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Abstract

Decision makers typically overweight small probabilities and underweight large. However, there
are recent reports that, when probability is presented in relative frequency form, this typical
pattern reverses. We tested this hypothesis, comparing decision making in two decision tasks, in
which probability was either stated numerically or conveyed through a visual representation. In
the visual task, participants chose between firing a ‘stochastic bullet’ at a large target for a small
reward or at a small target for a large reward. Participants’ knowledge of probability in the visual
task was the results of extensive practice firing bullets at targets. In the classical numerical task,
they chose between pairs of lotteries with probabilities and rewards matched to those in the visual
task. We found that participants had significantly different probability weight functions in the two
tasks but the pattern for the visual task was the typical, not the reversed, pattern.
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Introduction

Decisions share a formal structure. There are possible outcomes Oy, O,-+, O, only one of
which will occur. There are possible actions that affect the probabilities py,-, p, of
obtaining corresponding outcomes. Each choice of action is in effect a /ottery (p1, Oy; po,
O; -+, P Op). In decision making under risk, the participant chooses between lotteries
where both outcomes and probabilities are explicitly given, e.g. (0.2,$200;0.8,$0).

Expected utility theory (EUT, Bernoulli, 1738/1954) is a normative model of decision under
risk. Each outcome O;in a lottery L is assigned a numerical “utility” ({O,) and the expected
utility of the lottery is,

EU(L)=)"pU (0) ()
i=1

The EUT decision maker chooses the lottery with the highest expected utility.

Contact: Laurence T Maloney Department of Psychology 6 Washington Place, 2N Floor New York, NY, 10003 USA Tel: +1 212 998
7851 Fax: +1 212 995 4960 Itm1@nyu.edu.



1X31-)lew1a1ems 1X31-){Jewiaremsg

1Xa1-)lewarems

Glaser et al.

Page 2

Human decision makers typically depart from the predictions of EUT by overweighting
small probabilities and underweighting large (Allais, 1953; Kahneman & Tversky, 1979;
Luce, 2000). This distortion of probability is captured by a probability weighting function
W{p). In Figure 1 we show three instances of a particular model of the probability
weighting function with one free parameter » due to Tversky & Kahneman (1992). The
green curve is based on data observed in one condition of an experiment they report. For
values of y < 1 small probabilities are overweighted, large probabilities underweighted, the
typical pattern observed in decision under risk experiments.

For many of the decisions we make, we are not given explicit specifications of probability in
numerical form. Often we have only the remembered relative frequency of events across
time. The relative frequency of events is arguably the predominant if not sole source of
information for non-human animals (Stephens & Krebs, 1986).

Recently researchers have examined whether the source of probability information in a
decision task affects the decisions we make (Erev, Ert, Roth, Haruvvy, et al., 2010; Fox &
Hadar, 2006; Hadar & Fox, 2009; Hau, Pleskac & Hertwig, 2010; Hertwig, Barron, Weber
& Erev, 2004; Rakow, Demes & Newell, 2008; Ungemach, Chater & Stewart, 2009; Wu,
Delgado & Maloney, 2009, 2011). Wu, Delgado & Maloney (2009, 2011) compared human
decision making under risk in a classical decision task (“decision from description™) and a
mathematically equivalent choice between “motor lotteries”. A motor lottery consisted of a
speeded reaching task to a rectangular target. If the participant hit the target, he or she
earned a reward (and otherwise received nothing) and the size of the rectangle determined
the probability of success.

Wu et al. (2009, 2011) found that, while participants choosing between lotteries in classical
form tended to overweight small probabilities and underweight large, the same participants,
when presented with the equivalent motor decision task, showed the reverse pattern,
underweighting small, and overweighting large. The red curve with > 1 in Figure 1
illustrates this second pattern. The same participants in a classical decision making task with
probabilities explicitly given had the expected pattern of probability distortion with » < 1.

Ungemach, Chater & Stewart (2009) reported patterned differences in use of probability in
comparison of a classical decision task and a matched decision task in which probability
information was obtained through sampling. In the c/assical decision task participants chose
between lotteries which were presented in numerical form. In the sampling condition,
participants sampled each of two events 40 times by pressing keys. Ungemach et al found
that participants’ choices were consistent with underweighting smaller probabilities and
overweighting large, i.e. > 1 in Figure 1. In the classical decision task, they found the
typical overweighting of small probabilities and underweighting of large y < 1.

Both Wu et al (2009, 2011) and Ungemach et al (2009) verified that participants’ estimates
of the frequency of motor success or success in sampling were close to accurate.

A natural conjecture is that, whenever probability is based on observed or remembered
frequency, the use of probability in decision making will exhibit the reversed pattern (y >
1).

Here we test this conjecture by comparing decision making with probabilities learned
through sampling a large number of random visual events and decision making with
probabilities explicitly stated. The random visual event was the outcome of a Gaussian
“stochastic bullet” aimed at a rectangular target. The path of the stochastic bullet was a
Gaussian random walk resembling a lightning bolt. We varied the probability that the bullet
would hit the rectangular target by varying the width of the rectangle. Figure 2A gives an
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example of three possible realizations of the stochastic bullet aimed at three rectangles
varying in width. In the example, the bullet “hits” two times out of three.

In summary, we focused on human performance with large samples. Moreover, the number
of practice and decision trials was fixed in advance by the experimenter and was not under
the control of the participant. (cf. Fox & Hadar 2006; Ungemach, Chater & Stewart, 2009).

We illustrate the visual decision task in Figure 2B. There are two rectangles differing in
width with monetary rewards assigned to either of the two targets. The participants choose
whether to bet on the bullet hitting the upper target or hitting the lower. In the example, a hit
on the smaller rectangle will earn $2 while a hit on the larger rectangle, though more likely,
will earn only $1. In Figure 2B we illustrate the classical decision task, a decision between
two lotteries that differ in probability and outcome.

In the first phase of the experiment, the participant viewed 300 realizations of the stochastic
bullet aimed at rectangles of different sizes and could potentially learn the mapping between
rectangle width and the probability with which the stochastic bullet will hit the target.

We estimated probability weighting functions in both decision making tasks (Figure 2), for
each participant individually. Following Wu et al (2009, 2011) and Ungemach et al (2009)
we also asked participants to directly estimate the frequency of visual events on a numerical
scale. That is, they were shown a bullet and rectangle and asked to estimate the probability
of a hit. We compared these three estimates of probability/frequency to test whether (1) the
source of probability information affects the probability weighting function and (2) whether
any differences in the probability weight function in the two decision tasks can be attributed
to a simple misperception of the frequency of visual events.

We found large, patterned differences between the probability weighting functions for the
two decision tasks with the probability weighting functions based on random visual events
exhibiting greater distortion. Participants typically overweighted small probabilities and
underweighted large probabilities in the visual task in contrast to the patterns of probability
weight distortion found by Ungemach et al (2009) and Wu et al (2009, 2011). We also found
that participants’ estimates of the relative frequency of events were close to veridical and
could not explain their use of probability in visual decision making.

Participants were seated in a dimly lit room in front of a monitor (1280 x 1024 pixel at 60
HZ; 1 pixel = 0.026 mm). We recorded responses by means of a computer keyboard
mounted on a table centered in front of the monitor. The experiment was run using the
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) on a Pentium IV Dell Precision
workstation.

12 NYU undergraduate students participated in this experiment. All were unaware of the
purpose of the experiment and all were paid for their participation. All participants had
normal or corrected to normal vision. Participants were paid for their time and also received
a bonus based on their performance paid at the end of the experiment.
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The stochastic bullet—The participant observed a bullet that followed a visible random
walk from the screen center upward (or downward) to a horizontal reward line (Figure 2).
The center of the screen was marked by a small figure we refer to as the shooter. The
random walk consisted of a series of /=101 line segments connecting a series of points,
beginning at the shooter and ending at the reward line. In the visual decision task described
below, the shooter could shoot the bullet upward or downward. We describe the construction
of the stimulus for a bullet traveling upward.

The vertical coordinates of the successive points increased by 1/M" of the vertical distance
from the screen center to the lower edge of the target rectangle so that the last point fell
somewhere on the line containing the lower edge of the target rectangle. The horizontal
coordinate of each point was displaced by a random offset from that of the previous point.
The offsets were independent, drawn from a Gaussian (normal) distribution with mean 0 and

variance o>/N, so that the distribution of bullet arrival points on the reward line was

Gaussian(c, Ui) where ¢ denotes the horizontal coordinate of the center of the rectangle.
Three realizations of the random walk are shown in Figure 2. The distribution from which
the random walk was drawn was held constant throughout the experiment with o= 30mm
corresponding to 3.6 degrees of visual angle (DVA).

The target rectangle—The lower edge of the target rectangle rested on the reward line,
centered directly above the shooter. The probability p of hitting a rectangle of width wwith
the stochastic bullet is,

plhin=["" ¢(x0.02)dx ()
where @(x;u, o) denotes the Gaussian probability density function with location parameter

w and variance o2 and wdenotes the width of the rectangle. The mapping from wto pis
invertible. Given any specified probability pwe can compute the corresponding w.

Experimental design

The experiment consisted of five phases. The first four are illustrated in Figure 2B. Each
participant completed all five phases in the order we describe next.

1. Experience phase—The purpose of the experience phase was to familiarize the
participant with the mapping between the width of the rectangle and the probability that the
stochastic bullet would hit the target. A single target was always displayed in the upper half
of the screen, centered above the shooter. The width of the rectangle varied randomly from
trial to trial.

On each trial of the experience phase, the participant observed the random walk from the
screen center upward to the lower edge of the target rectangle. The participant's task was to
judge whether the bullet hit the reward line within the target region and respond by key
press. Participants were told the correct response after every trial. Each participant judged
300 trials with rectangles whose widths varied across the same range as in the visual
decision task.

2. Visual decision phase—In this phase, participants chose between two target
rectangles, one displayed above, one below the screen center. Once the participant had
selected a target, the stochastic bullet was fired twice, first at the selected target rectangle,
next at the non-selected target rectangle. Hitting the larger target rectangle always
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corresponded to winning $1, hitting the smaller, to winning $2. The larger rectangle was
randomly placed above or below the shooter with equal probability.

The larger target rectangles ($1) were fixed at one of six sizes corresponding to probabilities
(.1.2 .4 .6 .8 .9); the size of the smaller target rectangle ($2) was adjusted across 33
successive trials using an adaptive staircase procedure (Leek, 2001). The values assigned to
both regions were fixed throughout a session of 396 trials (v; = $2 / v, = $1). We varied the
width of the target with value v from trial to trial to estimate probability p,such that the
participant was indifferent between (p;, v;) and (ps v»). The participants had no control
over the stopping rule. All staircases were run for a fixed number of trials.

At the end of the experiment, three trials were randomly selected and the participant was
paid the outcome of those three trials. The participant was informed of this payment method
at the beginning of the visual decision session.

3. Estimation phase—The purpose of the estimation phase was to test the participant's
knowledge about the bullet's hit probability for target rectangles of different sizes. During
this phase of the experiment, the participant was presented with target rectangles of different
sizes and typed in a number between 0 and 100 as an estimate of the probability (in percent
form) with which the bullet had hit the target rectangle of this particular size. The size of the
target was determined by randomly selecting a probability between 10 and 90, turning it into
a width (in mm) and then presenting it visually to the participant. No feedback was given.
This phase of the experiment consisted of 120 trials.

4. Classical decision phase—In this phase of the experiment, participants chose
between pairs of lotteries presented in numerical form equivalent to the visual lotteries of
the visual decision phase (Figure 2B). The probability of winning the lower $1-outcome was
held fixed at the same level as in the visual decision task (.1 .2 .4 .6 .8 .9). The classical
decision phase consisted of 396 trials. Matching the conditions of the visual task, the choice
with the smaller outcome ($1) was fixed at one of probabilities (.1 .2 .4 .6 .8 .9), stated in
frequencies on the screen; the probability assigned to the higher outcome ($2) was adjusted
across 33 successive trials using an adaptive staircase procedure (Leek, 2001). The values
assigned to both regions remained fixed throughout the session of 396 trials. We varied the
probability assigned to the higher outcome ($2) from trial to trial to estimate the probability
p2such that the participant was indifferent between (p;, v;) and (ps, Vv>).

5. Payoff phase—Participants were paid for their participation and received an additional
bonus, depending on the outcome of three classical lottery trials and three visual lottery
trials selected at random. We “replayed” the actual random walk that had previously
occurred on each of the randomly chosen visual lottery trials and then paid participants
according to their winnings. These payoffs occurred only after all data was collected and the
experiment was otherwise complete.

Probability weighting and value functions

We characterized human performance in each phase by fitting performance to a parametric
model, Kahneman & Tversky's Prospect Theory (Kahneman & Tversky, 1979). The lotteries
we consider have only one non-zero monetary outcome that is always a gain. For simplicity,
we omit zero outcomes in specifying lotteries (p, V). For pairs of lotteries with two fixed
values, as in our experiment Prospect Theory coincides with the extension of Prospect
Theory (Cumulative Prospect Theory) proposed by Tversky & Kahneman (1992; Quiggins,
1982, 1993; theory; Luce, 2000).
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The participants chose between £ = (p1, 1) and Ly = (p, 1»). We assume that participants
first assign a prospect value to each lottery

(L) =Wy (pi)) Vo (vi),i=1,2 (3)

where W), (p) is a probability weighting function and V/, (V) a utility function for gains. We
assume that the participant computes the decision variable

A=r (L]) -7 (Lz) +& (4)

where e is a Gaussian random variable with mean 0 and decision variance o>, The
participant chooses the lottery L if A > 0 and otherwise the lottery L.

Because our outcomes are non-negative, we can model the utility function by the power
function

Vo (W) =V (5)

with one parameter a > 0. We model the probability weighting function by probability as
probability weighting function with a single parameter y,

Y - @

Examples of W, (p) are shown in Figure 1.

There are competing models for how decision makers weight probability (Prelec, 1998;
Gonzalez & Wu, 1999; Tversky & Kahneman, 1992) but they provide very similar fits to
data (see Luce, 2000, Section 3.4). We are using V/, and w,, (p) to capture and compare
performance across experimental phases.

On every trial there are only two non-zero outcomes, $1 and $2. If 14 is always $1 and 15 is
always $2, then the comparison of lotteries,

Wy (p1) Vo (V1) >Wy (p2) Vo (v2) & Choose Ly else Ly (7)

is equivalent to

Wy (Pl)
Wy (pZ)

>C < Choose L; else Ly (g

where C= V, (w)/V,(11). The three parameters ¥, Cand op characterized each
participant's performance.

Analysis & Results

In each experimental condition and for each participant, and estimated parameters by
maximum likelihood (Mood, Graybill & Boes, 1974). We combined data across the six
probability conditions (.1, .2, .4, .6, .8, .9), a total of 396 trials The resulting estimates of y,
C, op for the visual decision task are denoted y}, C, and o, with k= 1,-, 12 indexing the

12 participants. We also obtained the maximum log likelihood of each fit, A, which we will
use in testing hypotheses as described below. We similarly fit the data for the classical
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decision phase, obtaining estimates of y, C, opdenoted y{, C{, and o}, with k=1,--, 12 and
corresponding maximum log likelihoods, ;.

Last we fit the data from the estimation phase by the method of least squares to obtain

estimates y; with A=1,--, 12 as well as the estimated standard error of the residuals, . The
data are estimates £ ;of probability (on a percentage scale) by the K" participant on the f
trial of the estimation task. The true probability that the bullet would hit the target on the /1

trial of the estimation task is denoted pj. We fit the y;, by minimizing,

=

E

[Ekt,-—IOO Bi Wy (pj)]z. 9)

~
]

Note that we fit an additional parameter Sy that captures any tendency on the participant's
part to compress or expand the response scale.

Distortion of probability weight functions

In all three conditions, we found large individual differences in the )-estimates, indicating
that the extent to which probability information was distorted varied across participants. In
the visual task, individual y-estimates varied between 0.31 and 1 (median 0.725). In the
classical decision task, individual y-estimates ranged from 0.28 and 2 (median 1.05). In the
estimation task, we found large individual differences in y-estimates with values across
participants that ranged from 0.36 to 1.55 (median 1.08).

Visual and classical decision tasks—The estimates for y;, v;, y; for each participant,
k=1,-, 12, are summarized in Figure 3A. The large individual differences for the classical
decision task are typical of those found when participants’ data are fit individually (see
discussion in Luce, 2000, Section 3.4). The mean 1.01 (median 1.05) is not significantly
different from 1 (t(11)=0.103; p = 0.459); the values are evenly distributed around 1. In
contrast, all values of y} are less than 1 with mean value 0.721 (median 0.725). The
difference is significant (t(11) = -4.323; p = 0.0012). Figure 3B shows boxplots indicating
mean and confidence intervals for visual and classical decision task, for pooled parameter
estimates specifying the probability weight function (pooled across 12 participants). The
parameter estimates differed significantly for the visual and classical decision task for 8 of
the 12 participants (log-likelihood-ratio-test, p=.05).

We believe that the lack of probability weighting (on average) in the classical decision
session is due to the feedback which participants received on each trial. Decision makers
faced with a series of decisions tend to move closer to maximum expected gain (see
Redelmeier & Tversky, 1992; Wakker, Thaler & Tversky, 1997; Thaler & Johnson, 1990).
Studies of risky decision find that participants are closer to maximizing expected gain for
small stakes (Camerer, 1992; Holt & Laury, 2002; Thaler & Johnson, 1990; Wedell &
Bdckenholt, 1994).Similar results are found for motor tasks analogous to decision making
(Trommershduser, Maloney & Landy, 2003a,b; 2008).

We also tested whether %V and covary. Do participants with larger values of »*tend to have
larger values of yVand vice versa (positive correlation)? We computed the correlation of y;

and v, across participants. We find that participants did not show a significant correlation
between visual decision %V and classical decision #¢ (r =-0.17, p = 0.61). We thus conclude
that probability weight functions in the two decision tasks are different across participants
with the probability weight function for the visual task more distorted.
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Estimation task—We found large individual differences in y; with values across
participants that ranged from 0.36 to 1.55 with mean 1.07 (median 1.08). Estimates of the
scaling parameter Sy ranged from 0.63 to 2.3 with a mean of 1.07 (median .94). The values
of ¢ from the estimation task have mean 1.07 (median 1.08) and are not significantly
different from 1 (t(11) = 0.563; p =0.585). On average, participants’ estimates of the
frequency that the bullet would hit the target were little distorted.

Probability estimates and the visual decision task—We considered whether the
observed distortions in probability weight could be due to misperception of the frequency
with which the stochastic bullet hit targets of different widths. We first tested the hypothesis
that = 9© and rejected this hypothesis (t(11)=-3.256; p=0.008). We further tested whether
¥ was positively correlated with 7. The resulting correlation was 7= 0.55 only marginally
significantly different from 0 (p=0.066). This outcome is consistent with previous work
comparing estimates and use of probability in decisions under risk or uncertainty
(Ungemach et al, 2009; Wu et al, 2009, 2011).

Distortion of value functions

The CPT value function for gains is controlled by a single parameter a which we reduced to
a single parameter Cabove. The estimates for each participant in the visual and classical
decision tasks are denoted C;, Cy, k= 1,-, 12, respectively. The values of C} have mean
1.338 (median 1.230) and the values of C;, mean 1.425 (median 1.255). The ratio of rewards
was 2:1 and a value of C= 2 would indicate that participants made decisions consistent with
expected value. We tested this possibility by a t-test and rejected it for C; (t(11)= -7.1832; p
< 0.0001) and for C; (t(11) =-3.367; p = 0.006). In both decision conditions our estimates of
their use of value were compressive as is typically the case for lotteries with non-negative
outcomes (Tversky & Kahneman, 1992).

We finally tested whether participants treated information about reward similarly in the two
decision conditions. We compared C,, C; using a paired sample t-test and found no
significant difference (t(11)=-0.773; p = 0.456). Moreover, C, and C; were significantly
correlated (r = 0.789; p = 0.002). These results are consistent with the conclusion that
participants represented value similarly in the two decision conditions.

Conclusion

Ungemach et al. (2009) and Wu et al. (2009, 2011) compared human performance in
classical decision making with information about probability and outcomes was explicitly
given to performance in a matched decision task where knowledge of probability was
obtained by observing or sampling stochastic events. Ungemach et al and Wu et al both
found that decision makers in the classical task typically overweighted small probabilities
and underweighted large. In contrast, they found the opposite pattern for the matched task
based on relative frequency, suggesting that the shape of the probability weighting function
changes markedly when probability is obtained in the form of relative frequency of events.

We tested this conjecture by comparing performance in a classical decision task with
performance in a visual decision task. Participants practiced firing bullets at rectangles
several hundred times. In this visual decision task the participant chose between firing a
bullet at a larger, easier to hit rectangle for $1 or a smaller, harder to hit rectangle for $2. We
varied the widths of the rectangles from trial-to-trial and the objective probabilities of
success in the visual task and the classical task were matched, trial-by-trial.
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We rejected the conjecture. In the visual task the values " were all less than 1, indicating
that participants typically overweighted small probabilities and underweighted large, the
opposite of the pattern found by Ungemach et al (2009) and Wu et al (2009, 2011). Our
results echo those of Gonzalez & Wu (1999) who discuss differences in the shape of the
probability weight function across tasks and individuals.

We find that they do not, even after 300 practice trials and 396 decision trials. Sample size
alone is not sufficient to account for differences in human choice in decisions from
description and decision from sampling.”

In summary, we compared performance in a decision from description task and a decision
from sampling task where the source of uncertainty was a stochastic visual event. We found
that, even after many trials, participants’ probability weighting functions for description and
sampling were significantly different and those from sampling showed marked
overweighting of small probabilities, underweighting of large. Even with probabilities
estimated as the frequency of large numbers of visual events observers do not maximize
expected utility.

The task we consider is representative of a large class of everyday tasks where we learn
about the stochastic outcomes of events by observing, a quintessential form of decision from
experience. We might expect that, with hundreds of trials of training and decision, human
performance would move toward choices maximizing expected utility. It does not.
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Figure 1. Probability weighting function

The shape of the probability weighting function W, (p) is controlled by a single parameter y
>0. The function W, (p) = p is a straight line for y =1, i.e. probability is undistorted.
When y < 1, the probability weights assigned to smaller probabilities are higher than the
probabilities and the probability weights assigned to larger probabilities are lower. The
opposite pattern emerges when > 1.
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Figure 2. Visual decision task

A) Realizations of the visual stochastic process. During the visual decision task
participants viewed a visual random event that signaled probability. A stochastic bullet
moved from an initial location upward toward a target (rectangle outlined in white) along a
Gaussian random walk trajectory. The participant judged whether the bullet hit the rectangle
which is the case for two of the three realizations shown here. The stochastic path is shown
here in white; in the actual experiment the path was not visible except for the instantaneous
position of the moving bullet. The width of the rectangle determined the probability of
hitting the rectangle. B) Conditionsand Procedure. 1) Visual Experience Phase. In each
trial of the experience phase, the participant observed the random walk from the screen
center upward to the lower edge of the target rectangle. The target was always displayed in
the upper half of the screen, centered above the shooter. The width of the rectangle varied
randomly from trial to trial. Participants were instructed to judge whether the bullet hit the
reward line (the edge of the target region). Each participant judged 300 experience trials. 2)
Visual Decision Phase. In each trial of the visual decision task, participants chose between
two target rectangles that differed in size. Both rectangles were displayed one above and one
below the screen center. The larger target rectangle always carried a value of $1, the smaller
target a value of $2. Following the participant's choice, the random walk was elicited twice,
first towards the selected target rectangle, then towards the non-selected target rectangle. If
the random walk hit within the target rectangle, the trial was considered to be a win. The
size of the larger target rectangle was held fixed at 6 different sizes corresponding to
probabilities (.1 .2 .4 .6 .8 .9); the size of the smaller target rectangle ($2) was adjusted

Please judge

probability: 1; 80%
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across successive trials using an adaptive staircase procedure to estimate the ratio at which
the participant was indifferent. 3) Probability Estimation Phase. In each trial of the
estimation phase, participants were presented with target rectangles of different sizes.
Participants provided a number between 0 and 100 that indicated their estimate of the
probability with which the bullet had hit the target rectangle of this particular size. The
estimation phase of the experiment consisted of 120 trials. 4) Classical Decision Phase. In
each trial of the decision phase, participants chose between pairs of numerical lotteries
equivalent to the visual lotteries of the visual decision phase. The lotteries were stated in text
format and displayed above and below the screen center at the same location where the
rectangles were placed in the visual decision phase. Each lottery was represented as a pair of
numbers, a dollar value ($1 or $2) indicating the possible outcome of this lottery and a
probability of that outcome probability (presented as frequency, ‘%’). Like the visual
decision phase, the classical decision phase consisted of 396 trials.
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Figure 3. Results

A. Parameter estimates specifying the probability weight function (separate estimates for
each of 12 participants for each of the three phases of the experiment). B. Boxplots of y, the
parameter specifying the probability weight function, in the three phases of the experiment.
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