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Abstract
Progenitor cell retention and release are largely governed by the binding of stromal-cell-derived
factor 1 (SDF-1) to CXC chemokine receptor 4 (CXCR4) and by α4-integrin signaling. Both of
these pathways are dependent on c-kit activity: the mobilization of progenitor cells in response to
either CXCR4 antagonism or α4-integrin blockade is impaired by the loss of c-kit kinase activity;
and c-kit–kinase inactivation blocks the retention of CXCR4-positive progenitor cells in the bone
marrow. SDF-1/CXCR4 and α4-integrin signaling are also crucial for the retention of progenitor
cells in the ischemic region, which may explain, at least in part, why clinical trials of progenitor
cell therapy have failed to display the efficacy observed in preclinical investigations. The lack of
effectiveness is often attributed to poor retention of the transplanted cells and, to date, most of the
trial protocols have mobilized cells with injections of granulocyte colony-stimulating factor (G-
CSF), which activates extracellular proteases that irreversibly cleave cell-surface adhesion
molecules, including α4-integrin and CXCR4. Thus, the retention of G-CSF-mobilized cells in the
ischemic region may be impaired, and the mobilization of agents that reversibly disrupt SDF-1/
CXCR4 binding, such as AMD3100, may improve patient response. Efforts to supplement SDF-1
levels in the ischemic region may also improve progenitor cell recruitment and the effectiveness of
stem cell therapy.

I. Introduction
Over the last decade, a compelling body of evidence has accumulated to suggest that
progenitor cells of bone marrow origin, such as endothelial pro-genitor cells (EPCs) and
mesenchymal stem cells (MSCs), play a significant role in postnatal physiological and
pathophysiological vasculogenesis1–7 and could provide a promising new therapeutic
approach for the treatment of ischemic disease.8–15 These cells form the structural
components of the new vasculature, mediate favorable cell–cell contacts, and release growth
factors that contribute to vessel growth and protect against cell death in the ischemic
tissue.14,16,17 Furthermore, abnormally low levels of peripheral blood EPCs are closely
associated with risk factors for cardiovascular disease, cardiovascular events, and
mortality.18,19

Currently, most clinical trials of cell therapy for the treatment of ischemic heart disease have
used progenitor cells of bone marrow origin,20–22 which are usually administered via
intracoronary infusion or transplanted directly into the ischemic region. In general, the trials
have found evidence of therapeutic benefit, but with only modest efficacy,21–26 and the
absence of more definitive results is often attributed to poor retention and survival of the
transplanted cells.21,22,27 Because increases in circulating progenitor cell levels are expected
to enhance the number of cells recruited to the ischemic tissue,28–31 techniques that promote
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progenitor cell mobilization are being rigorously investigated.32–36 The effectiveness of this
strategy has been demonstrated in numerous preclinical studies30,31,35–38 and has led to
frequent investigations of progenitor-cell-mobilizing agents in early clinical trials.28,29,39–50

Granulocyte colony-stimulating factor (G-CSF) has been the most commonly used
mobilizing agent, but the results from these trials have not met the expectations, despite
substantial increases in peripheral blood progenitor cell counts.28,29,44,46,48,51,52 Thus, a
better understanding of how progenitor cells interact with the microenvironment in the bone
marrow and in the ischemic region could lead to the development of more effective cell-
based therapies.

II. Progenitor Cell Mobilization
The mobilization of progenitor cells from bone marrow to the peripheral circulation is
highly regulated under both normal physiological conditions and stress.53,54 In adult bone
tissue, progenitor cells are retained predominantly in specialized microenvironments near
the endosteum (i.e., the osteoblast niche), where they interact with spindle-shaped, N-
cadherin-expressing osteoblasts,55,56 and in the sinusoids (i.e., the vascular niche), where
they interact with SDF-1-expressing reticular cells.57–59 Many different cell types, matrix
proteins, and soluble factors cooperatively regulate the self-renewal, differentiation, and
maintenance of progenitor cells55–57,60–65; however, the bulk of experimental evidence
suggests that progenitor cell retention and release are largely governed by two pathways,
one of which is dependent on stromal-cell-derived factor 1 (SDF-1, also called CXC
chemokine ligand 12 [CXCL12]) and the SDF-1 receptor CXC chemokine receptor 4
(CXCR4), and the other on α4β1-integrin (also called very late antigen-4
[VLA-4]).57,59,60,66–69 Initially, SDF-1/CXCR4 and α4β1-integrin signaling appear to
proceed independently; for example, the α4β1-integrin antagonist Groβ can mobilize
progenitor cells in mice transplanted with CXCR4-knockout bone marrow.70 However,
results from our recent studies suggest that c-kit, a receptor tyrosine kinase that binds stem
cell factor (SCF), is an integral downstream component of both pathways.71

A. SDF-1/CXCR4
CXCR4 is a G protein-coupled receptor composed of 352 amino acids with seven
transmembrane helices72–74 and is broadly expressed by both mononuclear cells and
progenitor cells in the bone marrow.72–78 The ligand for CXCR4, SDF-1, is a secreted or
membrane-bound protein that is abundantly expressed by osteoblasts, endothelial cells, and
a subset of reticular cells in the osteoblast and vascular niches.57,79–81 SDF-1/CXCR4
signaling induces the directional migration of cells and is involved in many biological
processes, including cardiovascular organogenesis, hematopoiesis, immune response, and
cancer metastasis. Interactions between SDF-1 and CXCR4 are crucial for maintaining
populations of hematopoietic stem cells (HSCs) in adult animals,57,66,82–87 and mice that
lack either SDF-1 or CXCR4 exhibit nearly identical phenotypes characterized by late
gestational lethality and defects in bone marrow colonization, B-cell lymphopoiesis, blood
vessel formation, and cardiac septum formation.83,85,88–90 Thus, the SDF-1/CXCR4 axis
appears to have a fundamental role in both vasculogenesis and cardiogenesis.

The roles of SDF-1 and CXCR4 in bone marrow progenitor cell retention and release are
well established.66 Selective antagonism of CXCR4 with the pharmacological agent
AMD3100 rapidly and potently mobilizes bone marrow progenitor cells in both animals and
humans,86,91–93 and systemically injected bone marrow progenitor cells accumulate
predominantly in subdomains of bone marrow microvessels that are rich in SDF-1
expression.68,94 Notably, both SDF-1 and CXCR4 expression are upregulated by relatively
low oxygen tension (hypoxia) in discrete regions of the bone marrow and by the activation
of hypoxia inducible factor 1 (HIF-1).87,95–100
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B. α4-integrin
Integrins are heterodimeric transmembrane receptors composed of non-covalently joined α
and β subunits and have the remarkable ability to transmit both incoming and outgoing
signals across the cell membrane.101,102 Integrins usually induce signaling pathways by
acting synergistically with growth-factor receptors to regulate cell shape, adhesion,
migration, proliferation, and differentiation; but both can also function independently.103,104

The α4-integrins, α4β1 and α4β7, bind to vascular cell adhesion molecule 1 (VCAM-1),
which is expressed on the surface of endothelial and stromal cells105–109 and to fibro-nectin
in the extracellular matrix. These binding interactions are crucial for the adhesion of
progenitor cells to the microenvironment and, consequently, to progenitor cell retention and
recruitment.61,64,65 The expression of α4-integrin is downregulated during progenitor cell
mobilization,110,111 and the cleavage of VCAM-1 and α4-integrin is a critical step during
cytokine-induced bone marrow progenitor cell mobilization.112 In adult mice, deletion of
α4-integrin persistently alters the distribution of progenitor cells,108,113,114 and antibody-
mediated α4-integrin blockade mobilizes progenitor cells in both animals and
humans.62,115,116 The level of α4-integrin expression on mobilized peripheral blood
progenitor cells is inversely correlated with bone marrow homing and predicts the rate of
engraftment in patients who have received autologous progenitor cell transplantation.117

Furthermore, we have shown that the transient blockade of α4-integrin activity leads to
higher peripheral blood EPC levels, greater EPC-mediated neovascularization, and less
adverse cardiac remodeling after myocardial infarction, and that α4-integrin antibodies can
release bone marrow EPCs from immobilized VCAM-1 or bone marrow stromal cells.31

Thus, α4-integrin antibodies appear to mobilize EPCs from the bone marrow by disrupting
VCAM-1:α4-integrin binding.

C. c-kit
c-kit (also called CD117) is a type III receptor tyrosine kinase expressed predominantly in
bone marrow stem/progenitor cells118 and has recently been identified as a marker for EPC
and cardiac progenitor cell identity.119–121 The ligand for c-kit, namely, SCF, is expressed
in bone marrow endothelial cells and stromal cells as either a membrane-bound protein or a
soluble one.122,123 Dimers of SCF bind to c-kit, which triggers c-kit homodimerization and
the phosphorylation of specific c-kit tyrosine residues.124 The pattern of c-kit
phosphorylation determines which signaling event is activated and can induce both positive
and negative pathways.124–126 SCF/c-kit signaling is essential for embryonic
hematopoiesis,127,128 and mutations that lead to the loss of c-kit (i.e., the W mutation), c-kit
kinase activity (e.g., the W42 mutation), or SCF (the Sl mutation)129 cause severe
macrocytic anemia and death in utero or during the perinatal period. Notably, defects in c-kit
activity are also associated with impaired vascular development and angiogenesis,130–132

and cancer therapies that target c-kit are cardiotoxic.133,134 c-kit also supports progenitor
cell maintenance135–137 and is a crucial component of cardiac regeneration.138 After
myocardial infarction, c-kit-positive bone marrow cells are recruited to the ischemic
myocardium and facilitate cardiac repair by differentiating into cardiac cell lineages and by
expressing angiogenic cytokines.35,131

The mobilization of progenitor cells in response to α4-integrin blockade is markedly blunted
in c-kitW/W-V mutant mice, which are defective in c-kit kinase activity but have normal
levels of c-kit expression and SCF binding at the cell surface.131,139–141 Thus, the kinase
activity of c-kit appears to be crucial for progenitor cell mobilization, but the mechanism by
which c-kit participates in the retention and release of progenitor cells is unclear. In the bone
marrow, membrane-bound SCF can be cleaved by SDF-1 to form soluble SCF, which
subsequently activates c-kit and leads to progenitor cell mobilization,59 but the functional
blockade of c-kit (with the c-kit–neutralizing antibody ACK2) has also been shown to
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mobilize bone marrow HSCs to the peripheral circulation and to enhance the engraftment of
systemically injected donor bone marrow cells.142 Thus, both the activation and blockade of
c-kit activity have been associated with progenitor cell mobilization.59,142,143 Furthermore,
c-kit is the only known receptor for SCF, but SCF is not always required for c-kit
activity,144–146 and neither SCF nor an SCF-neutralizing antibody are potent
mobilizers,147,148 so SCF-binding alone cannot adequately explain the role of c-kit in
progenitor cell mobilization.142,147,148

D. SDF-1/CXCR4–c-kit Signaling
The kinetics of bone marrow progenitor cell mobilization induced by a c-kit-neutralizing
antibody (i.e., ACK2) and by antagonism of CXCR4 with the pharmacological CXCR4
antagonist AMD3100 are similar, so we investigated whether c-kit is involved in CXCR4-
mediated bone marrow progenitor cell trafficking. Peripheral blood progenitor cell levels
significantly increased, and bone marrow progenitor cell levels significantly declined after
AMD3100 was injected into wild-type mice, but not after it was injected into c-kit kinase-
defective (c-kitW/W-V) mice.71 To determine which specific subpopulations of bone marrow
cells were affected by the c-kit kinase deficiency, we developed a short-term, in vivo bone
marrow clearance/repopulation assay. AMD3100 was administered to wild-type and c-
kitW/W-V mice, and then labeled bone marrow mononuclear cells were injected into the
peripheral circulation and allowed to repopulate the bone marrow. Significantly fewer
systemically administered CXCR4-expressing progenitor cells were observed in the bone
marrow of c-kitW/W-V mice than in the bone marrow of wild-type mice.

AMD3100 also failed to mobilize bone marrow progenitor cells that expressed a
constitutively active c-kit kinase (c-kitD816V) mutation. Thus, both the loss and the
constitutive activation of c-kit kinase activity impaired AMD3100-induced bone marrow
progenitor cell mobilization, which may seem contradictory. However, bone marrow
progenitor cell levels were lower in c-kit kinase-defective mice than in wild-type mice
before mobilization, and, after mobilization, systemically administered CXCR4-positive
progenitor cells could not repopulate the bone marrow of c-kit kinase-defective mice. These
observations suggest that c-kit kinase inactivation blocks the retention of CXCR4-positive
progenitor cells and, consequently, that the cells susceptible to AMD3100-induced
mobilization are (in effect) already mobilized.

In isolated bone marrow mononuclear cells, SDF-1/CXCR4 signaling upregulates, and the
antagonism or genetic deletion of CXCR4 downregulates, c-kit phosphorylation. These
results, as well as the lack of AMD3100-induced progenitor cell mobilization in mice with
bone marrow cells that expressed a constitutively active c-kit mutant, suggest that CXCR4-
mediated mobilization requires c-kit deactivation. Thus, AMD3100 and G-CSF appear to
induce progenitor cell mobilization through fundamentally different mechanisms, because
G-CSF-induced mobilization requires an increase in c-kit activation.59 Furthermore, G-CSF-
induced mobilization occurs 3–5 days after administration and is accompanied by an
increase in the number of progenitor cells present in the perivascular niche,149 whereas
AMD3100-induced mobilization occurs within a few hours and, consequently, is unlikely to
be preceded by the perivascular accumulation of progenitor cells. The two agents also
appear to mobilize different subpopulations of progenitor cells, and more cells are mobilized
when G-CSF and AMD3100 are combined than when G-CSF is administered alone.150–155

Collectively, these observations would suggest that G-CSF and other slow-acting agents
increase c-kit phosphorylation by upregulating SCF, which (by itself) has only a modest
effect on mobilization but potently promotes progenitor cell proliferation; if so, G-CSF-
induced mobilization may be delayed until an adequate surplus of progenitor cells is
available for release to the peripheral blood.149 Conversely, fast-acting agents, such as
AMD3100, may mobilize progenitor cells directly by reducing c-kit phosphorylation in the
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perivascular niche.156 This hypothesis is also supported by recent evidence that progenitor
cells can be rapidly mobilized by the administration of a c-kit neutralizing antibody.142

E. α4-integrin–c-kit Signaling
Because c-kit also appears to participate in progenitor cell mobilization through an α4-
integrin-mediated mechanism,140 and interactions between α4-integrin and VCAM-1
support the adhesion and retention of mononuclear cells in the bone marrow,31 we
performed a series of in vitro experiments to determine whether the phosphorylation state of
c-kit is altered by α4-integrin-mediated adhesion. Wild-type bone marrow mononuclear
cells were applied to VCAM-1-coated or uncoated plates, allowed to adhere for 15 min,
incubated with or without AMD3100 for another 15 min, and then c-kit phosphorylation at
tyrosine 719 was evaluated. Phosphorylated c-kit levels were notably higher in adherent
wild-type cells (i.e., cells from VCAM-1– coated plates) than in nonadherent wild-type cells
(i.e., cells from uncoated plates), and treatment with an α4-integrin-blocking antibody
reduced phosphorylated c-kit levels, whereas treatment with the CXCR4 ligand SDF-1
markedly increased c-kit phosphorylation. Furthermore, both SDF-1 and SCF induced c-kit
phosphorylation, but c-kit levels were highest when the cells were incubated with both
factors, and AMD3100 treatment suppressed SDF-1-induced, but not SCF-induced, c-kit
phosphorylation. Collectively, these observations suggest that α4-integrin-mediated
mononuclear cell adhesion is associated with an increase in phosphorylated c-kit levels, and
that in adherent mononuclear cells, SDF-1 upregulates, and AMD3100 downregulates, c-kit
phosphorylation. Thus, SDF-1- and SCF-induced c-kit activation may occur independently
and regulate different cellular activities (Fig. 1).

III. Progenitor Cell Recruitment and Retention
Mobilized progenitor cells are recruited from the peripheral circulation to the ischemic
region, where they become incorporated into the growing vasculature.14,157 Several of the
intermediate steps during progenitor cell recruitment, including chemotaxis, transendothelial
migration, and adhesion to single layers of mature endothelial cells and integrin, are
regulated by SDF-1/CXCR4 binding,30,99,158–160 but the mechanisms and downstream
components of SDF-1/CXCR4 signaling at the injury site are poorly understood. SDF-1
expression is significantly elevated in the plasma of patients with acute myocardial
infarction,161 and the expression of both CXCR4 and SDF-1 is elevated in ischemic
myocardium,158,162,163 whereas the blockade of SDF-1/CXCR4 signaling diminishes
progenitor cell recruitment,99,138,162,164 and impairments in CXCR4 signaling contribute to
the reduced angiogenic potency of EPCs from patients with coronary artery disease and
related conditions such as aging and diabetes.164–167 SDF-1 and CXCR4 may also
participate in vascular remodeling by recruiting smooth muscle progenitor cells168 and
protect cardiomyocytes against ischemia/reperfusion damage by activating the antiapoptotic
kinases Akt and extracellular-regulated kinase.169

Hypoxia induces SDF-1 expression at the injury site,163 where platelets are an important
source of SDF-1 expression,170,171 and we have recently shown that hypoxic
preconditioning enhances the recruitment of cardiosphere-derived Lin-negative, c-kit-
positive progenitor (CLK) cells (i.e., cardiac progenitor cells) by inducing CXCR4
expression.138 CXCR4 expression is much lower in CLK cells than in bone marrow
mononuclear cells under normoxic conditions, but increases significantly in response to
hypoxia. The increase is accompanied by elevations in SDF-1 expression and preceded by
the upregulation of HIF-1α, whereas the siRNA-mediated inactivation of HIF-1α abolishes
CXCR4 upregulation. Hypoxic treatment also increased the migration of isolated CLK cells
toward SDF-1 in a CXCR4-dependent manner, and hypoxic preconditioning was associated
with a 2.5-fold increase in the recruitment of systemically injected CLK cells to the ischemic

Cheng and Qin Page 5

Prog Mol Biol Transl Sci. Author manuscript; available in PMC 2013 January 27.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



myocardium of mice after surgically induced myocardial infarction. The recruited cells
expressed cardiac troponin I, von Willebrand factor, and smooth muscle actin, indicating
that CLK cells can differentiate into cardiomyocytes, endothelial cells, and vascular smooth
muscle cells, respectively.

IV. Therapeutic Implications
Both the release of progenitor cells from the bone marrow to the peripheral blood and the
recruitment and retention of progenitor cells in ischemic tissue are regulated by interactions
between SDF-1 and CXCR4.37,66,68,75,85,91,99,158,162,163,172–174 The interaction must be
disrupted before progenitor cells can be mobilized from the bone marrow to the peripheral
circulation and restored to enable retention of the mobilized cells in the ischemic tissue.
Thus, the effectiveness of progenitor cell therapy is crucially dependent on how mobilization
is induced and on the level of SDF-1 expression in the ischemic region at the time of cell
administration. To date, G-CSF is the most frequently used mobilizing agent in clinical trials
of progenitor cell therapy,28,29,44,46,48,51,52 but the efficacy results from many of these trials
have been disappointing, perhaps because G-CSF mobilizes progenitor cells by activating
extracellular proteases that irreversibly cleave cell-surface adhesion molecules, including
α4-integrin, VCAM-1, and CXCR4.92,175 Thus, the retention of G-CSF-mobilized cells in
the ischemic region may be impaired, and mobilizing agents that reversibly disrupt SDF-1/
CXCR4 binding, such as AMD3100, may improve the effectiveness of cell therapy37 (Fig.
2).

Cardiac SDF-1 expression is upregulated within minutes to an hour after myocardial
infarction but declines 4–7 days later.158 Thus, if progenitor cells are administered days
after, or even years after (i.e., in patients with established coronary disease), the infarct
event, retention of the administered cells is likely to be poor in the ischemic region. Thus,
several approaches to increase SDF-1 levels in the ischemic region are currently being
investigated. Locally delivered SDF-1 protein increased vascular growth in the injured limbs
of mice after surgically induced hind-limb ischemia,176 and SDF-1 also improved cardiac
function after ischemic myocardial injury by increasing progenitor cell recruitment and
angiogenesis and by reducing scar formation.177 However, local SDF-1 delivery is limited
by the rapid diffusion of the administered protein and by the activity of proteases in the
inflammatory environment of the injury. Furthermore, the induction of SDF-1/CXCR4
signaling also stimulates the production of matrix metalloproteases (MMPs),178–181

including MMP-2, which (in concert with several exopeptidases) cleaves SDF-1 to produce
a neurotoxin that has been implicated in some forms of dementia.163,182 To overcome this
limitation, Segers et al. designed an SDF-1 variant that retains the chemotactic properties of
the native molecule but is resistant to MMP-2 and exopeptidase cleavage. Nanofiber-
mediated delivery of this construct, S-SDF-1 (also called S4V), promoted progenitor cell
recruitment and improved cardiac function in a murine model of myocardial infarction.183

Furthermore, sustained SDF-1 release has been achieved by covalently linking it to a
polyethylene glycol fibrin patch.174 When the patch was applied to the surface of infarcted
mouse hearts, SDF-1 continued to be released for 28 days, and the treatment was associated
with greater numbers of incorporated c-kit-positive cells (i.e., progenitor cells) and with
improvements in left ventricular function.

Local SDF-1 expression has also been increased through the administration of genetically
engineered MSCs.184,185 Intravenous injections of either unmodified MSCs or MSCs that
overexpressed SDF-1 to rats after acute myocardial infarction were associated with
improvements in cardiac function, and the beneficial effects appeared to evolve primarily
through the preservation of preexisting cardiomyocytes rather than the generation of new
cardiomyocytes within the infarct zone.184 Vascular density, cardiomyocyte survival, and
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cardiac myosin-positive area were greater in animals treated with the modified cells than in
those treated with unmodified cells, and SDF-1 overexpression also increased the number of
small cardiac myosin-expressing cells that had not differentiated into mature cardiac
myocytes, but were capable of depolarizing and, consequently, may have contributed to
improvements in contractile function.185

V. Summary
Progenitor cell retention and release are largely governed by SDF-1/ CXCR4 and α4-
integrin signaling. The initial steps of these two pathways appear to proceed independently,
but both regulate c-kit phosphorylation,71 and the mobilization of progenitor cells in
response to either CXCR4 antagonism or α4-integrin blockade is impaired by the loss of c-
kit kinase activity.131,139–141 Furthermore, bone marrow progenitor cell levels are lower in
c-kit kinase-defective mice than in wild-type mice before mobilization, and systemically
administered CXCR4-positive progenitor cells cannot repopulate the bone marrow in the
absence of c-kit kinase activity.71 Collectively, these observations suggest that c-kit-kinase
inactivation blocks the retention of CXCR4-positive progenitor cells in the bone marrow,
and that c-kit could function as a final common mediator of fundamental importance to the
regulation of bone marrow progenitor cell trafficking.

SDF-1/CXCR4 and α4-integrin signaling are also crucial for the retention of progenitor
cells in the ischemic region, which may explain, at least in part, why clinical trials of
progenitor cell therapy have failed to display the efficacy observed in preclinical
investigations. The lack of effectiveness is often attributed to poor retention of the
transplanted cells,21,22,27 and, to date, most of the trial protocols have mobilized cells via G-
CSF administration, which activates extracellular proteases that irreversibly cleave cell-
surface adhesion molecules, including α4-integrin and CXCR4.92,175 Thus, the retention of
G-CSF-mobilized cells in the ischemic region may be impaired, and mobilizing agents that
reversibly disrupt SDF-1/CXCR4 binding, such as AMD3100, may improve patient
response.37 Efforts to supplement SDF-1 levels in the ischemic region may also improve
progenitor cell recruitment and the effectiveness of stem cell therapy.
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FIG. 1.
c-kit is a common component of two signaling pathways that regulate progenitor cell
trafficking. Progenitor cell retention and release are largely governed by two pathways, one
of which is dependent on the binding of SDF-1 to CXCR4 and the other on α4-integrin/
VCAM-1 binding. Both interactions lead to the phosphorylation of c-kit, which is crucial for
the retention of progenitor cells in the bone marrow. AMD3100 disrupts the SDF-1/CXCR4
interaction, which reduces c-kit phosphorylation and mobilizes progenitor cells from the
bone marrow. SCF also increases phosphorylated c-kit levels by binding directly to c-kit, but
disruption of the SCF/c-kit interaction does not appear to induce progenitor cell
mobilization. Furthermore, AMD3100 suppresses SDF-1-induced, but not SCF-induced, c-
kit phosphorylation, and phosphorylated c-kit levels are higher when cells are incubated
with both SDF-1 and SCF than with either individual factor. Thus, SDF-1 and SCF appear to
regulate c-kit phosphorylation independently and likely coordinate different cellular
activities.
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FIG. 2.
Mechanisms of therapeutic progenitor cell mobilization. (A) Growth factors (e.g., G-CSF)
mobilize progenitor cells by activating extracellular proteases that irreversibly cleave cell-
surface adhesion molecules, including α4-integrin, c-kit, and CXCR4, which are crucial for
progenitor cell retention in the ischemic region. (B) Receptor antagonists, such as the
CXCR4 antagonist AMD3100 or the α4-integrin-blocking antibody Natalizumab, mobilize
progenitor cells by reversibly blocking interactions that bind progenitor cells to the bone
marrow substrate without cleaving the adhesion molecules. Thus, the use of reversible
antagonists, rather than growth factors, for therapeutic progenitor cell mobilization may
increase the number of mobilized cells retained in the ischemic region.
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