive to intracellular [BAPTA] (for reviews see [224, 225]). Typical Gq-coupled
signaling pathways downstream of phospholipase Cβ including IP3/Ca2+, diacylglycerol,
and PKC were shown not to mediate the inhibition, and the pathway remained elusive for
quite some time. In the past decade evidence has mounted implicating depletion of plasma
membrane PIP2 and/or generation of arachidonic acid as possible mediators of this
inhibition [226-229]. Here we outline the proposed mechanisms along with some recent
developments.

PIP2 is required for a variety of ion channels to function (for reviews see [229-232]). The
first evidence that this included Ca2+ channels was the demonstration that time-dependent
“rundown” (loss) of CaV2.1 channel activity in excised membrane patches was slowed by
application of PIP2 and accelerated by depleting or sequestering PIP2[233]. Similar effects
were subsequently reported for N-type (CaV2.2) channels, along with evidence that the
“slow” inhibition by Gq-coupled GPCRs in sympathetic neurons was due to phospholipase
C mediated PIP2 hydrolysis [234]. For example, inhibition by muscarinic receptors was
blunted by including PIP2 in the patch pipette, whereas recovery from inhibition was slowed
by blocking PI-4 kinases which replenish the depleted PIP2. The overall picture that has
emerged is that PIP2 is required for channels to open in response to membrane potential
changes. This may involve dynamic low affinity interaction of PIP2 with the channels and
perhaps additional higher affinity binding to a distinct channel domain. It has been
postulated that such interactions might “crosslink” hydrophobic and hydrophilic domains
and favor protein conformations conducive to active channel states. Similar to Gq-mediated
modulation of M-type potassium channels [226, 230], this model proposes that depletion of
local PIP2 by phospholipase C mediated hydrolysis removes this permissive interaction and
is both necessary and sufficient to inhibit channel activity.

An alternative, although related, lipid signaling pathway has been proposed by the
Rittenhouse lab [227] who reported that arachidonic acid elicits bidirectional modulation of
N-type channels; ICa was enhanced at relatively hyperpolarized test potentials and inhibited

Zamponi and Currie Page 11

Biochim Biophys Acta. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



at more depolarized potentials [235, 236]. The enhancement seems to involve extracellular
actions of arachidonic acid [237], whereas the inhibition is mediated at the cytoplasmic face
of the membrane. Arachidonic acid can be produced either by the action of phospholipase
A2 on PIP2 and other membrane phospholipids, or by the action of diacylglycerol-lipase on
diacylglycerol [227]. It is postulated that activation of these lipases by muscarinic receptors
cleaves PIP2 and generates arachidonic acid which binds to the channel. This binding has the
opposite effect to PIP2 such that it stabilizes closed/inactivated states of the channel and thus
leads to inhibition. The involvement of arachidonic acid is a matter of some debate, in part
due to conflicting reports on the ability of DAG-lipase inhibitors to block channel inhibition
[226, 227, 234, 236].

A recent study from the Hille lab has provided evidence in support of the PIP2 depletion
model [238]. To avoid downstream and parallel signaling pathways subsequent to Gq-
coupled receptor activation, the authors used controlled activation of exogenous
polyphosphoinositide 5-phosphatases which convert PIP2 into PI(4)P [239, 240]. In one
approach, cells were transfected with a voltage-sensitive phosphatase (VSP) that enabled
rapid (~1s) and reversible depletion of PIP2. Another approach involved chemical
dimerization to translocate transfected yeast INP54p 5-phosphatase to the membrane and
irreversibly deplete PIP2. In both cases ICa was inhibited by PIP2 depletion, and the rate/
extent of recovery from this inhibition tracked the rate/extent of PIP2 resynthesis [238].
These data support the idea that depletion of PIP2 in of itself is sufficient to inhibit ICa.
However, it was noted that the magnitude of ICa inhibition was less than that produced by
muscarinic receptors, even though the predicted depletion of PIP2 is comparable. Therefore,
it is possible that another signal, perhaps arachidonic acid, also contributes to the Gq-
mediated inhibition, perhaps through synergistic actions with PIP2 depletion [226, 227].

11.1. CaVβ and intracellular Ca2+ modulate Gq-mediated inhibition
Notably, it has been reported that the CaV β2a subunit opposes inhibition of ICa by
arachidonic acid or PIP2 depletion. The β2a subunit is palmitoylated at two N-terminal
residues and it is this lipidation that diminishes the inhibition. Indeed, N-type channels
containing β2a are enhanced rather than inhibited by Gq-coupled GPCRs and arachidonic
acid [60, 227, 241]. Rittenhouse and colleagues postulated that the palmitoyl groups interact
directly with the α1 subunit of the channel and thereby mask an inhibitory binding site for
arachidonic acid. Inhibition of ICa by PIP2 depletion (using a voltage-sensitive phosphatase)
is also diminished in channels containing a palmitoylated β2a subunit [61]. It is speculated
that the palmitoyl groups of CaVβ2a, the lipid tail of PIP2, and arachidonic acid compete for
binding to a site(s) on the α1 subunit of the channel. Binding of the palmitoyl groups or
lipid tails of PIP2 favors active channel conformations whereas loss of this interaction and/or
binding of arachidonic acid favors closed/inactive channel conformations.

Highlighting the complexity of neuronal Ca2+ channel regulation, it is noteworthy that even
in the same cell, not all Gq-coupled GPCRs elicit inhibition of ICa [234]. This correlates
with the ability of the different receptors to elicit significant IP3 mediated release of
intracellular Ca2+ stores which likely relates to the proximity of the GPCR, IP3 receptors,
and other components of a macromolecular signaling complex [226, 242]. In turn, such Ca2+

elevations are postulated to promote phosphatidylinositol 4-kinase activity thereby
preventing local PIP2 depletion and inhibition of ICa [226, 234, 243, 244]. Thus, the extent
of this voltage-independent inhibition depends on the subunit composition of the channels
(CaVβ isoform), and colocalization of GPCRs and various phosphoinositide and Ca2+

signaling components in macromolecular signaling complexes. Adding further to this
complexity, another type of “fast”, voltage-independent inhibition of N-type ICa mediated by
a distinct pathway(s) perhaps involving both Gα and Gβγ signaling has also been described
in these same sympathetic neurons [245, 246].
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12. Kinase-mediated, voltage-independent inhibition of CaV2 channels in
sensory neurons

Voltage-independent inhibition that appears to involve channel phosphorylation has also
been described. For example, PKC has been implicated in the inhibition of N-type ICa in
chick sensory neurons [247, 248] In frog and mammalian neurons PKC can also potentiate
ICa, might target multiple phosphorylation sites with opposing actions, antagonize Gβγ
mediated inhibition, or modulate channel trafficking (see sections 9, 10) [155, 180, 181, 249,
250]. It was also reported that rapid activation of a tyrosine kinase by GABAB receptors
resulted in voltage-independent inhibition of N-type ICa in chick sensory neurons [251].
More recently, the Lipscombe lab demonstrated that manifestation of this tyrosine kinase
mediated inhibition in mammalian neurons is controlled by alternative splicing of the
CaV2.2 C-terminus (Fig 6) [252, 253]. There are two mutually exclusive forms of exon 37
(e37a and e37b). Gβγ-mediated, voltage-dependent inhibition is identical in recombinant
channels containing either e37a or e37b. However, channels containing exon 37a are also
inhibited by another voltage-independent pathway. This second pathway involves rapid
activation of pp60c-src tyrosine kinase and requires a tyrosine residue (Y1747) present in
exon 37a that is replaced by phenylalanine in exon 37b. Of particular note, expression of
exon 37a is restricted to dorsal root ganglia, and preferentially expressed in capsaicin
sensitive, nociceptive neurons [254]. The gene encoding chicken CaV2.2 only has one exon
37 which is similar to e37a and includes a tyrosine residue [252]. This then explains the
restriction of this pathway to nociceptive neurons in mammals and its prevalence in chick
neurons. This expression pattern also suggests that the e37a splice variant might be tailored
to play a role in pain transmission [255]. Recently, using an exon replacement strategy in
mice, it was shown that basal nociceptive transmission was unaltered by loss of e37a, but the
analgesic effects of intrathecal morphine were diminished [253].

13. Concluding remarks
In this review we have highlighted the complex inhibition of CaV2 channels by G protein
coupled receptors. Voltage-dependent inhibition, mediated by direct binding of Gβγ to the
Ca2+ channel α1 subunit, is the most common and best understood mechanism. Membrane
potential, firing patterns, channel subunit composition/splice variants, and Gβγ heterodimer
composition all modulate the extent and/or kinetics of voltage-dependent inhibition.
Although less well understood and perhaps less widespread, there are also several
mechanisms leading to voltage-independent inhibition of CaV2 channels. These include
direct interaction with GPCRs, inhibition through lipid signaling pathways, and channel
phosphorylation. CaV2 channels are also subject to a variety of other regulatory
mechanisms, notably Ca2+-dependent feedback (both inactivation and facilitation). Thus,
GPCRs in combination with Ca2+ channels sense and integrate a complex array of inputs in
order to fine tune the spatiotemporal aspects of Ca2+ entry that play such pivotal roles in
cellular physiology and synaptic transmission.
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Highlights

• CaV2 channels play pivotal roles in neurotransmitter and hormone release

• G protein coupled receptors orchestrate precise control of CaV2 channels

• Voltage-dependent inhibition is mediated by direct binding of Gβγ to the
channels

• Voltage-independent inhibition is mediated by several other distinct pathways

• Current understanding of these important mechanisms is provided in this review
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Figure 1.
Schematic depiction of the topology and subunit composition of CaV2 voltage-gated Ca2+

channels. (A) Cartoon showing the 3D topology along with channel auxiliary subunits. The
intracellular β subunit interacts through its guanylate kinase-like domain (GK) with the I-II
linker of the α1 subunit (at the α-interaction domain or AID). The α2δ subunit is largely
extracellular and likely GPI-anchored to the plasma membrane. (B) Topology of the pore
forming α1 subunit. Four homologous repeats (domain I through domain IV) each consist of
six transmembrane spanning α-helices (S1-S6) (blue or green cylinders) and a ‘P-loop’
between S5 and S6. The S5-S6 helices and P-loop comprise the pore domain of the channel
(colored green), while S1-S4 (in particular S4 that has multiple charged residues) comprises
the voltage sensor (colored blue). The intracellular N- and C-termini and the cytoplasmic
loops connecting domains I-IV are important for interaction with other proteins including
the auxiliary β subunit, synaptic proteins, Gβγ, GPCRs, calmodulin and other Ca2+ binding
proteins (CaBP1, VILIP). These cytoplasmic domains are also targeted by second messenger
pathways including phosphorylation by PKC, CaMKII, and tyrosine kinases. Alternative
splicing greatly increases the functional diversity of the channels. For example, alternative
splicing of exon37 on the proximal C-terminus controls inhibition of CaV2.2 channels by
GPCRs in sensory neurons (see section 12 for more details).
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Figure 2.
Functional effects of voltage-dependent inhibition on CaV2 channels. (A) “Whole cell”
patch clamp recording of ICa from an adrenal chromaffin cell which express purinergic P2Y
autoreceptors. Application of a P2Y receptor agonist (red trace) inhibited ICa compared to
control conditions (black trace) with the hallmark features of voltage-dependent inhibition.
Peak amplitude was reduced with prominent slowing of the activation kinetics, and both of
these effects were reversed by a conditioning prepulse to +100mV (green trace). (B)
Voltage-dependent relief of inhibition reflects transient dissociation of Gβγ from the
channel. Shown is an example of “whole cell” ICa recorded from recombinant CaV2.2
channels expressed with β1b, α2δ and Gβγ in HEK293 cells. Gβγ produced tonic
inhibition of ICa that was reversed by a conditioning prepulse to +100 mV. The magnitude
of this reversal (prepulse facilitation) diminished as the interval between prepulse and test
pulse (Δ) was increased (examples shown are with Δ = 10 ms, 25 ms, and 200 ms). As
illustrated by the inset cartoon, prepulse facilitation is thought to reflect dissociation of Gβγ
from an inhibitory binding site on the channel at the depolarized membrane potential. Upon
return to the hyperpolarized membrane potential, Gβγ rebinds to (and re-inhibits) the
channel. This re-inhibition of ICa is monoexponential, and the rate depends on the local
concentration of Gβγ.
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Figure 3.
Structural determinants on Gβγ that govern modulation of CaV2 channels. (A, B) Ribbon
diagram renderings of the heterotrimeric G protein structure in panel A, and the Gβγ dimer
in panel B (Gαi - green; Gβ1 - red; and Gγ2 blue). Gβ adopts a seven blade β-propeller
structure with an α-helical N-terminal domain that binds to the α-helical N-terminus of Gγ.
Gα interacts with multiple residues on the top face of Gβ and the side aspect of propeller
blade 1. Many effectors bind to a protein interaction “hot spot” on the surface of Gβ that is
masked by Gα in the heterotrimer. (C, D) Molecular surface rendering of the Gβγ dimer
(Gβ - red; Gγ - blue). Panel C shows the Gα interacting face of Gβγ, and panel D is rotated
~180° to show opposite face of Gβγ. Residues marked in yellow have been reported to
disrupt inhibition of CaV2 channels. Residues marked in green are involved in crosstalk
between Gβ1 and PKC phosphorylation of CaV2.2. Molecular graphics images based on
data reported by Wall et al [144] (PDB ID: 1GP2) were produced using the UCSF Chimera
package [256, 257] from the Resource for Biocomputing, Visualization, and Informatics at
the University of California, San Francisco.
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Figure 4.
Model depicting the molecular interactions that underlie Gβγ-mediated inhibition of CaV2
channels. Panels A and B (upper three images) depict a channel with a CaVβ subunit, while
panel C (lower images) depicts the situation in which the CaVβ subunit is absent. Currently,
data suggest the binding site for Gβγ is comprised from multiple sites on the N-terminus, I-
II linker, and probably C-terminus of the channel. Binding of Gβγ causes a conformational
shift that promotes interaction of the N-terminus “inhibitory module” with the initial one-
third of the I-II-linker (panel Aii). This (and perhaps other interactions) shifts gating charge
movement to more depolarized potentials and uncouples voltage-sensor movement from
channel activation. Strong membrane depolarization (panel B) leads to conformational
changes that result in unbinding of Gβγ and loss of interaction between the N-terminus and
I-II linker. This depends upon binding of a CaVβ subunit to the AID on the I-II linker that
induces a rigid α-helical connection to the upstream IS6 region of the pore and voltage-
sensor. In the absence of CaVβ subunit binding, inhibition still occurs (panel Ci) but cannot
be reversed by strong depolarization (panel Cii).
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Figure 5.
Trafficking-mediated modulation of CaV2.2 channels due to direct interaction with GPCRs.
(A) Nociceptin receptors (NOP) interact directly with the Cav2.2 α1 subunit via their C-
termini. D1 and D2 receptors also interact with additional regions of the α1 subunit such as
the domain II-III linker. Coexpression of these GPCRs with CaV2.2 facilitates trafficking of
the channels to the plasma membrane, and the D1 receptor appears to target N-type channels
to dendritric sites in prefrontal cortex [222]. (B) Prolonged NOP agonist application has
been reported to promote co-internalization of the receptor/channel complex into lysosomes
in cultured sensory neurons, thus giving rise to a new form of voltage-independent inhibition
[220] (but see [221]).
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Figure 6.
Alternative splicing of CaV2.2 controls voltage-independent inhibition of N-type ICa in
sensory neurons. Two mutually exclusive forms of exon 37 encode the proximal C-terminus
of CaV2.2. Expression of exon 37a is restricted to dorsal root ganglia, preferentially in
nociceptive neurons, while exon 37b is widely expressed throughout the nervous system
[254]. Gβγ-mediated, voltage-dependent inhibition of ICa is identical in channels containing
either isoform of exon 37. An additional Gα-mediated, voltage-independent pathway
involving pp60c-src tyrosine kinase inhibits channels containing exon 37a but not exon 37b.
Thus alternative splicing of CaV2.2 results in cell-type specific alteration in the magnitude
and mechanisms of GPCR-mediated inhibition.
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