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Abstract
Unraveling the nature of genetic interactions is crucial to obtaining a more complete picture of
complex diseases. It is thought that gene-gene interactions play an important role in the etiology of
cancer, cardiovascular and immune-mediated disease. Interactions among genes are defined as
phenotypic effects that differ from those observed for independent contributions of each gene,
usually detected by univariate logistic regression methods. Using a multivariate extension of
linkage disequilibrium, we have developed a new method, based on distances between sample
covariance matrices for groups of SNPs, to test for interaction effects of two groups of genes
associated with a disease phenotype. Since a disease-associated interacting locus will often be in
linkage disequilibrium with more than one marker in the region, a method that examines a set of
markers in a region collectively can offer greater power than traditional methods. Our method
effectively identifies interaction effects in simulated data, as well as in data on the genetic
contributions to the risk for graft-versus-host disease following hematopoietic cell transplantation.

Keywords
genetic association studies; epistasis; multivariate analysis

INTRODUCTION
Many complex diseases are influenced by both genetic and environmental factors.
Determining the underlying genetic etiology can be difficult, as it may involve single genes
as well as interactions between two or more genes. While initial and ongoing efforts have
centered on disease associations with single genes (a single nucleotide polymorphism (SNP)
or haplotypes/diplotypes of multiple SNPs from single genes or regions), recent interest has
expanded to include examination of gene-gene interactions regardless of their location
within the genome [Cordell, 2009; Chatterjee et al., 2006; Zhao et al., 2006].

The effect of two genes on a disease outcome is considered an interaction if the effect on the
phenotype of one gene depends on the other gene. The scale that is used to model the
genetic effects on the phenotype may sometimes determine whether there is an interaction
[Wang et al., 2010]. For example, a multiplicative interaction in a logistic model may be no
longer an interaction when effects are modeled on an additive scale (see, for example, the
example in section 2 of Kooperberg et al. [2009]). In practice, a gene-gene interaction is
detected by testing for phenotypic effects that differ from those observed when each gene
contributes independently, e.g. departure from additivity in a logistic regression model.
Identifying gene-gene interactions does not just help to explain part of the heritability of a
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phenotype, it also points to pathways involving multiple genes, and therefore increases our
understanding of the biology underlying the phenotype. In this paper we present an example
from allogeneic hematopoietic stem cell transplantation (HCT), where an interaction
between two genes in two genomes, the IL10 gene in the recipient and the IL10RB gene in
the donor, have an interaction effect on Graft Versus Host Disease (GVHD), a well-known
complication of HCT transplantation. This interaction suggests that pathways involving
these two genes are important in understanding GVHD as a complication of HCT.

In most genetic association studies the “causal” SNP is not genotyped, but rather inference
about a functional variant is made indirectly because a SNP that is in linkage disequilibrium
(LD) with the causal SNP will show association with a phenotype. When the causal SNP is
part of an LD group, multiple nearby SNPs may show an association [e.g. Dickson et al.,
2010]. Similarly, we may expect that if there is an interaction effect on a disease of two
causal SNPs, pairs of SNPs in the LD group adjacent to either of the two causal SNPs may
show some association. In a traditional logistic regression analysis, this adjacent LD is not
used as each pair of SNPs is tested separately for possible interactions, so we expect to lose
power if nearby SNPs are not considered. Here we propose to test for interaction effects
between blocks of SNPs, thereby possibly gaining power. In particular, our test can identify
interactions between two genes, where in each gene the “causal” SNP may not be
genotyped, but several other genes are genotyped.

Chatterjee et al. [2006] developed a procedure to identify main effects and interactions of
groups of SNPs simultaneously using the Tukey one degree of freedom test. However, the
goal of [Chatterjee et al., 2006] was to increase the power to identify SNPs that have a
marginal effect using interactions, rather than to identify the interactions themselves. The
same problem was addressed by Wang et al. [2009], who developed a Partial Least-Squares
solution to this problem. Zaykin et al. [2006] studied the related problem of finding
association between a group of SNPs and a phenotype. Similar to what we are proposing in
the current paper, their approach compares the LD between cases and controls, but their
approach is not geared towards identifying interactions. Crosslin et al. [2010] compares the
approaches of Wang et al. [2009] and Zaykin et al. [2006]. Zhao et al. [2006] introduced a
test for the interaction between two unlinked loci and defined interaction as deviation from
penetrance. The disadvantage of this method is that the haplotype cannot be determined with
certainty.

Cordell [2009] contains a comprehensive discussion of methods for identifying gene-gene
interactions. Several approaches using data mining methods have been proposed [e.g.
Ritchie et al., 2003; Ruczinski et al., 2002], as well as methods that first screen marginal
associations to identify the most promising variants or genes to test for interactions [e.g.
Kooperberg and LeBlanc, 2008; Wu et al., 2010; Millstein et al., 2006]. Other approaches
focus on computational efficiency in light of the large number of possible interactions in
GWAS [e.g. Zhang et al., 2010], and some approaches use penalized regression techniques
such as the lasso [e.g. D’Angelo et al., 2009]. Clearly many methods have been used to
identify gene-gene interactions, but it is beyond the scope of this paper to provide a
comprehensive review here.

In this paper we propose a test for identifying gene-gene interactions, where the effect
comes from a group (block) of genotyped variants, for example, all genotyped variants
within a gene. The blocks need not be the same size. Li et al. [2009] attempted to use
principle components of blocks of variants to identify gene-gene interactions. To the best of
our knowledge, no other approach in the literature is designed for this particular problem.
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It is easy to see that if the joint distribution of genotype markers depends on disease status,
the disease status is associated with these markers [Millstein et al., 2006]. As a consequence,
if the covariance matrix of a group of SNPs is different between cases and controls, the
group of SNPs is associated with case-control status. While the reverse is not always true, it
is true, for example, for a single SNP that is in Hardy-Weinberg equilibrium separately
among cases and controls when the minor allele frequency in both groups is smaller than
0.5. In that situation, if the variances for a SNP are the same then the minor allele
frequencies are the same, and there is no association. We cannot use a similar argument for
the correlation matrix.

We can take this argument one level further: if the distribution of two (groups of) SNPs is
each the same among cases and controls, neither of these (groups of) SNP(s) is by itself
associated with disease status. If at the same time the joint distribution of these two (groups
of) SNPs is associated with the disease status, the two (groups of) SNPs together are
associated with the disease status. If neither of these (groups of) SNPs is by itself associated
with disease status, this means that there is an interaction effect of these two (groups of)
SNPs on disease status. This motivates our approach: if the off-diagonal part of a covariance
matrix corresponding to the covariance between two (groups of) SNPs differs between cases
and controls, we conclude that there is an interaction.

To exploit this in our method, we summarize and contrast the difference in LD between
cases and controls. To measure the LD we use the composite LD (CLD), which is
advantageous because it is not necessary to phase the genotype data. There are many
measures to quantify LD. We show that there is a direct relation between CLD and the
covariance matrix of a set of markers. Therefore, if the CLD patterns are different between
cases and controls, we conclude that there is an interaction, making this particular measure
of LD ideal for our purpose. A disease-associated interacting locus will often be in LD with
more than one genotyped marker in the region. Therefore methods like ours that examine a
set of markers in a region collectively can potentially offer greater power than the traditional
method of examining 2-way or 3-way interactions in univariate logistic regression models.

METHODS
LINKAGE DISEQUILIBRIUM AND COMPOSITE LINKAGE DISEQUILIBRIUM

Linkage disequilibrium indicates that particular alleles at nearby sites co-occur on the same
haplotype more often than is expected by chance. Lewontin [1964] defined the gametic LD
coefficient as DAB = pAB−pApB, or the simple difference between the haplotype probability
and the product of the allele frequencies, when data are collected on haplotypes for diallelic
loci. Weir [1996] and Weir & Cockerham [1989] defined the non-gametic digenic
disequilibrium coefficient DA/B = pA/B −pApB, where the slash indicates that the two alleles
occur on different chromosomes. For the phase-unknown situation where random mating
cannot be assumed, these papers introduce the composite linkage disequilibrium (CLD)

In the context of association mapping, Nielsen et al. [2004] presented a direct LD
comparison approach involving two bi-allelic loci and noted that a test that directly
compares the LD between the case and control groups can be a powerful alternative to either
haplotype-based or single marker approaches. They considered only the case of
unambiguous haplotype phase. When the haplotype phase is unknown, computational
algorithms can be used to infer frequencies of haplotypes and, ultimately, to assess LD.
Typically this requires the assumption of Hardy-Weinberg equilibrium (HWE) for the
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haplotypes. Schaid [2004] and Zaykin [2004] showed that LD estimation with use of the
composite linkage disequilibrium approach provides results similar to the haplotype
reconstruction method under HWE, is computationally simpler, and avoids the assumption
of HWE for the haplotypes. Therefore we use CLD rather than LD to characterize the
relation between SNPs.

Following Weir et al. [2004] we show the relationship between LD and CLD as follows. Let
m and n be the number of cases and controls, respectively. Let xijk = 1 if the kth, k = 1, 2,
haplotype in the jth, j = 1, 2, …, p, SNP for case i = 1, 2, …, m, carries major allele A and 0
if it carries minor allele a. The LD between SNPs j and j′ is the covariance of xijk and xij′k
whereas the CLD between SNPs j and j′ is the covariance of

The quantities Xij and Xij′ are the proportions of the alleles a subject in the case group
carries at SNP j and j′. Let X denote the m × p matrix {Xij}. Similarly, define yijk, Yijk, and
Y for the control group, where Y is n × p. Thus, for genotype data we can estimate the CLD
by the sample covariance between the genotypes (Xij, Xij′) without using phase information.
Note that CLD does not require HWE to hold, but when HWE holds, CLD is equal to LD
[Schaid, 2004; Weir et al., 2004, Zaykin 2004]. The CLD does not distinguish between the
two possible phases of the double heterozygotes, so CLD can be defined for SNPs within the
same chromosome (in cis) or between chromosomes (in trans).

TESTS FOR EQUALITY OF BLOCK INTERACTIONS
In order to compare CLDs between two groups of SNPs in cases and controls, rather than
only between single pairs of SNPs, we propose two multivariate statistics that measure
differences between blocks of pairwise CLDs in cases and controls. Let group 1 have p1
SNPs and group 2 have p2 SNPs, where p1 + p2 = p, and let S and T be the (p1 + p2) × (p1 +
p2) sample covariance matrices for the two groups of SNPs for (m) cases and (n) controls,
based on X and Y respectively. Partition S as

(1)

and partition T similarly. Here S11 and S22 are the sample intra-group covariance matrices

for group 1 and for group 2 respectively, and  is the inter-group sample covariance

matrix. Denote the corresponding quantities for the controls as T11, T22, and . Note
that if p1 = p2 = 1, then S12 and T12 both reduce to CLD as defined above.

Let Σ (cases) and Ω (controls) be the population covariance matrices that correspond to S
and T respectively, partitioned according to (1). We propose to test whether the interaction
effects (= covariances) between the two groups of SNPs are different for cases than for
controls, that is, to test equality of the block interactions, i.e., test
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, rather than testing for differences between single pairs of corresponding elements in Σ12
and Ω12.

Let W = (mS + nT)/(m + n) be the pooled estimate of the covariance matrix, and W is
partitioned similarly to S and T (1). We propose a method that is based on the Nagao [1973]
normalized quadratic distance (NQD) and is defined as

applied to S̃ and T̃, where

(2)

Details can be found in Appendix 1. We believe that δ2 is a reasonable statistic for detecting
departure from the null hypothesis H12. Because the distribution of δ2 under the null
hypothesis is not known, we establish the significance levels of this statistics using
permutation tests.

RESULTS
SIMULATION STUDY

We compared our proposed test to tests based on logistic regression (described below) in a
simulation study. Because we wish to test whether multiple SNPs in two genetic regions
have a non-null interaction effect on a phenotype, the univariate logistic regression
approaches discussed in the Introduction are not applicable.

To generate our simulated data we created an artificial population using genotype data
obtained from the HapMap project Caucasian population [The International HapMap
Consortium, 2005]. We used PHASE [Stephens et al., 2001] to estimate haplotypes for
SNPs rs7130285, rs2074040, rs3740878, rs7935586, and rs6485533 (denoted A1, …, A5)
from the EXT2 gene and rs2713813, rs7951391, rs7480010, rs906625, and rs6485316
(denoted B1, …, B5) from the intergenic region of the LRRC4CX2 gene (the haplotypes and
their frequencies are listed in Table I). Randomly paired haplotypes were used to create our
population, so that our data has the same frequencies as in Table I.

We used interaction models developed by Marchini et al. [2005] to assign case and control
status. We denote the models IM1 (for Interaction Model 1), IM2, and IM3. IM1 has main
effects, but no interaction, IM2 has a multiplicative interaction and no main effect, and IM3
has a threshold interaction where the risk is increased if both SNPs have at least one copy of
the minor allele. In each of the two genes we will designate one variant as the causal variant.
Let g1 and g2 be the number of copies of the variant allele for the causal variant in the two
genes. Note that we can write the probability of being a case (D = 1) for each of these three
models in a logistic regression form:
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Here β*,0, β0,* quantify the additive effects, β*,* measures the interactions between two loci,
and β0,0 defines the intercept. The three interaction models are obtained by

IM1: β0,2 = 2β1,0 = β2,0 = 2β0,1, β1,1 = β1,2 = β2,1 = β2,2 = 0

IM2: β0,1 = β1,0 = β0,2 = β2,0 = 0, 4β1,1 = 2β1,2 = 2β2,1 = β2,2

IM3: β0,1 = β1,0, = β0,2 = β2,0 = 0, β1,1 = β1,2 = β2,1 = β2,2.

In our simulations for IM1 we take eβ0,0 = 0.01 in all models, so that each model only has
one parameter β. Note that eβ0,0 = 0.01 corresponds to a moderately rare disease. We show
results for a sample size of 1000 cases and 1000 controls. We examined smaller sample
sizes, and found the results qualitatively similar. In our simulations, we used SNPs A3 and
B3 as the casual SNPs. The minor allele frequencies of A3 and B3 are 0.2303 and 0.3090,
respectively. In our simulations we consider three scenarios.

Case 1: Only A3 and B3 are observed. This is a standard scenario investigated in the
literature, where the SNPs that are interacting are assumed to be observed.

Case 2: We observe A1, …, A5 and B1, …, B5. This is the scenario in which we observe
blocks of SNPs, including the SNPs that we generated, to be causal. In this scenario we
expect some power increase because the additional SNPs are in LD with A3 and B3, which
may be offset by some decrease in power because of multiple comparisons.

Case 3: We observe A1, A2, A4, A5 and B1, B2, B4, B5. We believe that this is the most
interesting scenario, as we do not observe the causal SNP, but observe the interaction
through multiple SNPs that are in LD with the casual SNP. Our methods are specifically
designed with this situation in mind.

We compare three testing methods: the quadratic distance-based statistic (δ2), and statistics
arising from two logistic models (LM1, LM2) in which all SNPs that are considered are
present in the model, coded additively. For LM1 we consider all pairwise interactions
simultaneously, testing them using a likelihood ratio test, and for LM2 we consider each of
the pairwise interactions separately, selecting the most significant one. We ran each
simulation scenario 1, 000 times. For all three methods, significance levels are determined
using 10, 000 permutations of case-control status, separately for each simulation.

The power results for Case 1, when the matrix size is 2 × 2 and equality of a single off-
diagonal covariance pair is tested, are shown in Table II. Note that for this situation the two
logistic regression statistics, LM1 and LM2, are identical. For IM1, where there are additive
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effects, but there is no interaction, we note that all approaches maintain the correct Type 1
error of 5%. It is important to note that this is the case, even if β01 ≠ 0, as formally a
permutation test like the one we use tests whether there is any association between the genes
and the disease. However, our test statistic is designed to only show an effect when there is
an interaction effect, and not when individual genes have an effect on the phenotype.

For IM2, where there is a multiplicative interaction, and IM3, where there is an interaction
with threshold (dominant × dominant) effects, all approaches have approximately the same
power, which, for Case 1, is according to our expectation. After all, this is the situation in
which the “blocks” consist of a single SNP, and the logistic regression is correct.

The power results for Case 2, when the matrix size is 10 × 10 and we test equality of the two
off-diagonal 5 × 5 sub-matrices, are shown in Table III. As in Case 1, all approaches
maintain the correct Type 1 error. For this case we note that for both IM2 and IM3, our
proposed test statistic, δ2, has considerably more power than both logistic regression
statistics, which have approximately the same power. Compared to Case 1 we notice that
both logistic regression statistics have less power because of the larger multiple comparisons
penalty (note that we correct using a permutation approach, and not using a Bonferoni
correction, which would have led to even more loss of power for logistic regression). On the
other hand, the power of δ2 increases from Case 1 to Case 2, because this statistic exploits
the CLD among entire block of SNPs. This suggests that even if the causal SNP is
genotyped (or imputed) it is still beneficial to include neighboring SNPs, as long as they
have some LD, in testing for interactions. Each of the neighboring SNPs carries some signal,
as they are weakly correlated with the causal SNP.a Our statistic δ2 “adds” those weak
signals to the signal of the causal SNP to strengthen that signal somewhat, as there is no
multiple comparisons penalty with a single test.

The power results for Case 3, when the matrix size is 8 × 8 and equality of the two off-
diagonal 4 × 4 sub-matrices is tested, are shown in Table IV. For this case the causal SNPs
are not part of the data that are analyzed. As a result, the logistic regression methods lose
almost all the power they had in Case 2, as each of the individual SNPs that are tested are
only weakly correlated with the causal SNPs. Our proposed statistic δ2 also loses power but
the loss is much smaller, and this test still maintains reasonable power, especially for IM2,
where the power is not much lower than in Case 1. This is the goal of our method, as in most
real situations the causal SNP is not genotyped, and any signal that we are seeing is because
of correlation with nearby (tag-)SNPs. We repreated the simulation for Case 3 (Table IV)
with data sets of 3000 cases and controls (results not shown). Naturally the power of all
approaches is better, but the general pattern that δ2 substantially outperforms logistic
regression remains the same.

To examine whether the results observed for Case 3 depend on either the LD among the
markers or the block length we carried out an additional simulation study. For this
simulation we selected blocks of length 5, length 7 and length 21 out of the real data on
Graft Versus Host Disease, which is used in the next section, so that the average CLD (r)

between each of the  pairs of SNPs has a pre-specified value of 0.2,
0.3, …, 0.8 (for the blocks of length 20 we only found situations with average LD ≤ 0.5).
For those blocks we reconstruct the haplotypes, and then generate a population and an
interaction signal using IM2 with the interaction β = 2 using the middle SNP of two blocks
of the same length and the same average CLD identical to the other simulations. As in Case
3 we then remove this SNP from our analysis. Thus we have simulations with p1 = p2 = 4,
with p1 = p2 = 6, and with p1 = p2 = 20. As before we generate 1000 cases and 1000 controls
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for each of 1000 simulation runs and base the P-values on 10,000 permutations. The results
are shown in Table V.

We note that the results in Table V confirm those in Table IV: δ2 is much more powerful
than the logistic regression approaches. The gain is present for all values of r and all block
sizes. The gains are the strongest for the larger block size, which is to be expected as δ2 is
better able to exploit the additional variants. The apparent irregularity in this table with
respect to the correlation r is caused by the fact that we only fixed the average correlation,
and that minor allele frequencies differed between blocks with one value of the correlation
and blocks with another value of the correlation. We repeated these simulations also using
model IM3 and different values of β. The conclusions are identical (results not shown).

AN APPLICATION TO DATA ON GRAFT VERSUS HOST DISEASE
The IL10 and IL10RB genes are involved in immune regulation and suppression. A genetic
polymorphism in the promoter region of IL10 has a significant association with the risk of
graft versus host disease (GVHD) after allogeneic hematopoietic stem cell transplantation
(HCT) with human leukocyte antigen (HLA) identical sibling donors. In a previous study of
SNPs among 953 HLA-identical sibling transplants [Lin et al., 2005], the presence of the
IL10 /-592*A allele in the patient or the IL10RB*G allele in the donor was significantly
associated with lower risk of severe acute GVHD and non-relapse mortality. It is thought
that IL10 may facilitate immune tolerance after allogeneic transplantation. Higher IL10
production by ex-vivo stimulated recipient cells before transplantation is associated with
reduced risk of acute GVHD and non-relapse mortality [Holler et al., 2000]. In this example
our goal was to see whether an interaction between IL10 and IL10RB has a synergistic
effect on the risk for GVHD. We tested this hypothesis using a dataset with two groups, one
of which developed GVHD (case) while the other did not (control), with a sample size of
350 for each group. These data originated from a study investigating how genetic diversity
among patients and donors contributes to differences in individual responses to tissue injury,
inflammation, and severity of acute GVHD. For IL10 five SNPs (rs4845140, rs3024505,
rs4844553, rs4311892, and rs1554286) were genotyped in the patients and for IL10RB, five
SNPs (rs2248118, rs2244305, rs2834173, rs2850001, and rs1058867) were genotyped in the
donors; thus (p1 = p2 = 5) and the corresponding covariance matrix is 10 × 10. Note that the
SNPs that were genotyped do not include the same as those studied in [Lin et al., 2005], but
all SNPs are in the same haplotype blocks. In the combined data each of the pairwise
correlations between an IL10 and an IL10RB is smaller than 0.1.

We applied our proposed statistics δ2 and the two logistic regression methods, LM1 and
LM2 for testing whether there is an interaction effect of IL10 and IL10RB on GVHD. The
statistic δ2 results in off-diagonal blocks that are statistically significantly different between
cases and controls with p = 0.0264. The results for LM1 and LM2 are barely statistically
significant, with p = 0.0483 and p = 0.0465 respectively. Thus, our approach gives stronger
evidence that there is an interaction with likely biological significance.

DISCUSSION
Classical methods for identifying disease-susceptibility genes focus on one genomic area or
locus at a time. They have worked well for Mendelian disorders but appear insufficient for
complex traits because of the presumed multiplicity of genes involved. To facilitate the
search for sets of SNPs jointly associated with a disease phenotype, we have developed a
new statistic for testing for interaction effects between two blocks of SNPs—two genes—
based on defining a distance between sample covariance matrices.
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A test for equality of the off-diagonal block corresponding to the covariance between the
two genes of the two matrices becomes a test of an interaction effect between the two genes
on case-control status. Our proposed method avoids the need for a multiple comparisons
correction as we have a single test for interaction. We believe that avoiding multiple
comparisons is a main reason why our test offers greater power than the traditional method
of individual pairwise testing of SNPs.

Simulation results reveal that our method is more powerful than traditional logistic
regression-based methods. For the matrix size 2 × 2, where the SNPs that are interacting are
observed, the power results for the proposed statistic δ2 and logistic regression behave
approximately equally. When we consider multiple SNPs in a gene, and assume that the true
causal interacting SNPs are among them, the power is higher for δ2 than for logistic
regression (Table III). The scenario in Table IV is the most interesting one, as we eliminate
the interaction SNPs for the analysis. Again, here we see that power is much larger for δ2

than logistic regression. In this case we do not observe the causal SNP, but rather the
interaction through multiple SNPs that are in LD.

We can easily apply our proposed methods to explore interactions between two loci, where
there is gene-gene independence in the controls (in a population with a rare disease), as we
would simply set the off-diagonal sub-matrix for the controls equal to zero. Initial
simulations suggest this significantly improves power. We are currently working on an
extension of our methods that will allow us to test whether many genes—a network of SNPs
—associate with a phenotype by comparing two complete covariance matrices. We note
here that for all our simulations we generated the interaction effect using a logistic model.
The logistic model was, however, not used for identification of the interaction, suggesting
some robustness of our approach for the model of the interaction.

As we argued in the introduction, if the covariances between gene 1 and gene 2 are different
between cases and controls, there must be an interaction effect of genes 1 and 2 on the
disease outcome. An advantage of logistic regression for the situation when both genes have
a single marker is that the coefficient in the logistic model is the log of the odds ratio. There
is naturally a relation between the difference in the covariances and the magnitude of the
odds ratio. See the Appendix 2 for details. We note, however, that for the situation where the
genes have multiple markers that are in LD with each other, the multiple estimates of
interaction parameters in the logistic model have a higher variance, and may be hard to
interpret. Of course if an interaction effect is identified, a follow-up study may be warranted
to characterize such an interaction.

To evaluate performance for detection of interactions between two loci, the proposed δ2

statistic was applied to data from hematopoietic cell transplantation (HCT) patients and
donors. In this example we wished to distinguish between groups of patients, for example
those who developed GVHD and those who did not. Our study population, consisting of
paired patients and donors, provided a unique opportunity to assess genome-genome
interaction between recipient and donor genomes [Spilianakis et al., 2005]. Using our
methods, we confirmed a statistical interaction between these two unlinked loci, a beautiful
example of two different chromosomes showing a statistical interaction that aligns with a
known biological interaction between different cells, in this case, from two different
individuals. This suggests that the pathway involving both the IL10 and IL10RB genes is
likely an important player in GVHD.

While computing test statistics for many blocks of SNPs is computationally intensive, it is
reasonably achievable by spreading computations over clusters of computers. In practice we
would test for interactions between a limited number of blocks of interest, either because
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there is biological interest (as was the case for our IL10 example), or because these blocks
suggest the strongest marginal effects (using a similar approach as Kooperberg and LeBlanc
[2008]). Each of these limited numbers of blocks could then be compared with the complete
genome in a sliding window fashion. A computationally intense approach would be to carry
out permutation tests separately for each possible interaction. Rather than separate
permutation tests, we would first “rank” all tests, and only carry out the tests for interactions
with the largest statistics, for example using the Holm step down procedure [Drton and
Perlman, 2008]. The Box approximation for normally distributed data can be applied to
obtain the asymptotic null distribution [Anderson, 2003]. Software implementing our
methods will be made available in an R-package.

Our methods can be extended to test for gene-environment interactions. Here, instead of
comparing the covariance between two blocks of SNPs, we compare the covariance between
a block of SNPs and a block of environmental variables. We can then apply δ2 to detect
interaction differences between cases and controls. An advantage of this approach is that
multi-level categorical environmental variables (e.g. smoking, which is often coded using
two levels, current and former, compared to a reference level of none) can be considered as
a block of environmental variables, just like a block of SNPs in one gene is considered
jointly. We can also for environmental, non-genetic, variables (or additive components to
control stratification, e.g. Price et al. [2006]) as is typically done in traditional regression
models. We consider the following approach. Before applying our method, we first regress
each of the SNPs considered for the tests, separately on all environmental variables. Then
we apply our methods to compare the covariance matrices of the residuals from these
regressions. Another possible extension of our approach is to extend the methods to
interactions involving three or more blocks of SNPs by replacing S̃ and T̃ in equation (2) by
a partition involving multiple blocks. A limitation of our approach is that it does not easily
generalize to continuous phenotypes. Another limitation is that, unlike for logistic
regression, it does not easily generalize to third and higher order interactions. However, we
note that the power to identify higher order interactions is very limited, and in fact, we are
not aware of any higher order interactions that have been successfully replicated in other
studies.

It is now common practice to impute untyped variants in genome-wide studies. If an untyped
variant that is imputed well is in fact the single causal variant in a gene contributing to an
interaction, testing this variant may be a powerful approach to identify the interaction.
However, as we saw in Case 2 of our simulation study, including additional variants that are
in LD with the causal variant improves the power of a study. In addition, not all variants can
be imputed well (e.g. variants with low minor allele frequency), and our approach is also
applicable to smaller (candidate gene) studies, where there may not be enough typed
variants to carry out an imputation.

Novel genomic tools and computational methods have led to a dramatic increase in the rate
of discovery of disease genes. While traditional association studies have sought single
marker or single gene associations, phenotypes result from complex interactions among
large numbers of genes. Extensions of the statistical methods we have proposed will allow
the investigation of relationships among groups of SNPs in many genes and can discriminate
between the genetic signatures of distinct groups of subjects. By identifying interactions
among networks of genes, we may further our understanding of how the collective behavior
of genes gives rise to phenotypes as well as our ability to predict disease outcome. Detecting
interactions among disease associated SNPs may reveal basic biological mechanisms that
are critical to understanding development and progression of a disease state [Hartwell et al.,
2006], and in this way provide a powerful and promising foundation for the development of
novel diagnostics and therapeutic strategies.
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APPENDIX 1

DERIVATION OF THE TEST STATISTIC
The Nagao [1973] normalized quadratic distance (NQD) is modified as follows:

applied to S̃ and T̃, where

where W = (mS + nT)/(m + n). Here W11 (respectively W22) is the pooled estimate of Σ11
(Σ22) if Σ11 = Ω11 (Σ22 = Ω22) based on S11 and T11 (S22 and T22). To ensure that W is
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nonsingular with probability 1, it is only required that m + n ≥ p1 + p2 ≕ p. Note too that W
= (mS̃ + nT̃)/(m + n).

In general, neither S̃ nor T̃ need be positive definite. Nonetheless, δ2 is a valid measure of
distance between S12 and T12 if Σ11 = Ω11 and Σ22 = Ω22 because

Thus δ2 = 0 iff S12 = T12. Furthermore we have the equivalent expressions

where, using symmetric matrix square roots,

Note that L is a symmetric matrix and that

where l1 ≥ ⋯ ≥ lp are the ordered eigenvalues of L, equivalently, the ordered eigenvalues of

APPENDIX 2

AN ADDITIONAL SIMULATION
This is a small simulation to demonstrate the relation between the differences in the
covariance and the log-odds parameters in a logistic regression model.
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Consider the 2 × 2 covariance matrix . We generated bivariate predictors for
100,000 controls from a multivariate normal distribution with mean 0 and covariance matrix
C(0) and for 100,000 cases from a multivariate normal distribution with mean 0 and
covariance matrix C(σ), for −1 < σ < 1. We then carried out a logistic regression of case-
control status against the two predictors and their interaction. We repeated this calculation
with control covariance matrix of C(0.3). In Figure I we show the relation between σ and β
in these logistic models. We note that there is a clear relation between these two parameters,
which may or may not appear linear.
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Fig 1.
Relation between the difference in the covariance and a logistic regression parameter.
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