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Aerobiology plays a fundamental role in the transmission of infectious diseases. As infectious disease and infection control
practitioners continue employing contemporary techniques (e.g., computational �uid dynamics to study particle �ow, polymerase
chain reaction methodologies to quantify particle concentrations in various settings, and epidemiology to track the spread of
disease), the central variables affecting the airborne transmission of pathogens are becoming better known. is paper reviews
many of these aerobiological variables (e.g., particle size, particle type, the duration that particles can remain airborne, the distance
that particles can travel, andmeteorological and environmental factors), as well as the common origins of these infectious particles.
We then review several real-world settings with known difficulties controlling the airborne transmission of infectious particles (e.g.,
office buildings, healthcare facilities, and commercial airplanes), while detailing the respective measures each of these industries is
undertaking in its effort to ameliorate the transmission of airborne infectious diseases.

1. Introduction

Exposure to airborne pathogens is a common denominator
of all human life [1]. With the improvement of research
methods for studying airborne pathogens has come evidence
indicating that microorganisms (e.g., viruses, bacteria, and
fungal spores) from an infectious source may disperse over
very great distances by air currents and ultimately be inhaled,
ingested, or come into contact with individuals who have
had no contact with the infectious source [2–5]. Airborne
pathogens present a unique challenge in infectious disease
and infection control, for a small percentage of infectious
individuals appear to be responsible for disseminating the
majority of infectious particles [6]. is paper begins by
reviewing the crucial elements of aerobiology and physics
that allow infectious particles to be transmitted via airborne
and droplet means. Building on the basics of aerobiology, we
then explore the common origins of droplet and airborne
infections, as these are factors critical to understanding
the epidemiology of diverse airborne pathogens. We then
discuss several environmental considerations that in�uence
the airborne transmission of disease, for these greatly impact

particular environments in which airborne pathogens are
commonly believed to be problematic. Finally, we discuss air-
borne pathogens in the context of several speci�c examples:
healthcare facilities, office buildings, and travel and leisure
settings (e.g., commercial airplanes, cruise ships, and hotels).

2. Aerobiology

Aerobiology is the study of the processes involved in
the movement of microorganisms in the atmosphere from
one geographical location to another [7], including the
aerosolized transmission of disease. e aerosolized trans-
mission of disease occurs through both “droplet” and “air-
borne” means. Droplet transmission is de�ned as the trans-
mission of diseases by expelled particles that are likely to
settle to a surface quickly, typically within three feet of the
source [8–10]. us, for example, in order for an infection to
be caused by droplet transmission, a susceptible individual
must be close enough to the source of the infection (e.g.,
an infected individual) in order for the droplet (containing
the infectious microorganism) to make contact with the
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susceptible individual’s respiratory tract, eyes, mouth, nasal
passages, and so forth [11]. In contrast, airborne transmission
is de�ned as the transmission of infection by expelled
particles that are comparatively smaller in size and thus can
remain suspended in air for long periods of time. Airborne
particles are particularly worrisome simply because they
can remain suspended in the air for extended periods of
time. Seminal studies from the 1930s and 1940s [8, 12, 13]
demonstrated that airborne particles can remain airborne for
as long as one week aer initial aerosolization, and suggested
further [13] that these particles likely remained airborne for
much longer. ey thus potentially expose a much higher
number of susceptible individuals at a much greater distance
from the source of infection [10, 11, 14, 15]. Depending
on environmental factors (e.g., meteorological conditions
outdoors and �uid dynamic effects and pressure differentials
indoors), airborne particles are easily measured 20m from
their source [16]. ese factors would be of no concern but
for the fact that airborne bacterial, viral, and fungal particles
are oen infectious [17].

A complicating factor is the heterogeneous nature of
droplet and airborne releases, which generally consist of
mixtures of both single andmultiple cells, spores, and viruses
carried by both respiratory secretions and inert particles
(e.g., dust) [17]. e origins of droplet or airborne infectious
microorganisms are also heterogeneous: infectious particles
may be generated from, for example, infectious persons,
heating, ventilation, and air conditioning (HVAC) systems,
and cooling tower water in hospitals [17]. All of these sources
can produce airborne infectious particles [17]. Furthermore,
Aspergillus fumigatus spores are common in dusts during
outdoor and indoor construction, in air conditioners, ceiling
tile, carpet, and other infectious aerosol carriers generated
from dry sources; theymay absorb water in the airborne state
but still measure in the infectious particle size range [17].
Also, droplet and airborne transmission are not mutually
exclusive. at is, independent of origin, particles carrying
infectious microorganisms do not exclusively disperse by
airborne or droplet transmission, but by both methods
simultaneously [11].

Transmission of infectious disease by the airborne route
is dependent on the interplay of several critical factors,
primarily particle size (i.e., the diameter of the particle) and
the extent of desiccation [17]. e literature suggests that a
particle’s size is of central importance in determiningwhether
it becomes and remains airborne and infectious [18–23].
Simply illustrated, large particles fall out of the air and small
particles remain airborne. e World Health Organization
uses a particle diameter of 5𝜇𝜇mtodelineate between airborne
(≤5 𝜇𝜇m) and droplet (>5 𝜇𝜇m) transmission [17, 24, 25].
How particle size affects spatial distribution in the human
respiratory tract has been studied extensively. Some studies
suggest that particles over 6 𝜇𝜇m tend to mainly deposit in the
upper airway, while particles under 2 𝜇𝜇m deposit mainly in
the alveolar region [26]. Other studies conclude that particles
under 10 𝜇𝜇m can penetrate deeper into the respiratory tract,
and particles over 10 𝜇𝜇m are more likely to deposit on the
surfaces of the upper airways and are less likely to penetrate
into the lower pulmonary region [27–35].

One of the challenges facing practitioners, particularly in
an enclosed building, is that even large-sized droplets can
remain suspended in air for long periods [17]. e reason
is that droplets settle out of air onto a surface at a velocity
dictated by their mass [17]. If the upward velocity of the air
in which they circulate exceeds this velocity, they remain
airborne.Hence, droplet aerosols up to 100 𝜇𝜇mdiameter have
been shown to remain suspended in air for prolonged periods
when the velocity of air moving throughout a room exceeds
the terminal settling velocity of the particle [17].

Another critical variable is the rate at which particles des-
iccate. Even large, moisture laden droplet particles desiccate
rapidly. In his seminal paper, Wells showed that particles
begin desiccating immediately upon expulsion into the air
and do so rapidly: particles up to 50𝜇𝜇m can desiccate com-
pletely within 0.5 seconds [8]. Rapid desiccation is a concern
since the smaller and lighter the infectious particle, the longer
it will remain airborne. Hence, even when infectious agents
are expelled from the respiratory tract in a matrix of mucus
and other secretions, causing large, heavy particles, rapid
desiccation can lengthen the time they remain airborne (the
dried residuals of these large aerosols, termed droplet nuclei,
are typically 0.5–12 𝜇𝜇m in diameter [17]). Of further concern,
very large aerosol particles may initially fall out of the air only
to become airborne again once they have desiccated [17].

One reasonwhy particle size is such an important variable
in airborne and droplet disease transmission is that the ability
of an infectious disease to cause an infection depends on the
concentration of the microorganism, the human infectious
dose, and the virulence of the organism [17]. Humans can
acquire devastating infectious diseases through exposure to
very low levels of infectious particles. For example, In�uenza
A is believed to transmit via airborne and droplet means, and
the infectious dose of In�uenzaA for humans is very low [62].
Additionally, the infectious dose for Francisella tularensis is
reported to be a single organism [17]. Only a few cells of
Mycobacterium tuberculosis are required to overcome normal
lung clearance and inactivation mechanisms in a susceptible
host [17].

3. CommonOrigins of Droplet and
Airborne Infections

e origins of infections resulting from droplet and air-
borne transmission are at the intersection of the clinical
manifestation of disease, the site of infection, the presence
of a pathogen, and the type of pathogen [11]. us, when
investigating the origins of droplet and airborne infections,
there are several well-known primary sources of infectious
particles (see Table 1): vomiting, toilet �ushing (i.e., toi-
let water aerosolization), sneezing, coughing, and talking.
Moreover, toilet bowls, the water in them, and toilet seats
may harbor infectious particles aer the initial �ush, making
additional aerosolization of infectious particles possible with
additional �ushes for as long as 30 minutes aer the initial
�ush [63]. Particle desiccation, discussed above, is important
in this context. A single sneeze, for example, generates as
many as 40,000 large droplet particles; most will desiccate
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T 1: Droplet or airbornemicroorganisms released from various
activities.

Activity Approximate particle count Units
Sneezing [36] 40,000 Per sneeze
Bowel evacuation [37] 20,000 Per event
Vomiting [38] 1,000 Per event
Coughing [36] 710 Per cough
Talking [36] 36 Per 100 words

immediately into small, infectious droplet nuclei [17], with
80% of the particles being smaller than 100 𝜇𝜇m [64].

e transmission of infectious diseases via airborne or
droplet routes may also depend on the frequency of the
initiating activity. For example, while a single sneeze may
produce more total infectious particles than a cough [11, 28,
65, 66], Couch et al. reported that coughing is more frequent
than sneezing during infection with Coxsackievirus A [67].
is �nding suggests that coughing is amore likelymethod of
airborne transmission for this disease than sneezing [67]. As
coughing is also a common symptom of in�uenza infection
[68, 69], it may also contribute to the airborne transmission
of this pathogen.

Finally, infectious individuals are not always the imme-
diate source of airborne infectious particles. Many people
spend considerable time in office buildings, for example,
and as a result become exposed to airborne pathogens
that originate from nonhuman sources (e.g., molds, toxins
produced by molds, pollen, pet dander, and pest drop-
pings) [70–77]. e health effects associated with naturally
occurring indoor biological air pollutants include disease,
toxicoses, and hypersensitivity (i.e., allergic) diseases [70–
77]. In addition, exposure to indoor biological air pollutants
has been associated with “sick building syndrome,” a set of
nonspeci�c symptoms that may include upper-respiratory
symptoms, headaches, fatigue, and rash and “appear to be
linked to time spent in a building, but no speci�c illness or
cause can be identi�ed.” [78].

4. Environmental Considerations

While the airborne transmission of disease depends on
several physical variables endemic to the infectious particle,
environmental factors substantially in�uence the efficacy of
airborne disease transmission. e environmental factors
most oen cited as modifying the airborne transmission of
disease are temperature and relative humidity [17]. Together,
they help determine whether or not an airborne particle
can remain infectious [17]. For example, the size of infec-
tious particles can change depending on relative humidity
and temperature (i.e., factors that in�uence desiccation or
hygroscopicity). An added complication is the fact that
temperature and humidity in�uence viral, bacterial, and
fungal particles differently [17].

Temperature is an important factor affecting virus sur-
vival [79, 80]. Generally, as temperature rises, virus sur-
vival decreases [79]. For example, low temperatures (i.e.,
44.6∘F–46.4∘F) have been suggested to be ideal for airborne

in�uenza survival, with survival decreasing progressively at
moderate (i.e., 68.9∘F–75.2∘F) and high temperatures (i.e.,
>86∘F). is relationship holds across a range of relative
humidities (i.e., 23%–81%) [81]. In�uenza has also been
shown to be transmissible via airborne vector under cold,
dry conditions [82]. While relative humidity is recognized
to be a factor in the viability of airborne and droplet viral
transmissions [79, 80], the exact relationship is presently not
well understood. For example, the report of Arundel et al.
thatminimal survival for both lipid-enveloped andnon-lipid-
enveloped viruses occurs at relative humidities between 40%
and 70% [82] contrasts with that for in�uenza noted above.

In general, bacteria are more resistant to temperature
than viruses [83, 84]. Temperatures above 75.2∘F are required
to reduce airborne bacterial survival [83, 84]. is tem-
perature relationship has been found with gram-negative,
gram-positive, and intracellular bacteria: Pseudomonas sp.
[83, 84], Pasteurella sp. [85], Salmonella sp. [86], Serratia
sp. [87], Escherichia sp. [87–89], Bacillus sp. [87], Bordetella
sp. [90], Chlamydia sp. [91], and Mycoplasma sp. [92]. e
survival of aerosolized gram-negative bacteria (including
Pseudomonas sp., Enterobacter sp., and Klebsiella sp.) has
been reported to be greatest at high relative humidity and
low temperature [93]. However, available data on the effects
of relative humidity on the survival of airborne bacteria are
thus far inconsistent. For example, airborne gram-negative
bacteria (e.g., E. coli, Salmonella sp., etc.) are reported not
to survive well at increased relative humidity [94, 95], while
some airborne gram-positive bacteria (Staphylococcus albus,
Streptococcus haemolyticus, Bacillus subtilis, and Streptococ-
cus pneumoniae (type 1)) survive poorly at intermediate
relative humidities [94–96]. Determining the rates of survival
of airborne bacteria appears to be more complicated than
with viruses [97, 98]. Even bacteria within the same structural
classi�cation (e.g., gram-negative) may vary in how they
respond to different changes in temperature and relative
humidity [79].

For fungi, extensive studies have characterized the levels
of both indoor and outdoor airborne fungi and their spores
[99, 100]. More than viruses or bacteria, airborne fungi
and their spores have been suggested to have the potential
to enter a building that uses natural ventilation. Certain
species (e.g., Aspergillus sp.) are also well-known, potentially
life-threatening airborne contaminants when introduced to
immunocompromised patients (such as in a healthcare facil-
ity) [99]. Other fungi hazardous to the immunocompromised
include Blastomyces sp., Coccidioides sp., Cryptococcus sp.,
and Histoplasma sp. [100]. Even in healthy people, individu-
als working consistently in indoor environments (such as an
office or school) have shown hypersensitivity reactions such
as rhinitis, sinusitis, or asthma in response to fungi exposure
[79]. Relatively few laboratory studies have examined the
airborne transmission of fungi and their spores in relation
to temperature and relative humidity. Most data relating
these variables to airborne fungi viability have been obtained
in their natural environments [79]. Nonetheless, the results
of such studies suggest a seasonal variation in airborne
fungal and spore concentrations associated with common
environmental conditions, including ambient temperature,
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relative humidity, precipitation, and wind speed [97, 98, 101].
Generally, fungi and their spores appear to be more resilient
than viruses and bacteria, being able to withstand greater
stresses due to dehydration and rehydration, as well as UV
radiation [97, 98, 101].

Given the diversity of viruses and bacteria that can spread
via airborne or droplet means (see Table 2), an understand-
ing of aerobiology, typical origins of droplet and airborne
infections, and how different environmental factors affect
airborne and droplet particles is critical to any discussion
of the amelioration or mitigation of infectious airborne and
droplet particle transmission.

ere are two principal challenges when working to
ameliorate or mitigate the airborne transmission of infec-
tious particles indoors: preventing in�ltration and preventing
transmission. We discuss the �rst in the context of office
buildings and the latter in the context of healthcare facilities
(both below).

5. Airborne Pathogens in an Office
Building Setting

e principal approach to limiting airborne pathogens in
an office building setting is the prevention of pathogen
introduction (i.e., preventing in�ltration) [102, 103]. Occu-
pants of office and commercial buildings are exposed to
airborne particles of all kinds. Routes of in�ltration include
the building’s occupants, who unintentionally introduce
airborne infections they harbor, the intentional introduction
of dangerous biological agents, and the accidental entrance
of viruses, bacteria, allergens, and molds (e.g., through an
open door or window) [102, 103]. While buildings can
be commissioned or recommissioned for con�guration so
that their occupants have reduced or limited exposure to
airborne particles, many commercial buildings are not so
con�gured or maintained [103]. As a result, the majority of
people in high occupancy buildings are continually exposed
to infectious microorganisms [103].

e current common denominator affecting the trans-
mission and/or reduction of transmission of airborne par-
ticles in a building is its HVAC system. HVAC systems are
intended to provide for the health, comfort, and safety of
occupants by maintaining thermal and air quality conditions
that are acceptable to the occupants [104, 105] through
energy-efficient and cost-effective methods under normal
conditions [106]. And, to the extent possible, they are
expected to be responsive to hazardous exposures under
extraordinary conditions [107]. A typical HVAC system
has three basic components: (1) outdoor air intake and
air exhaust ducts and controls, (2) air handling units (i.e.,
systems of fans, heating and cooling coils, air �lters, and con-
trols), and (3) air distribution systems (i.e., air ducts, diffusers
and controls, return and exhaust air collectors, grilles, and
registers, return and exhaust air ducts and plenums) [108].
HVAC systems perform multiple functions simultaneously,
including controlling three known central variables in the
airborne transmission of infectious particles: temperature,
relative humidity, and air currents.

T 2

Pathogens transmitted via
droplet means

Pathogens transmitted via
airborne means

Bordetella pertussis [39] Mycobacterium tuberculosis
[40–43]

In�uenza viruses [44] Rubeola virus [45]
Adenoviruses [46] Varicella zoster Virus [47]
Rhinoviruses [48] Variola viruses [25]
Mycoplasma pneumoniae [49] In�uenza viruses [47, 50]
SARS-associated coronavirus
[51–53] Rhinoviruses [48]

Streptococcus pyogenes [54] Norovirus [55]
Neisseria meningitidis [56–58] Rotavirus [59]
Respiratory syncytial virus
(RSV) [25] Aspergillus sp. [25]

S. aureus [25]

e introduction of airborne infectious agents into an
office or commercial building varies with the microorganism
[70]. Bacteria, molds, and allergens can easily enter a building
through an HVAC air intake, spreading throughout via
the air-handling system [102]. Building materials, carpets,
clothing, food, pets, and pests are also known sources of
introduction of airborne particles into an office or commer-
cial building [102]. Molds and fungi represent an additional
challenge, as they can grow in damp or wet places (e.g., cool-
ing coils, humidi�ers, condensate pans, and �lters) and then
serve as a continued source of contamination throughout
the building. Bacteria and mold species are also known to
grow in places where water has collected (e.g., ceiling tiles,
carpeting, and insulation), and serve as a continuing source
of contamination [102]. Viruses that are spread easily via
airborne transmission (e.g., In�uenza A) can be brought into
a building by infected individuals and potentially enter the
return air system and be spread throughout a building by
the HVAC system [102]. Such infected individuals may show
no symptoms and thus hamper infection control measures
(e.g., 30%–50% of humans infected with In�uenza A show no
symptoms [63]). In general, however, it should be noted that
the extent to which HVAC systems contribute to the airborne
transmission of disease has not been quanti�ed [102].

A working group from the UPMC Biosecurity Center
(Baltimore, M�, USA), including experts in air �ltration,
building ventilation and pressurization, air conditioning and
air distribution, biosecurity, building design and opera-
tion, building decontamination and restoration, economics,
medicine, public health, and public policy, concluded in 2005
that there are seven actionable items building owners and
operators can undertake to immediately reduce the risk of
building occupants to airborne particles [103, 109]. ey
are (1) to minimize �lter bypass by sealing, caulking, and
gasket �lter cartridges, retainer banks, and tracking, (2) to
commission buildings during design and construction, and
recommission routinely to ensure that ventilation systems are
operating as intended, (3) to increase air �ltration to themax-
imum economically justi�able M�RV (Minimum �fficiency
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Reporting Value, a rating of air �lter effectiveness) level, (4)
to maintain �lter systems by conducting regular inspections,
(5) to ensure that HVAC maintenance staff has appropriate
training to operate andmaintain the HVAC system, (6) when
economically feasible, tighten the building envelope to reduce
the in�ltration rate, and (7) when economically feasible,
pressurize the building to reduce the in�ltration rate.

6. Airborne Pathogens in a Healthcare
Facility Setting

While healthcare facilities are subject to the same infectious
challenges common to all office and commercial buildings,
they face an additional, unique challenge: high density pop-
ulations of potentially contagious and immunocompromised
people.is fact presents a unique challenge regarding infec-
tion control, as all respiratory pathogens can cause hospital-
acquired infections [60]. In hospitals especially, viruses and
bacteria spread easily via airborne transmission [62].

While recommendations for hospital hygiene include
hand, instrument, and surface hygiene, even outstanding
hygiene protocols for these vectors do nothing to stem
the transmission of infectious airborne particles [63]. Not
surprisingly, hospital-acquired infections have become ubiq-
uitous [110], and healthcare facilities are now a common
source for highly drug-resistant pathogens [111]. Adding to
the problem is the fact that global public health leadership
believes we are entering a “post-antibiotic era,” where once
easily treated infectious diseases will become very difficult to
treat [111].

Large quantities of infectious airborne particles are
expelled during many routine patient bodily functions (see
Table 1) endemic to healthcare facilities, and viruses and
bacteria that can spread via airborne or droplet means are
diverse (see Table 2). Many airborne microorganisms in
healthcare facilities are increasingly found to have developed
strong drug resistance [112]. e quantity and variety of
hospital-acquired infections are also rising (see Table 3).

In the hospital setting, airborne infectious particles can
have varied compositions. ey can be single bacterial cells
or spores, fungal spores, or viruses. ey can be aggregates
of several cells, spores, or viruses. ey can also be biologic
material carried by other nonbiologic particles (e.g., dust)
[113]. Additionally, airborne infectious particles in hospitals
span a wide range of sizes. Bacterial cells and spores range
from 0.3 to 10 𝜇𝜇m in diameter. Fungal spores range from
2.0 to 5.0 𝜇𝜇m. Viruses range from 0.02 to 0.30𝜇𝜇m in diam-
eter [114]. Most infectious particles generated from human
respiratory sources occur primarily as droplet nuclei, with
a diameter of 0.5–5.0 𝜇𝜇m [114], allowing them to remain
airborne—and highly infectious—for extended periods of
time [17]. In�uenza A illustrates the difficulty hospitals have
containing highly infectious airborne particles that remain
airborne and infectious for prolonged periods. In�uenza A
causes disease primarily in the lungs [63], so sterile hands,
instruments, and equipment cannot prevent an infectious
person from transmitting, or a susceptible individual from
acquiring, the virus. And since 30%–50% of those infected

T 3: Known hospital-acquired infections [60, 61].

Bacteria Viruses Fungi
Group A
Streptococcus Rhinoviruses Aspergillus sp.

Mycobacterium
tuberculosis In�uenza viruses Zygomycetes sp.

Pseudomonas
aeruginosa

Parain�uenza
viruses

Histoplasma
capsulatum

Klebsiella pneumoniae SARS
Cryptococcus
neoformans

Serratia marcescens RSV Coccidioides immitis

Corynebacterium
diphtheriae Adenoviruses Blastomyces

dermatitidis

Burkholderia
cenocepacia Varicella zoster Mucor plumbeus

Chlamydia
pneumoniae Measles Pneumocystis carinii

Nocardia asteroids Rubella Rhizopus stolonifer
Nocardia brasiliensis Poxviruses
Alcaligenes sp. Enteroviruses
Burkholderia
pseudomallei
Cardiobacterium sp.
Moraxella sp.
Burkholderia mallei
Staphylococcus aureus
Neisseria meningitides
Bordetella pertussis
Pseudomonas sp.
Acinetobacter sp.
Legionellae sp.
Clostridia sp.

with In�uenza A are asymptomatic [63], it is oen unknown
when an infectious person is present. Furthermore, in public
areas like emergency rooms, over 50% of detectable In�uenza
A viral particles are aerosolized [62]. Because the human
infectious dose of this virus is very low [62], it is thus easy
for individuals to become infected in such an environment.

Even with a known list of pathogens that can be trans-
mitted from person to person in a hospital [60, 61] and evi-
dence that various hospital-acquired infections are airborne
transmission related [60], the extent to which airborne trans-
mission contributes to the overall infection rate in hospitals
continues to be debated [115, 116]. A source of uncertainty
is no doubt the variability in the reported proportion of
hospital-acquired infections resulting from airborne trans-
mission. For example, Brachman estimated that airborne
transmission was responsible for 10%–20% of all endemic
hospital-acquired infections [117], while Kundsin concluded
that airborne transmission accounted for 20%–24% of post



6 Journal of Pathogens

operative wound infections [118]. Kowalski concluded that
approximately one-third of all hospital-acquired infections
involve airborne transmission at some point between the
origin and the susceptible host [60]. Without conclusive
evidence of the extent to which airborne transmission
contributes to total hospital-acquired infections, healthcare
facilities will continue to have a difficult task quantifying their
facility-speci�c risk of airborne transmission and thus remain
tentative in investing to ameliorate it.

Healthcare facilities are subject to regulations and
requirements relating to their HVAC systems [119]. Based
on these regulations, hospitals currently attempt to reduce
the airborne infectious disease load by (1) increasing the
air changes per hour (a measure of how many times the air
within a de�ned space is replaced per hour) in areas known
to be problematic [120] and (2) utilizing different ventilation
con�gurations and systems in speci�c areas (e.g., operating
rooms, patient rooms, etc.) [121]. However, increasing the
number of air changes per hour alone does not solve the
problem. While the concentration of airborne infectious
particles falls with increased air changes per hour, even very
frequent air changing (within reason—it would be difficult
to have a patient feel comfortable in a room where the air
changed completely once a minute) does not radically reduce
the airborne infectious particle count [120]. For example,
Figure 1 plots the time it takes to reduce the airborne particle
load in an air mass (ordinate) in relation to the number
of air changes each hour passing through a high-efficiency
particulate air (HEPA) �lter (abscissa). Although developed
in the 1940s, HEPA �ltration is still considered the best-
in-class method for removing infectious particles from air.
e colored lines on the graph present data for removing
90% (i.e., 1 log reduction), 99% (i.e., 2 log reduction), and
99.9% (i.e., 3 log reduction) of the airborne particles. At
12 air changes/hour, which is the recommended minimum
for hospital isolation rooms [122], it would take about 12
minutes to reduce the airborne particle load of a volume of
air by 90% (blue), 23 minutes to reduce the load by 99%
(red), and about 35 minutes to reduce the load by 99.9%
(green). Note that these times are not markedly shortened
up to 20 air changes per hour; recommendations for hospital
isolation rooms is 12 [122], and NIH requires ≥6 for BSL
labs and ≥10 for BSL-3 animal facilities [123]. Removing
90% or more of infectious particles from the air may be
helpful, but not sufficient to eliminate airborne transmission
of infection, particularly for viruses and bacteria that are
extremely virulent and infect at very low exposure doses
(e.g., In�uenza A, Francisella tularensis, and Mycobacterium
tuberculosis) [17, 62]. It should also be noted that the data in
Figure 1 assume perfect mixing of air, which is known not to
occur in practice.

Studying different ventilation con�gurations in speci�c
areas, such as an operating room, using computational �uid
dynamic modeling, reveals that airborne infectious particles
spread throughout the space evenly and quickly no matter
the con�guration [121]. e American Society of Heating,
Refrigerating, and Air Conditioning Engineers (ASHRAE)
ran three different computational �uid dynamic models: (1)
a conventional system with 1,500 cfm (cubic feet/minute) air
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�ow and a conventional supply and exhaust, (2) a low supply,
high-exhaust system, with 1,500 cfm and a conventional
supply and exhaust, and (3) nonaspirating diffusers with
2,000 cfm, and a non-aspirating supply and conventional
exhaust. e modeling in all three cases revealed that air-
borne particles spread throughout a space evenly and quickly
regardless of HVAC con�guration.

International guidelines and recommendations for air-
borne infection control have been issued by both theUSCen-
ter for Disease Control and the World Health Organization
for both resource-rich and resource-limited facilities [124–
127]. e recommendations are based on a three-pronged
approach to controlling airborne infections: administrative,
environmental and personal protection [125–128]. While
speci�c administrative controls differ according to setting, in
resource-rich settings, persons suspected of having infectious
respiratory diseases and patients who have received diag-
noses of infectious respiratory diseases are to be placed in
individual isolation. Quickly identifying and discriminating
those that have active infectious respiratory diseases has been
suggested as another effective method for controlling air-
borne infection [129]. In resource-limited settings, relocation
to well-ventilated areas and application of cough hygiene
protocols are recommended [130]. Indeed, simple natural
ventilation has been shown to be a very useful approach
to combating tuberculosis (TB) transmission in healthcare
settings [131]. A recent study investigated rates of fresh air
exchange achievable by natural means in health care settings
[131].More than 70 clinical rooms containing patients suffer-
ing fromTBwere studied (including emergency departments
and outpatient clinics). Simply opening windows and doors
provided between 28 and 40 air changes per hour, drastically
reducing the amount of airborne infectious particles in the
room [131].

Regarding environmental controls, several strategies are
available to reduce exposure to infectious particles, including
natural ventilation, mechanical ventilation, and upper-room
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ultraviolet light [132–135]. Mechanical ventilation delivering
negative pressure and 12 air changes per hour is the stan-
dard of care for respiratory TB isolation [128], but these
systems require delicate design and have high costs associated
with installation. ey also require ongoing maintenance,
necessitating both resources and expertise. Unfortunately,
poorly maintained mechanical ventilation systems have been
widely documented in resource-rich settings [136, 137] and
implicated in several TB outbreaks [124, 138–140].

Concerning personal controls, an essential personal pro-
tective practice is the regular and proper wearing of N95
respirator masks. e F�A de�nes an N95 respirator mask
as “a respiratory protective device designed to achieve a very
close facial �t and very efficient �ltration of airborne particles.
In addition to blocking splashes, sprays and large droplets,
the respirator is also designed to prevent the wearer from
breathing in very small particles thatmay be in the air.”While
the ultimate effectiveness of these respirator masks is debated
[124], respirator masks are believed to be the best currently
available method of guarding against inhalation of highly
infectious airborne particles such as tuberculosis [130].

Finally, as many microorganisms are susceptible to ultra-
violet radiation, the use of upper-room UV �xtures has been
widely studied. Given adequate room air mixing, infectious
particles produced by in-room patients are likely to pass
through the UV �eld (and possibly be sterili�ed) [130].
Escombe et al. [134] demonstrated that, provided that there
is a sufficient circulation inside the room to mix the air,
upper-room UV �xtures have been shown to be an effective
intervention for use in infection control in high-risk clinical
settings (e.g., tuberculosis). Nardell et al. [135] demonstrated
as well that careful application of upper-room UV �xtures
can be achieved without increasing the incidence of the most
common side effects of accidental UV overexposure (e.g., eye
and skin injury).

7. Airborne Pathogens in
a Travel/Leisure Setting

An enclosed passenger cabin of a commercial airplane is an
environment conducive to the airborne spread of pathogens
carried by passengers or crewmembers [141]. However, as the
environmental control systems used in commercial aircra
appear to restrict the transmission of airborne pathogens,
the perceived risk by the public of airborne transmission
of infectious disease on an airplane appears to be greater
than the actual risk [142]. Nevertheless, a �nite risk exists of
droplet and airborne disease transmission while traveling in
a commercial airplane. While there are four routes for the
spread of microorganisms aboard an aircra (e.g., contact,
airborne, common vehicle, and vector borne) [143, 144],
large droplet and airborne transmissions are thought in all
likelihood to represent the greatest risk for travelers.e high
density of occupants and their close proximity to one another
are believed to contribute to this risk [141]. In this context,
the ubiquity of commercial airline travel (over 1 billion
passengers travel by air annually and 50million of these travel
to the developing world [145, 146]) may thus promote the
spread of airborne pathogens over great distances.

More speci�cally, several studies suggest that the risk
of disease transmission to otherwise healthy passengers in
an aircra cabin is higher when sitting within two rows
of a contagious passenger for a �ight of more than eight-
hour duration [142, 147–153]. While the eight-hour �ight
threshold is associated primarily with tuberculosis studies,
many �ndings involving other pathogens support the general
notion that infectious diseases routinely transmitted via
airborne and droplet routes are effectively transmitted in
aircra cabins [147–150, 153–155].

One of the most critical factors in airborne disease
transmission on an aircra is cabin ventilation (or the lack
thereof) [47, 142, 147, 148, 150, 151, 156–160]. One air
change per hour of well-mixed air in any space is thought
to remove 63% of the airborne organisms in that space
[159, 160]. Typically, modern commercial aircra cabins
experience 15–20 changes of air each hour [141]. Hence,
proper ventilation on commercial aircra helps to reduce
the transmission of airborne infectious particles [141], and
thus it is not surprising that increased ventilation, as well
as the �ltration of recirculated air through high-efficiency
�lters, has helped to reduce the spread of airborne pathogens
on airplanes [142, 148–150, 161]. At the very least, the
recirculation of cabin air is known not to be a risk factor
for contracting upper respiratory track infections [161]. In
contrast, airborne transmission becomes widespread in pas-
senger cabins with no ventilation, as shown by an in�uen�a
outbreak when passengers were kept aboard a grounded
aircra with an inoperative ventilation system [47, 148–150].
On balance, ventilation thus appears to be an important
determinant of airborne infection risk on airplanes, and
efforts to improve ventilation would be expected to reduce it
[161]. Regarding speci�c pathogens that have been associated
with droplet and airborne transmission in aircra cabins,
tuberculosis [148, 151, 156, 162–164], SARS [152, 153, 165–
167], in�uen�a [168–170], meningococcal disease [155, 169,
170], and measles [171–173] have all been studied.

Hotels and cruise ships share the same concerns as an
office building or aircra cabin, as these venues have in
common enclosed spaces with large, dense populations.ey
are thus susceptible to airborne and droplet transmission via
any of the mechanisms described above [38, 174].

8. Airborne Pathogens in a Biodefense Setting

A discussion of airborne pathogens as they pertain to bio-
logical terrorism is a too substantial subtopic for the present
paper. Brie�y, the ha�ards posed by airborne pathogens
associated with biological terrorism are well described. e
US and former Soviet Union maintained massive biolog-
ical weapons stockpiles during the Cold War [175]. e
occurrence of “con�rmed bioagent” cases with “high value
targets” continues to the present [176] and appears to be
increasing [176]. Of recent, con�rmed cases, the source of
the biological material was a “legitimate supplier,” most of
the perpetrators acted alone, and themajority of perpetrators
had no medical or scienti�c expertise [176]. ese �ndings
suggest that biological terrorism could be a threat to public
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health and deserves to be included in any national biosecurity
strategy.

9. Conclusions

Aerobiology is now an active discipline, employing contem-
porary techniques including computational �uid dynamics
to study airborne particle �ow, polymerase chain reaction
(PCR) methodologies to identify infectious agents and quan-
tify airborne particle concentrations in various settings, and
epidemiology to track the spread of disease. However, the
knowledge base is still limited, and translation to practice is in
its infancy. For example, while the identity and concentration
of airborne infectious particles under some conditions can be
determined, few studies have thus far translated this infor-
mation to useable estimates of infection rates for particular
airborne particle sizes and concentrations, air�ow condi-
tions, exposure intervals, and pathogen virulence (among
other variables). Such information would be of great value
in helping to reduce the airborne transmission of infectious
particles in all settings.

Practitioners of all kinds agree that the airborne trans-
mission of infectious disease is a problem. Just how big or
urgent a problem, however, continues to be debated. For
example, there is currently a wide range in the reported
frequencies of airborne transmission in hospital-acquired
infections (10–33%). A better understanding of the true con-
tribution of airborne transmission to infection rates would
allow hospital administrators to determine the degree to
which they should commit resources to minimize this vector
of disease transmission. e same issue applies to similar
environmental contexts, such as office buildings, aircra
cabins, cruise ships and hotels.

Practitioners of, and those responsible for, infection
control in all settings are currently forced to use suboptimal
(for the purpose), dated technologies to attempt to contain
and eliminate the transmission of airborne infections (e.g.,
HEPA �ltration systems were developed in the 1940s). High
efficiency air �ltration systems can be expensive to operate
and easily fall victim to leakage and bypass problems that
compromise the overall effectiveness of the system. However,
as there is a lack of industry standards for evaluating new
technologies that attempt to solve the airborne particle
transmission problem, high-efficiency �ltration remains the
most widely deployed technology for this purpose.
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