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Abstract
A challenging goal in neuroscience is to be able to read out, or decode, mental content from brain
activity. Recent functional magnetic resonance imaging (fMRI) studies have decoded
orientation1,2, position3, and object category4,5 from activity in visual cortex. However, these
studies typically used relatively simple stimuli (e.g. gratings) or images drawn from fixed
categories (e.g. faces, houses), and decoding was based on prior measurements of brain activity
evoked by those same stimuli or categories. To overcome these limitations, we develop a decoding
method based on quantitative receptive field models that characterize the relationship between
visual stimuli and fMRI activity in early visual areas. These models describe the tuning of
individual voxels for space, orientation, and spatial frequency, and are estimated directly from
responses evoked by natural images. We show that these receptive field models make it possible
to identify, from a large set of completely novel natural images, which specific image was seen by
an observer. Identification is not a mere consequence of the retinotopic organization of visual
areas; simpler receptive field models that describe only spatial tuning yield much poorer
identification performance. Our results suggest that it may soon be possible to reconstruct a
picture of a person’s visual experience from brain activity measurements alone.
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Imagine a general brain-reading device that could reconstruct a picture of a person’s visual
experience at any moment in time6. This general visual decoder would have great scientific
and practical utility. For example, we could use the decoder to investigate differences in
perception across people, to study covert mental processes such as attention, and perhaps
even to access the visual content of purely mental phenomena such as dreams and imagery.
The decoder would also serve as a useful benchmark of our understanding of how the brain
represents sensory information.

How do we build a general visual decoder? We consider as a first step the problem of image
identification3,7,8. This problem is analogous to the classic “pick a card, any card” magic
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trick: We begin with a large, arbitrary set of images. The observer picks an image from the
set and views it while brain activity is measured. Is it possible to use the measured brain
activity to identify which specific image was seen?

To ensure that a solution to the image identification problem will be applicable to general
visual decoding, we introduce two challenging requirements6. First, it must be possible to
identify novel images. Conventional classification-based decoding methods can be used to
identify images if brain activity evoked by those images has been measured previously, but
they cannot be used to identify novel images (see Supplementary Discussion). Second, it
must be possible to identify natural images. Natural images have complex statistical
structure9 and are much more difficult to parameterize than simple artificial stimuli such as
gratings or pre-segmented objects. Because neural processing of visual stimuli is nonlinear,
a decoder that can identify simple stimuli may fail when confronted with complex natural
images.

Our experiment consisted of two stages (Fig. 1). In the first stage, model estimation, fMRI
data were recorded from visual areas V1, V2, and V3 while each subject viewed 1,750
natural images. These data were used to estimate a quantitative receptive field model10 for
each voxel (Fig. 2). The model was based on a Gabor wavelet pyramid1113 and described
tuning along the dimensions of space3,1419, orientation1,2,20, and spatial frequency21,22. (See
Supplementary Discussion for a comparison of our receptive field analysis to those of
previous studies.)

In the second stage, image identification, fMRI data were recorded while each subject
viewed 120 novel natural images. This yielded 120 distinct voxel activity patterns for each
subject. For each voxel activity pattern we attempted to identify which image had been seen.
To do this, the receptive field models estimated in the first stage of the experiment were
used to predict the voxel activity pattern that would be evoked by each of the 120 images.
The image whose predicted voxel activity pattern was most correlated (Pearson’s r) with the
measured voxel activity pattern was selected.

Identification performance for one subject is illustrated in Fig. 3. For this subject 92%
(110/120) of the images were identified correctly (subject S1), while chance performance is
just 0.8% (1/120). For a second subject 72% (86/120) of the images were identified correctly
(subject S2). These high performance levels demonstrate the validity of our decoding
approach, and indicate that our receptive field models accurately characterize the selectivity
of individual voxels to natural images.

A general visual decoder would be especially useful if it could operate on brain activity
evoked by a single perceptual event. However, because fMRI data are noisy the results
reported above were obtained using voxel activity patterns averaged across 13 repeated
trials. We therefore attempted identification using voxel activity patterns from single trials.
Single-trial performance was 51% (834/1620) and 32% (516/1620) for subjects S1 and S2,
respectively (Fig. 4a); once again, chance performance is just 0.8% (13.5/1620). These
results suggest that it may be feasible to decode the content of perceptual experiences in
real-time7,23.

We have so far demonstrated identification of a single image drawn from a set of 120
images, but a general visual decoder should be able to handle much larger sets of images. To
investigate this issue we measured identification performance for various set sizes up to
1,000 images (Fig. 4b). As set size increased 10-fold from 100 to 1,000, performance only
declined slightly, from 92% to 82% (subject S1, repeated-trial). Extrapolation of these
measurements (see Supplementary Methods) suggests that performance for this subject
would remain above 10% even up to a set size of ~1011.3 images. This is more than 100
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times larger than the number of images currently indexed by Google (~108.9 images; source:
http://www.google.com/whatsnew/, June 4, 2007).

Early visual areas are organized retinotopically, and voxels are known to reflect this
organization14,16,18. Could our results be a mere consequence of retinotopy? To answer this
question we attempted identification using an alternative model that captures the location
and size of each voxel’s receptive field but discards orientation and spatial frequency
information (Fig. 4c). Performance for this retinotopy-only model declined to 10% correct at
a set size of just ~105.1 images, whereas performance for the Gabor wavelet pyramid model
did not decline to 10% correct until ~109.5 images were included in the set (repeated-trial,
performance extrapolated and averaged across subjects). This result indicates that spatial
tuning alone does not yield optimal identification performance; identification improves
substantially when orientation and spatial frequency tuning are included in the model.

To further investigate the impact of orientation and spatial frequency tuning, we measured
identification performance after imposing constraints on the orientation and spatial
frequency tuning of the Gabor wavelet pyramid model (Supplementary Fig. 8). The results
indicate that both orientation and spatial frequency tuning contribute to identification
performance, but that the latter makes the larger contribution. This is consistent with recent
studies demonstrating that voxels have only slight orientation bias1,2. We also find that
voxel-to-voxel variation in orientation and spatial frequency tuning contributes to
identification performance. This reinforces the growing realization in the fMRI community
that information may be present in fine-grained patterns of voxel activity6.

To be practical our identification algorithm must perform well even when brain activity is
measured long after estimation of the receptive field models. To assess performance over
time2,4,6,23 we attempted identification for a set of 120 novel natural images that were seen
approximately two months after the initial experiment. In this case 82% (99/120) of the
images were identified correctly (chance performance 0.8%; subject S1, repeated-trial). We
also evaluated identification performance for a set of 12 novel natural images that were seen
more than a year after the initial experiment. In this case 100% (12/12) of the images were
identified correctly (chance performance 8%; subject S1, repeated-trial). These results
demonstrate that the stimulus-related information that can be decoded from voxel activity
remains largely stable over time.

Why does identification sometimes fail? Inspection revealed that identification errors tended
to occur when the selected image was visually similar to the correct image. This suggests
that noise in measured voxel activity patterns causes the identification algorithm to confuse
images that have similar features.

Functional MRI signals have modest spatial resolution and reflect hemodynamic activity
that is only indirectly coupled to neural activity24,25. Despite these limitations we have
shown that fMRI signals can be used to achieve remarkable levels of identification
performance. This indicates that fMRI signals contain a considerable amount of stimulus-
related information4 and that this information can be successfully decoded in practice.

Identification of novel natural images brings us close to achieving a general visual decoder.
The final step will require devising a way to reconstruct the image seen by the observer,
instead of selecting the image from a known set. Stanley and co-workers26 reconstructed
natural movies by modeling the luminance of individual image pixels as a linear function of
single-unit activity in cat LGN. This approach assumes a linear relationship between
luminance and the activity of the recorded units, but this condition does not hold in
fMRI27,28.
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An alternative approach to reconstruction is to incorporate receptive field models into a
statistical inference framework. In such a framework, receptive field models are used to
infer the most likely image given a measured activity pattern. This model-based approach
has a long history in both theoretical and experimental neuroscience29,30. Recently, Thirion
and co-workers3 used it to reconstruct spatial maps of contrast from fMRI activity in human
visual cortex. The success of the approach depends critically on how well the receptive field
models predict brain activity. The present study demonstrates that our receptive field models
have sufficient predictive power to enable identification of novel natural images, even for
the case of extremely large sets of images. We are therefore optimistic that the model-based
approach will make possible the reconstruction of natural images from human brain activity.

Methods
Stimuli

The stimuli consisted of sequences of natural photos. Photos were obtained from a
commercial digital library (Corel Stock Photo Libraries from Corel Corporation, Ontario,
Canada), the Berkeley Segmentation Dataset (http://www.eecs.berkeley.edu/Research/
Projects/CS/vision/grouping/segbench/), and the authors’ personal collections. The content
of the photos included animals, buildings, food, humans, indoor scenes, manmade objects,
outdoor scenes, and textures. Photos were converted to grayscale, downsampled so that the
smaller of the two image dimensions was 500 px, linearly transformed so that the 1/10th and
99 9/10th percentiles of the original pixel values were mapped to the minimum (0) and
maximum (255) pixel values, cropped to the central 500 px × 500 px, masked with a circle,
and placed on a gray background (Supplementary Fig. 1a). The luminance of the
background was set to the mean luminance across photos, and the outer edge of each photo
(10% of the radius of the circular mask) was linearly blended into the background.

The size of the photos was 20° × 20° (500 px × 500 px). A central white square served as the
fixation point, and its size was 0.2° × 0.2° (4 px × 4 px). Photos were presented in
successive 4-s trials; in each trial, a photo was presented for 1 s and the gray background
was presented for 3 s. Each 1-s presentation consisted of a photo being flashed ON-OFF-
ON-OFF-ON where ON corresponds to presentation of the photo for 200 ms and OFF
corresponds to presentation of the gray background for 200 ms (Supplementary Fig. 1b).
The flashing technique increased the signal-to-noise ratio of voxel responses relative to that
achieved by presenting each photo continuously for 1 s (data not shown).

Visual stimuli were delivered using the VisuaStim goggles system (Resonance Technology,
Northridge, CA). The display resolution was 800 × 600 at 60 Hz. A PowerBook G4
computer (Apple Computer, Cupertino, CA) controlled stimulus presentation using software
written in MATLAB 5.2.1 (The Mathworks, Natick, MA) and Psychophysics Toolbox 2.53
(http://psychtoolbox.org).

MRI parameters
The experimental protocol was approved by the UC-Berkeley Committee for the Protection
of Human Subjects. MRI data were collected at the Brain Imaging Center at UC-Berkeley
using a 4 T INOVA MR scanner (Varian, Inc., Palo Alto, CA) and a quadrature transmit/
receive surface coil (Midwest RF, LLC, Hartland, WI). Data were acquired using coronal
slices that covered occipital cortex: 18 slices, slice thickness 2.25 mm, slice gap 0.25 mm,
field-of-view 128 × 128 mm2. (In one scan session, a slice gap of 0.5 mm was used.) For
functional data, a T2*-weighted, single-shot, slice-interleaved, gradient-echo EPI pulse
sequence was used: matrix size 64 × 64, TR 1 s, TE 28 ms, flip angle 20°. The nominal
spatial resolution of the functional data was 2 × 2 × 2.5 mm3. For anatomical data, a T1-
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weighted gradient-echo multislice sequence was used: matrix size 256 × 256, TR 0.2 s, TE 5
ms, flip angle 40°.

Data collection
Data for the model estimation and image identification stages of the experiment were
collected in the same scan sessions. Two subjects were used: S1 (author T.N., age 33) and
S2 (author K.N.K., age 25). Subjects were healthy and had normal or corrected-to-normal
vision.

Five scan sessions of data were collected from each subject. Each scan session consisted of
five model estimation runs and two image identification runs. Model estimation runs (11
min each) were used for the model estimation stage of the experiment. Each model
estimation run consisted of 70 distinct images presented 2 times each. Image identification
runs (12 min each) were used for the image identification stage of the experiment. Each
image identification run consisted of 12 distinct images presented 13 times each. Images
were randomly selected for each run and were mutually exclusive across runs. The total
number of distinct images used in the model estimation and image identification runs was
1,750 and 120, respectively. (For additional details on experimental design, see
Supplementary Methods.)

Three additional scan sessions of data were collected from subject S1. Two of these were
held ~2 months after the main experiment, and consisted of five image identification runs
each. The third was held ~14 months after the main experiment, and consisted of one image
identification run. The images used in these additional scan sessions were randomly selected
and were distinct from the images used in the main experiment.

Data preprocessing
Functional brain volumes were reconstructed and then coregistered to correct differences in
head positioning within and across scan sessions. Next, voxel-specific response timecourses
were estimated and deconvolved from the time-series data. This produced, for each voxel,
an estimate of the amplitude of the response (a single value) to each image used in the model
estimation and image identification runs. Finally, voxels were assigned to visual areas based
on retinotopic mapping data17 collected in separate scan sessions. (Details on these
procedures are given in Supplementary Methods.)

Model estimation
A receptive field model was estimated for each voxel based on its responses to the images
used in the model estimation runs. The model was based on a Gabor wavelet pyramid1113. In
the model each image is represented by a set of Gabor wavelets differing in size, position,
orientation, spatial frequency, and phase (Supplementary Fig. 2). The predicted response is a
linear function of the contrast energy contained in quadrature wavelet pairs (Supplementary
Fig. 3). Because contrast energy is a nonlinear quantity, this is a linearized model10. The
model was able to characterize responses of voxels in visual areas V1, V2, and V3
(Supplementary Table 1) but it did a poor job of characterizing responses in higher visual
areas such as V4.

Alternative receptive field models were also used, including the retinotopy-only model and
several constrained versions of the Gabor wavelet pyramid model. Details on these models
and model estimation procedures are given in Supplementary Methods.
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Image identification
Voxel activity patterns were constructed from voxel responses evoked by the images used in
the image identification runs. For each voxel activity pattern, the estimated receptive field
models were used to identify which specific image had been seen. The identification
algorithm is described in the main text. See Supplementary Fig. 4 and Supplementary
Methods for details concerning voxel selection, performance for different set sizes, and
noise ceiling estimation. See Supplementary Discussion for a comparison of identification to
the decoding problems of classification and reconstruction.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Schematic of experiment
The experiment consisted of two stages. In the first stage, model estimation, fMRI data were
recorded while each subject viewed a large collection of natural images. These data were
used to estimate a quantitative receptive field model10 for each voxel. The model was based
on a Gabor wavelet pyramid1113 and described tuning along the dimensions of space3,1419,
orientation1,2,20, and spatial frequency21,22. In the second stage, image identification, fMRI
data were recorded while each subject viewed a collection of novel natural images. For each
measurement of brain activity, we attempted to identify which specific image had been seen.
This was accomplished by using the estimated receptive field models to predict brain
activity for a set of potential images and then selecting the image whose predicted activity
most closely matches the measured activity.
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Fig. 2. Receptive field model for a representative voxel
a, Spatial envelope. The intensity of each pixel indicates the sensitivity of the receptive field
(RF) to that location. The white circle delineates the bounds of the stimulus (20° × 20°) and
the green square delineates the estimated RF location. Horizontal and vertical slices through
the spatial envelope are shown below and to the left. These intersect the peak of the spatial
envelope, as indicated by yellow tick marks. The thickness of each slice profile indicates ± 1
s.e.m. This RF is located in the left hemifield, just below the horizontal meridian. b,
Orientation and spatial frequency tuning curves. The top matrix depicts the joint orientation
and spatial frequency tuning of the RF, and the bottom two plots give the marginal
orientation and spatial frequency tuning curves. Error bars indicate ± 1 s.e.m. This RF has
broadband orientation tuning and high-pass spatial frequency tuning. For additional RF
examples and population summaries of RF properties, see Supplementary Figs. 9 11.
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Fig. 3. Identification performance
In the image identification stage of the experiment, fMRI data were recorded while each
subject viewed 120 novel natural images that had not been used to estimate the receptive
field models. For each of the 120 measured voxel activity patterns we attempted to identify
which image had been seen. This figure illustrates identification performance for one subject
(S1). The color at the mth column and nth row represents the correlation between the
measured voxel activity pattern for the mth image and the predicted voxel activity pattern
for the nth image. The highest correlation in each column is designated by an enlarged dot of
the appropriate color, and indicates the image selected by the identification algorithm. For
this subject 92% (110/120) of the images were identified correctly.
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Fig. 4. Factors that impact identification performance
a, Summary of identification performance. The bars indicate empirical performance for a set
size of 120 images, the marker above each bar indicates the estimated noise ceiling (i.e. the
theoretical maximum performance given the level of noise in the data), and the dashed green
line indicates chance performance. The noise ceiling estimates suggest that the difference in
performance across subjects is due to intrinsic differences in the level of noise. b, Scaling of
identification performance with set size. The x-axis indicates set size, the y-axis indicates
identification performance, and the number to the right of each line gives the estimated set
size at which performance declines to 10% correct. In all cases performance scaled very well
with set size. c, Retinotopy-only model versus Gabor wavelet pyramid model. Identification
was attempted using an alternative retinotopy-only model that captures only the location and
size of each voxel’s receptive field. This model performed substantially worse than the
Gabor wavelet pyramid model, indicating that spatial tuning alone is insufficient to achieve
optimal identification performance. (Results reflect repeated-trial performance averaged
across subjects; see Supplementary Fig. 5 for detailed results.)
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