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The chemical composition of Porella arboris-vitae extracts was determined by solid phase microextraction, gas chromatography-
mass spectrometry (SPME GC-MS), and 66 constituents were identified. The dominant compounds in methanol extract of P.
arboris-vitae were f3-caryophyllene (14.7%), a-gurjunene (10.9%), «-selinene (10.8%), f-elemene (5.6%), y-muurolene (4.6%),
and allo-aromadendrene (4.3%) and in ethanol extract, 3-caryophyllene (11.8%), a-selinene (9.6%), a-gurjunene (9.4%), isopentyl
alcohol (8.8%), 2-hexanol (3.7%), B-elemene (3.7%), allo-aromadendrene (3.7%), and y-muurolene (3.3%) were the major
components. In ethyl acetate extract of P. arboris-vitae, undecane (11.3%), 3-caryophyllene (8.4%), dodecane (6.4%), a-gurjunene
(6%), 2-methyldecane (5.1%), hemimellitene (4.9%), and D-limonene (3.9%) were major components. The antimicrobial activity of
different P. arboris-vitae extracts was evaluated against selected food spoilage microorganisms using microbroth dilution method.
The Minimal Inhibitory Concentration (MIC) varied from 0.5 to 1.5 mg/mL and 1.25 to 2 mg/mL for yeast and bacterial strains,
respectively. Significant morphological and ultrastructural alterations due to the effect of methanolic and ethanolic P. arboris-
vitae extracts on S. Enteritidis have also been observed by scanning electron microscope and transmission electron microscope,
respectively. The results provide the evidence of antimicrobial potential of P. arboris-vitae extracts and suggest its potential as
natural antimicrobial agents for food preservation.

Apart from higher plants, liverworts also contain certain
natural compounds or derivatives potentially responsible

Foodborne diseases mediated by food spoilage microorgan-
isms are a major challenge in developing as well as developed
countries [1]. Increasing concern about potentially harmful
synthetic as compared with low mammalian toxicity and less
environmental effects of the natural ingredients has led to
their wide public acceptance [2]. In this regard, certain plant
extracts or essential oils with notable antimicrobial activity
can be used to delay or inhibit the growth of pathogenic
and/or toxin producing microorganisms in food [3, 4].

for tubulin polymerization inhibitory, muscle relaxing, and
antimicrobial activity. Liverworts are used as folk medicine
worldwide [5].

Liverwort species are rich source of new secondary met-
abolites and produce a variety of sesquiterpenoids, possessing
the bicyclo[4.3.0]nonane moiety such as acutifolone, bisacu-
tifolone, pinguisenol, and chiloscyphone [6]. These natural
products have unique structures including the cis-oriented



continuous substitutions in the bicyclo[4.3.0]nonane struc-
ture. Although, several liverworts have been used as medic-
inal plants [7], only 10% of the liverworts have yet been
studied systematically [5]. Porella, family Porellaceae (Hep-
aticae), consists of pungent and nonpungent leafy-stem liver-
worts widespread in the tropical, subtropical, and temperate
regions of the world. Most Porella species are rich sources
of sesqui- and diterpenoids [8, 9], many of which show
interesting biological activities [10, 11]. To the best of our
knowledge, there are no previous reports either on chemical
characterization or on antimicrobial potential of Porella
arboris-vitae liverwort.

In the present study, the chemical composition of P
arboris-vitae has been analyzed by SPME GC-MS. The
antimicrobial activity of different extracts of P. arboris-vitae
against selected food spoiling and pathogenic microorgan-
isms has been evaluated. Further to investigate whether P.
arboris-vitae extracts act by interfering the outer cell wall
of bacterial cell, scanning electron microscopy (SEM) and
transmission electron microscopy (TEM) have been used.
Microscopic techniques provide the unique evidence of the
antimicrobial potential of P. arboris-vitae extracts.

2. Material and Method

2.1. Chemicals and Plant Materials. Analytical grade chem-
ical reagents (methanol, ethanol, and ethyl acetate used
for livewort extraction were purchased from Sigma-Aldrich
GmbH (Germany). For antimicrobial activity, the different
dry extracts were dissolved in dimethyl sulphoxide (DMSO)
(Sigma-Aldrich GmbH, Germany). For yeast and bacterial
cultivation, yeast extract peptone dextrose (YPD) and tryptic
soy broth (TSB) (Merck KgaA Darmstad, Germany) were
used, respectively.

The samples of Porella arboris-vitae (With.) Grolle were
collected from Derventa, Bajina Basta (Serbia) in 2010. A
voucher specimen (No. 16640) has been deposited in herbar-
ium at Institute of Botany and Botanical Garden “Jevre-
movac,” University of Belgrade. Material was dried at room
temperature for further use.

2.2. Extracts Preparation. Dried plants were pulverized into
fine powder using an electric blender. Powdered material
(5g) was extracted with 100 mL of methanol, ethanol, or
ethyl acetate for 24 h at room temperature. After 24 h, the
mixture was filtered through Whatman filter paper No. 1. The
solvents were evaporated from extracts using rotary vacuum
evaporator (Laborota 4001, Heidolph) at 40°C. The vyields
of the extracts were 6.54%, 3.26%, and 1.28% for methanol,
ethanol, and ethyl acetate extract, respectively. The obtained
extracts were stored at 4°C for further observations.

2.3. Solid Phase Microextraction Gas Chromatographic-
Mass Spectrometry (SPME GC-MS) Analysis. A divinyl ben-
zene/carboxen/polydimethyl siloxane (DVB/CAR/PDMS)
coated stable flex fiber (65um) and a manual SPME
holder (Supelco Inc., Bellefonte, PA, USA) were used in
this study after preconditioning according to the manufac-
turer’s instruction manual. Before each headspace sampling,
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the fiber was exposed to the GC inlet for 5 min for thermal
desorption at 250°C.

Samples (5mg) were put into sealed vials (20 mL) and
then equilibrated for 10 min at 40°C. The SPME fiber was
exposed to each sample for 10 min by manually penetrating
the septum and the fiber was inserted into the injection port
of the GC for 10 min for desorption. GC-MS analyses were
carried out on an Agilent 6890 gas chromatograph (Agilent
Technologies, Palo Alto, CA, USA) coupled to an Agilent
5970 mass selective detector operating in electron impact
mode (ionization voltage, 70 eV). A Chrompack CP Wax 52
CB capillary column (50 m length, 0.32 mm i.d., 1.2 ym df)
was used (Chrompack, Middelburg, The Netherlands). The
temperature program was 50°C for 0 min, then programmed
at 5°C/min to 230°C for 10 min. Injector, interface, and ion
source temperatures were 250, 250, and 230°C, respectively.
Injections were performed with a split ratio of 1:50 and
helium (1 mL/min) as the carrier gas. Identification of chem-
ical compounds was carried out by comparison of the mass
spectra with mass spectra available on database of NISTO05,
WILEY8 libraries, and those of pure standards.

2.4. Microbial Strains. Different bacterial (Salmonella Enter-
itidis 155, Escherichia coli 555, and Listeria monocyto-
genes 56Ly) and yeast strains (Saccharomyces cerevisiae 635,
Zygosacharomyces bailii 45, Aerobasidium pullulans L6E,
Pichia membranaefaciens OC71, Pichia membranaefaciens
OC70, Pichia anomala DBVPG3003, and Yarrowia lipolytica
RO13) were obtained from the strain collection of the Dipar-
timento di Scienze degli Alimenti of Bologna University, Italy
and used to evaluate the effect of liverwort extracts. Yeast
strains were grown in YPD at 28°C for 48 h while bacterial
strains were grown in TSB at 35°C for 24 h. After harvesting,
microbial cells were suspended in sterile physiological water
and used immediately.

2.5. Determination of Minimal Inhibitory Concentration
(MIC) by Microdilution Method. In order to investigate the
antimicrobial activity of the extracts, the modified microdi-
lution technique was used [12]. MIC determination was
performed by microbroth dilution technique using 96-well
microtitre plates. The extracts were dissolved with 0.5%
DMSO and added in TSB and YPD broth with bacterial
(10° cfu/mL) and yeasts (10° cfu/mL) inoculum, respectively.
The microplates were incubated either at 32°C for 48h
(bacteria) or at 28°C for 72h (yeasts). The lowest concen-
trations without visible growth were defined as MIC. Fur-
ther, Minimal Bactericidal Concentration (MBC)/Minimal
Yeast-cidal Concentration (MYC) of the extracts have been
evaluated. MBC/MYC values were defined as the minimal
concentrations of extract not allowing the microbial growth
on agar medium after a particular incubation at optimal
temperature. DMSO was used as negative control.

2.6. Preparation of Samples for Scanning Electron Microscopy
and Transmission Electron Microscopy. S. Enteritidis cells
were incubated for 14h in TSB at 30°C and 120 rpm. The
suspension was divided into three portions. In two portions,
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methanolic and ethanolic P. arboris-vitae extracts at MIC
level (1.25 and 1.25mg/mL, resp.,) were added and third
portion was left untreated as a control. These suspensions
were incubated at 30°C for 8 h.

For investigating the effect of methanolic and ethanolic
P arboris-vitae extract, all the treated and untreated cells
were harvested by centrifugation and were prefixed with a
2.5% glutaraldehyde solution overnight at 4°C. After this, the
cells were again harvested by centrifugation and washed three
times with 0.1 M sodium phosphate buffer solution (pH 7.2).
Now each resuspension was serially dehydrated with 25, 50,
75, 90, and 100% ethanol, respectively. Then, cells were dried
at “critical point”

For SEM observation, a thin film of cells was smeared
on a silver stub. The samples were gold-covered by cathodic
spraying (Polaron gold). Morphology of the S. Enteritidis cells
was observed on a scanning electronic microscope (ZEISS
EVO 50). The SEM observation was done under the following
analytical condition: EHT = 20.00kV, WD = 9.5mm, and
Signal A = SE,.

For TEM observation, the pellet was postfixed in 1%
osmium tetraoxide for 30 min, washed with phosphate buffer
solution (pH 7.2), serially dehydrated in ethanol, and embed-
ded in Epon-Araldite resin for making the blocks of the cells
pellet. Ultrathin (50-100 nm) sections of S. Enteritidis cells
were stained with uranyl acetate and lead citrate and observed
under a Philips transmission electron microscope (CM-10) at
100 eV and direct magnification of 50.00 k.

2.7. Statistical Analyses. All the experiments were done in
triplicate and repeatability was established. Significance of
differences among treatments (P < 0.05) was analysed using
one way ANOVA (SPSS, 10.0 version).

3. Results and Discussion

3.1. Chemical Composition of Methanol, Ethanol, and Ethyl
Acetate Extracts. More than 65 compounds of P. arboris-
vitae were identified by the SPME GC-MS analysis of dif-
ferent extracts. The main components with their percentages
and retention indices are listed in Table 1. In methanol
extract of P. arboris-vitae, 43 components were identified,
which represented 72.2% sesquiterpenes, 4.5% monoter-
penes, 6.7% ketones, 0.5% nonterpene hydrocarbons, 1.87%
aldehydes, 1.1% alcohols, and 11.7% others, about 98.6%
of the total detected constituents. The major components
were [3-caryophyllene (14.7%), «-gurjunene (10.9%), o-
selinene (10.8%), f-elemene (5.6%), y-muurolene (4.6%),
and allo-aromadendrene (4.3%). 38 components were iden-
tified from the ethanol extract of P arboris-vitae which
represented 59.5% sesquiterpenes, 4.8% monoterpenes, 2.5%
nonterpene hydrocarbons, 19.6% alcohols, and 3.3% ketones,
about 98.7% of the total composition where 3-caryophyllene
(11.8%), a-selinene (9.6%), a-gurjunene (9.4%), isopentyl
alcohol (8.8%), 2-hexanol (3.7%), -elemene (3.7%), allo-
aromadendrene (3.7%), and y-muurolene (3.3%) were the
major components. 42 components were identified from

TaBLE 1: Chemical composition of P. arboris-vitae extracts.

Extracts

"MeOH °EtOH “EtOAc

Monoterpene hydrocarbons

D-limonene

B-phellandrene

1208
1220

2.62 2.23 3.89
1.07 1.67 0.00

p-cymene 1281 0.78  0.85 2.89
Total 4.47 4.75 6.78
Sesquiterpene hydrocarbons
a-cubebene 1463  0.43 1.71 0.00
Cycloseychellene 1513 236  2.69 1.86
B-bourbonene 1519 145 1.25 0.00
a-gurjunene 1529 10.93  9.42 6.03
B-cubebene 1531 0.18  0.55 0.00
Cyperene 1534 0.52  0.00 0.00
D-longifolene 1550 0.54 0.96 1.42
B-elemene 1571  5.59 3.70 2.59
B-cubebene 1574 0.29 0.00 0.75
Neoisolongifolene 1588 2.75  1.85 0.80
B-caryophyllene 1594 1470 11.75  8.34
B-gurjunene 1598 2.05 1.95 0.91
cis-thujopsene 1616 1.04  0.00 0.00
Amorpha-4,11-diene 1636 196  1.59 1.51
Allo-aromadendrene 1642 425 370 2.13
B-farnesene 1664 1.85  2.60 2.17
y-muurolene 1671 459 327 2.47
Aonarene 1690 0.13 0.00 0.00
Aristolochene 1709  0.29 0.00 0.00
Germacrene D 1717 2.40 1.73 0.00
a-selinene 1724 1076  9.57 421
y-cadinene 1752 024  0.49 0.00
Selina-3,7(11)-diene 1763 0.26 0.00 0.93
B-bazzanene 1794 149  0.75 0.57
Calamenene 1855 1.15  0.00 0.87
Total 7220  59.53  37.56
Nonterpene hydrocarbons
2,6-Dimethylnonane 989 0.00  0.00 1.16
2,7,10-Trimethyldodecane 1005 0.00  0.00 0.36
5-Methyldecane 1035 0.00  0.00 1.85
2-Methyldecane 1038 0.00  0.00 5.10
3-Methyldecane 1048 0.00  0.00 4.56
Undecane 1091 023  0.86 11.27
1,2-Diethylcyclooctane 1128 0.00  0.00 0.28
2,3-Dimethyldecane 1142 0.00  0.00 0.75
Dodecane 1190 0.13  0.00 6.34
2-Phenylbutane 1260 0.00  0.00 0.15
Tridecane 1290 0.00 0.00 0.27
Hemimellitene 1292 0.00  0.00 491
p-Propyltoluene 1318 0.00  0.00 2.58
n-Butylbenzene 1322 0.00  0.00 0.49
2-Ethyl-p-xylene 1368 0.00  0.00 3.7446.82
3,5-Diethyltoluene 1402  0.00  0.00 0.53
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TaBLE 1: Continued.

Extracts *MeOH °EtOH °EtOAc
Durene 1488  0.14 1.63 2.48
Total 0.50 2.49

Alcohols
1-Propanol 1031 0.00 1.53 0.00
1-Ethoxy-2-propanol 1168  0.00 3.02  0.00
Isopentyl alcohol 1203 0.00 8.75 0.00
2-Hexanol 1214 0.00 3.68 0.00
1-Isopropoxy-2-propanol 1244 0.00 2.35 0.00
1-Octen-3-ol 1441  0.88 0.24 0.00
;E)ijﬁghoxypmpoxy)'z’ 1510 016  0.00  0.00
Er:;ill]’ollo'D‘methyl'“"‘“s'9' 1859 007 000  0.00
Total 1.11 19.57  0.00

Ketones
Methyl Isobutyl ketone 1007 1.00 0.84  0.00
3-Butyl-cyclohexanone 1124 0.00 0.00 1.06
4-Methyl-3-penten-2-one 1146 2.96 1.06 0.00
2,2,6-Trimethylcyclohexanone 1336 0.12 0.00  0.00
Cyclocolorenone(epi-) 2394 2.63 144 054
Total 6.71 3.34 1.60

Aldehydes
Hexanal 1097  1.87 0.68 0.00
Furfural 1470  0.00 0.99 0.00
Total 1.87 1.67 0.00

Others
Acetic acid 1448  7.75 7.09 3.33
Hexanoic acid 1840  1.97 1.69 0.37
Lanceol acetate(Z-) 1852 0.14 0.00 0.00
Caryophylene oxide 2019 184 095  0.84
Dodecanoic acid 2461  0.00 0.12 093
Octanoic acid 2083 0.00 0.00 0.13
Total 11.70 9.85 5.60

Total identified compounds 98.56 98.71 98.36

RI: retention index on CP WAX 52 CB capillary column; *“MeOH: methanol
extract; "EtOH: ethanol extract; EtOAc: ethyl acetate extract.

the ethyl acetate extract of P. arboris-vitae which repre-
sented 46.8% nonterpene hydrocarbons, 37.6% sesquiter-
penes, 6.8% monoterpenes, and 1.6% ketones where unde-
cane (11.3%), B-caryophyllene (8.4%), dodecane (6.4%),
a-gurjunene (6%), 2-methyldecane (5.1%), hemimellitene
(4.9%), and D-limonene (3.9%) were the main compounds.

The presence of various monoterpenes, sesquiterpenes,
and diterpenes in liverworts has been reported in earlier
works [13-15]. These terpenes possess various kinds of
biological activity and are beneficial for the health [16]. In the
present study, P. arboris-vitae extract has shown the presence
of many kinds of sesquiterpenoids which are ubiquitous
in other liverworts. Higher percentage of sesquiterpenoids
hydrocarbons could be responsible for higher antimicrobial
activity.
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3.2. Antimicrobial Activity. The MIC and MBC/MYC of dif-
ferent P. arboris-vitae extracts were determined against var-
ious bacterial (S. Enteritidis, E. coli, and L. monocytogenes)
and yeast (S. cerevisiae, Z. bailii, A. pullulans, P. mem-
branaefaciens, P. anomala, and Y. lipolytica) strains. These
MIC and MBC/MYC values are shown in Table 2. Different
P. arboris-vitae extracts exhibited concentration-dependent
growth inhibition.

For the bacterial strains, the MIC varied from 1.25 to
2mg/mL (Table 2). The MIC of different P. arboris-vitae
extracts for Gram-positive bacteria (L. monocytogenes) was
significantly (P < 0.05) lesser than Gram-negative bacteria
(S. Enteritidis, E. coli), that is, 1.25mg/mL and 2 mg/mL,
respectively. However, MIC value of ethyl acetate extract for
L. monocytogenes was significantly (P < 0.05) higher than
the methanol and ethanol extracts of P arboris-vitae. The
MBC of different extracts for bacterial strains varied from
2 to 3mg/mL. MIC for streptomycin was 0.02-0.05 mg/mL
and the MBC was 0.10 mg/mL. Higher MIC and MBC values
of Gram-negative bacteria could be due to the presence of
lipopolysaccharide cell envelope and highly hydrophilic cell
membrane. Antimicrobial potential of 11 sesquiterpenoids,
methanol and diethyl ether extract of Tahitian liverwort
Mastigophora diclados was observed against Staphylococcus
aureus NBRC 15035 and Bacillus subtilis NBRC 3134 where
MIC of methanol and diethyl ether extract of M. diclados was
64 and 16 mg/mL, respectively [17]. These MIC values are
quit higher than those evaluated in present study.

The MIC of methanol, ethanol, and ethyl acetate extracts
for yeast strains varied from 0.5-1 mg/mL, 1-1.25 mg/mL,
and 1-1.5 mg/mL, respectively (Table 2). The MIC values also
varied as per the yeast strains. Z. bailii, P. membranaefaciens
OC 71, P. membranaefaciens OC 70, and P. anomala DBVPG
3003 showed higher MIC than other tested yeast strains for
ethanolic and ethyl acetate P. arboris-vitae extracts, while
methanolic P. arboris-vitae extract showed lesser MIC for P.
anomala CBS 5759 and Y. lipolytica than other tested strains.
Similar pattern was found for the MYC of different extracts
against yeast strains, that is, MYC of ethyl acetate extract
>MYC of ethanolic extract >MYC of methanolic extract of
P arboris-vitae. The commercial antibiotic cycloheximide
was used as a control, which possessed much lesser MICs
(<0.05mg/mL) than the different extracts against selected
yeast strains. In general, different P. arboris-vitae extracts
showed substantial antimicrobial activity and yeast strains
were more sensitive than bacterial strains (Table 2).

Comparison of the MIC/MBC of different extracts for
same bacterial or yeast strain showed that in general ethyl
acetate extract had lower antimicrobial activity. This could be
correlated with the presence of sesquiterpenes hydrocarbons
which was higher in methanol (72.2%) and ethanol (59.5%)
extracts than ethyl acetate extract (37.6%) of P. arboris-vitae.
Earlier, Bukvicki et al. [18] also reported that high content
of sesquiterpene components may account for the higher
antimicrobial activity of methanol and ethanol extracts than
ethyl acetate extract of liverwort. The presence of volatile
sesquiterpene hydrocarbons such as 3-selinene, a-guaiene,
a-bisabolene, a-cedrene, caryophyllene, a-amorphene, «-
chamigrene, bulnesene, and valencene acted synergistically
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TABLE 2: Antimicrobial activity of liverwort P. arboris-vitae methanol, ethanol, and ethyl acetate extracts (mg/mL).
P, arboris-vitae extract (mg/mL) Control

Microorganisms MeOH EtOH EtOAc Strep. Cyclo.

MIC MBC/MYC MIC MBC/MYC MIC MBC/MYC MIC MIC
S. Enteritidis 555 1.5 2 1.5 2 2 3 0.05 —
E. coli 155 1.5 2 1.5 2.5 2 3 0.05 —
L. monocytogenes 56 Ly 1.25 2 1.25 2 1.5 3 0.02 —
S. cerevisiae 635 1 1.5 1 2 1 2 <0.05
Z. bailii 45 1 1.5 1.25 2 1.5 2.5 <0.05
A. pullulans L6F 1 1.5 1 2 1 2 <0.05
P. membranaefaciens OC 71 1 1.5 1.25 2.5 1.5 2.5 <0.05
P. membranaefaciens OC 70 1 1.5 1.25 2.5 1.5 2.5 <0.05
P. anomala CBS 5759 0.5 1 1 1.5 1.25 2 <0.05
P. anomala DBVPG 3003 1 1.5 1.25 2.5 1.25 2 <0.05
Y. lipolytica RO 13 0.5 1.5 1 1.5 1 1.5 0.02

MIC: minimal inhibitory concentration; MBC: minimal bactericidal concentration; MYC: Minimal Yeast-cidal Concentration (MYC); MeOH: methanolic
extract; EtOH: ethanolic extract; EtOAc: ethyl acetate extract; Strep.: streptomycine; Cyclo.: cycloheximide.

to kill a broad range of plant and human pathogenic microor-
ganisms [19]. In the present study, higher contents of these
reported compounds were available in methanol and ethanol
extract than the ethyl acetate extract of P. arboris-vitae, which
support our results in regard to high antimicrobial activity
of methanol extracts. Veljic et al. [20], also evaluated the
antimicrobial activity of Ptilidium pulcherrimum methanol
extract where the MIC for bacterial strains and fungal strains
varied from 10-20 mg/mL and 0.5-2.5 mg/mL, respectively.
These results are higher as observed in present study.

3.3. Morphological and Ultrastructural Alterations of
S. Enteritidis

3.3.1. Scanning Electron Microscopy (SEM) Observation. Bac-
terial cells treated with methanolic and ethanolic P. arboris-
vitae extract at MIC level showed considerable morphological
alterations in comparison to the control (Figure 1). Control
S. Enteritidis cells appeared intact, separated from each other,
turgid, and complete with smooth surface (Figure 1(a)) while
methanolic and ethanolic P. arboris-vitae extract treated cells
appeared to be aggregated and partially deformed (Figures
1(b) and 1(c)), respectively. SEM pictures revealed the com-
plete loss of turgidity and the cytoplasmic material from the
bacterial cells. It seems due to the leakage of cytoplasmic
material of the bacterial cells and the aggregate cells appeared
as sludge. Similar observations indicating the aggregations of
bacterial cells as a stress response upon exposure to negative
air ions have been reported earlier [21], where complete
leakage of cytoplasmic material and loss of turgidity were
found due to the combined exposure of negative air ions
and lemon grass oil vapours. Other authors [22, 23] also
observed aggregation of bacterial cells by the exposure to
antimicrobial compounds similar to the present results. These
SEM micrographs confirmed the evidences of antimicrobial
potential of P. arboris-vitae.

3.3.2. Transmission Electron Microscope (TEM) Observation.
Further evidence of antibacterial potential of methanolic and
ethanolic P. arboris-vitae extract has been obtained by TEM
study (Figure 2). Untreated cells were studied as a control.

TEM photomicrographs of untreated S. Enteritidis cells
show a regular outlined cell wall, plasma lemma lying
closely to the cell wall (shown by arrows), and regularly
distributed cytoplasm (Figure 2(a)). TEM photomicrographs
of methanolic and ethanolic P. arboris-vitae extract treated
bacterial cells revealed the variation in cell wall thickness
and internal damages (Figures 2(b) and 2(c)). Methanolic
extract treated bacterial cells (Figure 2(b)) showed extensive
ultrastructural damages and wide range of abnormalities in
comparison to ethanolic extract treated (Figure 2(c)) cells
(shown by arrows). As shown in Figure 2, plasma lemma
damaged and periplasmic space became larger and irregular
in the treated cells. The cytoplasm appeared very dense at
certain locations and unsymmetrically distributed in the cell
(Figures 2(b) and 2(c)). At certain locations, the leakage
of intracellular contents due to damage of cell envelop was
also found (Figures 2(b) and 2(c)). This can also result from
alteration in membrane permeability leading to draining out
of the inner contents while the main structure of the outer
membrane still remains intact.

Antimicrobial activity of various terpenes possesses dis-
crete lipophilic characteristics and detectable water solubility
may be potentiated by the fact that it can migrate across
the aqueous extracellular medium, interact with, and damage
lipid membranes. Since the outer layer of the Gram-negative
bacteria is composed of lipopolysaccharide molecules and
forms a hydrophilic permeability barrier providing protec-
tion against the effects of highly hydrophobic compounds
[24], they may exhibit low sensibility of Gram-negative bac-
teria to the cytotoxic effect of the highly lipophilic monoter-
penes. To the best of our knowledge, it is the first study
where author tries to evaluate the ultrastructural changes in
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FIGURE 1: Scanning electron micrographs of untreated and treated
S. Enteritidis cells. (a) Untreated cells with normal smooth surfaces
(x20K). (b) Shrinked aggregated and ruptured methanolic P
arboris-vitae extract treated cells (x20K). (c) Shrinked aggregated
and partially deformed ethanolic P. arboris-vitae extract treated cells
(x20 K).

bacterial cells due to methanolic and ethanolic P. arboris-
vitae extracts.

4. Conclusions

Antimicrobial potential of European folk medicinal plant
P arboris-vitae extracts against various bacterial and yeast
strains has been investigated employing different micro-
scopic techniques. SEM and TEM micrographs of the
methanolic and ethanolic P arboris-vitae extract treated
bacterial cells together show the evidence of rupture, cell lysis,
and loss of cytoplasmic material. SEM examination revealed
that shrinkage of the bacterial cell was apparent in the cells
treated with P arboris-vitae extracts, when compared to

FIGURE 2: Transmission electron micrographs of untreated and
treated S. Enteritidis cells. (a) Untreated cells having a regular
outlined cell wall, plasma lemma lying closely to the cell wall, and
regularly distributed cytoplasm (shown by arrows). (b) Methanolic
P. arboris-vitae extract treated cells having extensive internal dam-
age, unsymmetrical distributed cytoplasm, and larger and irregular
periplasmic space (shown by arrows). (c) Ethanolic P. arboris-vitae
extract treated cells having variable cell wall thickness appeared
disrupted and variable periplasmic space (shown by arrows).

the untreated ones. Loss of turgidity and leakage of the
cytoplasm from the bacterial cells were also observed by TEM
investigations.

Presence of different biologically active chemical con-
stituents was characterized with SPME GC-MS and revealed
the possibility to use the P arboris-vitae extract with food
materials. However, further investigations to determine the
interaction of P. arboris-vitae extract with different food com-
ponents are necessary. Antimicrobial activity of P. arboris-
vitae extract should also be tested in real food systems for
using it as a food preservative.
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