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Abstract
BACKGROUND: Percentage of free-to-total prostate-specific antigen (%fPSA) is an independent predictor of risk for
prostate cancer among men with modestly elevated level of total PSA (tPSA) in blood. Physiological and pathological
factors have been shown to influence the%fPSA value and diagnostic accuracy.MATERIALS/METHODS: To evaluate
genetic determinants of %fPSA, we conducted a genome-wide association study of serum %fPSA by genotyping
642,584 single nucleotide polymorphisms (SNPs) in 3192 men of European ancestry, each with a tPSA level of 2.5
to 10 ng/ml, that were recruited in the REduction by DUtasteride of Prostate Cancer Events study. Single nucleotide
polymorphisms (SNPs) with P < 10−5 were further evaluated among the controls of a population-based case-control
study in Sweden (2899 prostate cancer cases and 1722 male controls), including 464 controls having tPSA levels of
2.5 to 10 ng/ml. RESULTS: We identified two loci that were associated with %fPSA at a genome-wide significance
level (P< 5× 10−8). The first associated SNPwas rs3213764 (P= 6.45 × 10−10), a nonsynonymous variant (K530R) in
the ATF7IP gene at 12p13. This variant was also nominally associated with tPSA (P = .015). The second locus was
ics, Medical Center Blvd, Winston-Salem, NC 27157. E-mail: jxu@wakehealth.edu,

) to J. Xu, a research contract by GlaxoSmithKline (GSK) to J. Xu, National Cancer
55), Swedish Research Council (Medicine) (20095), the Sidney Kimmel Center for
tion to H. Lilja. J. Xu and J. Sun certify that all conflicts of interest, including specific
aterials discussed in the manuscript (e.g., employment/affiliation, grants or funding,
tents filed, received, or pending), are the following: H. Lilja holds patents for free
dy and holds stock in GSK.
4 and Figures W1 and W2 and are available online at www.neoplasia.com.

2



96 ATF7IP and KLK2 Associated with %fPSA Jin et al. Neoplasia Vol. 15, No. 1, 2013
rs1354774 (P = 1.25 × 10−12), near KLK2 at 19q13, which was not associated with tPSA levels, and is separate from
the rs17632542 locus at KLK3 that was previously associated with tPSA levels and prostate cancer risk. Neither
rs3213764 nor rs1354774 was associated with prostate cancer risk or aggressiveness. CONCLUSIONS: These
findings demonstrate that genetic variants at ATF7IP and KLK2 contribute to the variance of %fPSA.

Neoplasia (2013) 15, 95–101
Introduction
Serum prostate-specific antigen (PSA) test is widely used for prostate
cancer screening before diagnosis in Western countries. The introduc-
tion of PSA screening for prostate cancer has considerably increased the
detection of early-stage cancer. The results from large randomized trials
show that PSA-based screening reduces prostate cancer mortality
among men who would not otherwise be screened in Europe [1,2],
and which has not been feasible to evaluate in the United States [3].
As a consequence of PSA screening, overdiagnosis and complications
of treatment for prostate cancer, including urinary, sexual, and bowel
dysfunction, have also been a concern [4,5]. Nevertheless, serum PSA
levels are currently still the most important noninvasive indicator for
the emergence and progression of prostate cancer.

Although the PSA level in blood is strongly associated both with risk
of diagnosis and long-term outcome of prostate cancer, it has low to
modest specificity for prostate cancer diagnosis at a modestly elevated
PSA level in blood [6]. Most of the abnormally elevated PSA results are
false positives in terms of prostate cancer. For example, 75% of men
with PSA levels in the range of 4.0 to 10 ng/ml have a negative prostate
biopsy. In contrast, about 15% of men whose PSA levels were <4.0 ng/ml,
have prostate cancer on biopsy [7]. Importantly, about 15% of these
cancers detected at a PSA < 4.0 ng/ml were also shown to be high-grade
disease and, as such, are likely to progress [7]. To improve the diagnos-
tic performance of the PSA test, numerous approaches have been pro-
posed, including measuring PSA velocity (change over time), levels of
free and protein-bound PSA, PSA density (the PSA level divided by the
prostate volume), and the use of cutoff values for PSA levels that are
specific to the individual’s age, race, or ethnic group [8].

Levels of free PSA (fPSA) can be detected and compared to total PSA
(tPSA), yielding the percentage of fPSA (%fPSA, also known as ratio
PSA). Using %fPSA can improve specificity over tPSA alone, especially
in men with intermediate levels of serum PSA, and reduce the proportion
of unnecessary biopsies [9]. %fPSA has already been used as an assisting
clinical parameter in the screening and diagnosis of prostate cancer for
men with intermediate tPSA levels. However, physiological and patho-
logical factors, including hereditary factors, have been shown to influence
%fPSA value and diagnostic accuracy [10]. To date, the exact genetic
determinants of %fPSA are largely unknown. We now report on a
genome-wide association study (GWAS) and replication study among
men with intermediate PSA levels, to identify genetic variants associated
with %fPSA and to assess their relationship with prostate cancer risk.
Materials and Methods

Study Subjects for GWAS and Replication Stage
For the GWAS portion of our study, we utilized samples collected

from subjects that were previously recruited for the REduction by
DUtasteride of Prostate Cancer Events (REDUCE) study. Details of
the REDUCE study design and implementation have been described
elsewhere [11,12]. Briefly, the REDUCE study is a multicenter, ran-
domized, double-blind, placebo-controlled clinical trial, which was de-
signed to evaluate the clinical value of Dutasteride at a dose of 0.5 mg
daily, a dual 5α-reductase inhibitor, in reducing the risk of incident
prostate cancer. Of 3239 men of European descent who consented
for genetic studies in REDUCE (Table W1), 3206 subjects having a
baseline tPSA level between 2.5 and 10 ng/ml were used for the GWAS
of %fPSA. For analysis of associations between single nucleotide poly-
morphisms (SNPs) and prostate cancer risk, the study subjects were
restricted to the placebo group using case and non-case status after
4 years of follow-up (410 of 1654 men in the placebo group developed
prostate cancer within this follow-up period). Among these 410 inci-
dent prostate cancer patients, associations of SNPs with aggressive dis-
ease were further examined by defining aggressiveness as men (n = 124)
who developed prostate cancer with a Gleason score of 7 or higher,
stage T3b or higher, and/or were lymph node or metastasis positive
(N+ or M+, respectively).

The replication study subjects were from a population-based case-
control study in Sweden, termed Cancer Prostate in Sweden (CAPS).
The study sample was described in detail elsewhere [13]. In brief, pros-
tate cancer patients were identified between July 2001 and October
2003 and recruited from four of the six regional cancer registries in
Sweden and the National Prostate Cancer Register. Control subjects
were randomly selected from the Swedish Population Registry, without
a diagnosis of prostate cancer, by frequency matching to the cases on
age (groups of 5-year intervals) and geographic region. DNA samples
from blood were available for 2899 patients and 1722 control subjects
after informed consent. As shown in Table W1, 464 control subjects
with a tPSA level in the range of 2.5 to 10 ng/ml were used for the
replication study to confirm GWAS results of %fPSA in REDUCE.
In the CAPS case-control study, 2899 cases and 1722 controls were
employed to evaluate the association of SNPs with prostate cancer risk.
Associations of SNPs with prostate cancer aggressiveness were tested in
a case-only study including 1231 aggressive and 1619 nonaggressive
cases. Patients were classified as having aggressive disease if their
tumors had a clinical stage of T3/T4, N+, M+, Gleason score of 8 or
higher, or a serum PSA level of >50 ng/ml; otherwise, the patients were
classified as nonaggressive cases.

The study was approved by the research ethical committees of the
Karolinska Institute, Umeå University, and Wake Forest University
School of Medicine.

Measurement of tPSA and fPSA Levels
In REDUCE, serum levels of tPSA and fPSA were determined with

an enzyme immunoassay at Quest Diagnostics (Van Nuys, CA and
Heston, Middlesex, United Kingdom). In CAPS, the levels of tPSA
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and fPSA in EDTA-anticoagulated plasma were measured in the labora-
tory of Dr Hans Lilja in the Department of Laboratory Medicine, Lund
University, Skåne University Hospital (Malmö, Sweden). A dual-label
assay (DELFIA Prostatus PSA F/T; PerkinElmer Life Science, Waltham,
MA) [14] was used to simultaneously measure fPSA and tPSA.

Genotyping and Imputation for GWAS in REDUCE
GWAS genotyping was performed on the Illumina HumanOmni-

Express BeadChip platform at the Center for Cancer Genomics, Wake
Forest University School of Medicine. A total of 729,755 SNPs were
genotyped in 3225 samples (14 samples were not genotyped because
of poor DNA quality). All of the samples had a genome-wide call rate
of ≥95% with an overall call rate of 99.7%. After excluding 33 indi-
viduals with tPSA levels less than 2.5 ng/ml or more than 10 ng/ml,
3192 subjects were included in the GWAS analysis. The following
quality control (QC) criteria were used to exclude SNPs from further
analysis: minor allele frequency (MAF) < 0.01 (n = 75,170), genotype
call rate < 95% (n = 6961), and P < .001 (n = 8589) for the Hardy-
Weinberg Equilibrium test. After exclusions, genotype data on 642,584
SNPs were used for the final genome-wide association analysis.
Using the combined data of the 1000 Genomes low-coverage pilot

project and HapMap3 data as reference haplotype maps, imputation
was performed to infer genotypes of SNPs that were not genotyped
by the IMPUTE computer program [15]. A posterior probability of
>0.90 was applied to call imputed genotypes. The same QC procedures
for genotyped SNPs were also applied to imputed SNPs.

SNP Selection and Genotyping for Replication
in CAPS Samples
SNPs associated with %fPSA with a P value less than 1 × 10−5 were

selected as candidate loci for replication. The SNPs with the lowest
P values among multiple SNPs in linkage disequilibrium (LD) at an
r2 > 0.50 were chosen to be genotyped in CAPS samples. As shown
in Table W2, a total of five SNPs were genotyped in CAPS samples.
Genotyping was performed using the MassARRAY iPLEX (Sequenom,
Inc, San Diego, CA) at the Center for Cancer Genomics, Wake Forest
University. Duplicates and negative controls were included in each
384-well plate to ensure QC. Genotyping was performed by technicians
blinded to sample status. The average concordance rate was >98%.

Statistical Analysis
A linear regression model was used to analyze the association of each

SNP with quantitative traits, assuming an additive genetic model,
which was implemented in the PLINK software package. Quantitative
associations of %fPSA and tPSA were performed after log transfor-
mation to limit potential bias because of deviation from normality.
We estimated the population stratification using a principal component
approach implemented by EIGENSTRAT software [16]. A common P
of 5 × 10−8 was used as a cutoff for genome-wide significance. For the
regions that met the statistical criteria of genome-wide association with
%fPSA, ungenotyped SNPs were then imputed and conditional anal-
ysis was then applied to test the independence of SNPs, using the orig-
inally significant SNPs as covariates for the subsequent analysis. The
effects of identified SNPs on prostate cancer risk or aggressiveness were
further evaluated in the placebo group of REDUCE and in the case
controls of CAPS using logistic regression models.

We adopted the methods reported by Gudmundsson et al. [17] to
calculate a personalized %fPSA cutoff value corresponding to the com-
monly used uniform cutoff of 25%. In brief, this was done by multi-
plying the value of 25% with the estimated relative genetic effect for the
two %fPSA associated SNPs (rs3213764 and rs1354774). Personalized
cutoff values for PSA were calculated for each subject. First, a linear
regression model was fitted where log transformed %fPSA were treated
as outcomes and the number of alleles associated with higher level of
biomarkers was treated as a covariate. Genetic effects were calculated
for noncarriers (aa), one carrier (Aa), and two carriers (AA) of the allele
associated with elevated values, using the fitted values. Relative allelic
effects (% of increase per allele) were calculated by dividing the fitted
values of aa and Aa. The relative risk to the population for each of the
three genotypes (aa, Aa, and AA) were then computed on the basis of
Figure 1.Manhattan plot of the strength of associations (−log10 (P) values; Y-axis) between SNPs (X-axis by chromosome and chromosomal
position) and %fPSA.
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the relative allelic effect and genotypic frequency. Second, assuming a
multiplicative model, the combined genetic relative effect was calcu-
lated by multiplying the relative genotypic effects for each SNP relative
to the general population. Third, the personalized cutoff of %fPSA
was generated by multiplying a uniform cutoff (i.e., 25%) by the com-
bined genetic relative effect for each subject.

Results
After QC filters, a total of 642,584 genotyped SNPs were analyzed
for association with %fPSA among 3192 individuals who had a tPSA
level between 2.5 and 10 ng/ml. Principal component analysis showed
that all of the subjects were clustered around European descent, and the
quantile-quantile (Q-Q) plot showed no obvious evidence of genetic
stratification among subjects (genomic inflation factor λ = 1.009;
Figure W1). Thus, the reported P values are not corrected for genomic
inflation. Throughout the genome (Figure 1), two signals, one at 19q13
(P = 7.39 × 10−11 and 7.90 × 10−11 for rs1354774 and rs16987929,
respectively) and another at 12p13 (P = 1.85 × 10−8 for rs3213764),
were associated with %fPSA at a genome-wide significance level (P <
5 × 10−8). These lead SNPs, rs16987929 and rs1354774 at 19q13, are
in moderate LD (r2 = 0.591).

The most significant SNP at each locus that was associated with %
fPSA with a P value less than 1 × 10−5 at the GWAS stage was then
fast-tracked for further genotyping in a replication analysis using an
independent sample set consisting of 464 control subjects with tPSA
levels between 2.5 and 10 ng/ml in CAPS. Among these five SNPs,
two were also consistently associated with %fPSA in the replication
among CAPS controls, with intermediate tPSA levels (2.5–10 ng/ml;
rs3213764 at 12p13: P = 9.65 × 10−3; and rs1354774 at 19q13: P =
4.71 × 10−3; Tables W2 and 1). After pooling the GWAS and
replication results, we observed a genome-wide significant association
of rs3213764 (P = 6.45 × 10−10) and rs1354774 (P = 1.25 × 10−12)
with %fPSA (Table 1). When we extended the replication analysis
to all controls of the CAPS study population (Table W3), a more
significant association was observed between rs1354774 and %fPSA
(P = 1.05 × 10−11), resulting in a combined P value of 6.48 × 10−20.
For association between rs3213764 and %fPSA, similar results were
observed between controls with intermediate tPSA levels and all of
the controls in CAPS (Pcombined = 1.97 × 10−9).

We imputed ungenotyped SNPs at 12p13 in a 300-kb window
and tested their associations with %fPSA (Figure 2A). The SNPs with
P < 10−5 are presented in Table W4, all of which are located within a
210-kb region of LD, incorporating the entire ATF7IP gene and 3′-end
of the PLBD1 gene. The most significant SNP was rs3213764, a mis-
sense variant at codon 530 of the ATF7IP gene. This was the only
SNP at 12p13 that showed a genome-wide significant association with
%fPSA. There were no other SNPs at 12p13 that were associated with
%fPSA at P < .01 after conditioning on rs3213764.
For chromosome 19q13, imputation was performed within a 200-kb
window. As shown in Figure 2B, multiple SNPs associated with %fPSA
less than 5 × 10−8 are centralized in a 22-kb region between two recom-
bination hotspots. This region contains the entire KLKP1 gene and a
majority of the KLK2 gene, except exon 1 and intron 1. This locus is
distinct from the region containing KLK3 (the gene encoding PSA) and
the tPSA-associated locus at 19q13 (rs17632542) [17]. As shown in
Table W4, all of the SNPs at 19q13 with P < 10−5 for %fPSA were
in LD with rs1354774, with r2 values ranging from 0.519 to 1. None
of the associations for these SNPs reached a significance level of 0.01
after conditioning on rs1354774.

To evaluate whether the %fPSA-associated loci at 12p13 and
19q13 were also associated with tPSA (Table 2), we tested the asso-
ciations of rs3213764 and rs1354774 with levels of tPSA. The SNP
rs3213764 at 12p13 was suggestively associated with tPSA (Pcombined =
.015). However, no association was observed between rs1354774
at 19q13 and tPSA levels (Pcombined = .904). We further evaluated
whether these two loci were also associated with prostate cancer risk
in case-control studies (REDUCE: 410 new cases and 1234 non-cases
in a four-year follow-up of the placebo group; CAPS: 2899 cases and
1722 controls) or prostate cancer aggressiveness in case-only studies
(REDUCE: 124 aggressive and 281 nonaggressive cases; CAPS: 1231
aggressive and 1619 nonaggressive cases). As shown in Table 3, no asso-
ciations were observed for prostate cancer risk (Pcombined = .214 and .722,
respectively) or aggressiveness (Pcombined = .737 and .716, respectively).

We further calculated personalized %fPSA cutoff values to inter-
pret the effects of the two identified variants on the variation of %
fPSA levels. We adopted the methods reported by Gudmundsson et al.
[17] and calculated a personalized %fPSA cutoff value corresponding to
the commonly used cutoff of 25%. As shown in Figure W2, in contrast
to the uniform %fPSA cutoff value of 25%, a personalized cutoff may
range from 21.3% to 27.9% for an individual after genetic correction.

Discussion
PSA circulates within the serum in unbound (free) form or bound to
one of several antiproteases, most predominantly α-1-antichymotrypsin
(ACT/SERPINA3) [18,19]. fPSA represents 10% to 40% of tPSA.
Previous studies suggest that %fPSA predicts risk of prostate cancer in-
dependent of tPSA and contributes modest diagnostic enhancements
above and beyond tPSA alone amongmen in the “diagnostic gray zone”
[9]. Numerous studies have explored methods of optimizing the diag-
nostic accuracy of %fPSA [10]. In the current study, we focused on the
influence of genetic factors on%fPSA using a GWAS approach, leading
to the identification of two loci at 12p13 and 19q13 that are asso-
ciated with %fPSA, especially among men with intermediate tPSA levels.
These findings may be useful for improving the performance of %fPSA
in distinguishing malignant from benign prostate disease. The possible
added value of incorporating these SNPs within existing PSA screening
Table 1. Summary Results for SNPs Associated with %fPSA at Genome-Wide Significance Level (P 5 × 10−8).
Chromosome
 SNP
 Gene (Location)
 Stage
 MAF
 Mean*
 β
 SE
 P†
 Pcombined
‡

12p13
 rs3213764 (A/G)§
 ATF7IP (K530R)
 GWAS (N = 3192)
 0.467
 15.73/16.61/17.34
 0.049
 0.009
 1.85 × 10−8
 6.45 × 10−10
Replication (N = 464)
 0.504
 23.85/26.22/27.15
 0.065
 0.025
 9.65 × 10−3
19q13
 rs1354774 (A/G)§
 KLK2 (∼9 kb at 3′-flank)
 GWAS (N = 3192)
 0.343
 15.64/17.14/17.45
 0.058
 0.009
 7.39 × 10−11
 1.25 × 10−12
Replication (N = 464)
 0.309
 23.98/27.82/27.05
 0.075
 0.026
 4.71 × 10−3
*Mean values of %fPSA (%) by genotypes (major homozygote/heterozygote/minor homozygote).
†P values were from linear regression models adjusted for age.
‡P values were estimated using inverse variance–weighted meta-analyses according to regression coefficients (β ) and corresponding SEs across studies.
§Major/minor allele.
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practices needs to be evaluated in future studies, as this may help avoid
significant numbers of unnecessary and invasive biopsies.
Our results indicate that an SNP 1354774 at 19q13 is associated

with %fPSA but not with tPSA. This SNP is located in the 3′-flanking
region of KLK2 and an intron of KLKP1. As separated by a recombi-
nation hotspot (Figure 2), our lead SNP (rs1354774) is independent of
SNPs in the KLK3 locus at 19q13 previously reported to be associated
with tPSA and prostate cancer risk [17,20]. Specifically, rs1354774 is
Table 2. Relationships of the Loci ATF7IP at 12p13 and KLK2 at 19q13 with tPSA Levels.
Locus
 SNP (Minor Allele)
 REDUCE (N = 3192)
 CAPS (N = 464)
 Pcombined*
Mean†
 β
 P‡
 Mean†
 β
 P‡
12p13 (ATF7IP)
 rs3213764 (G)
 6.00/5.86/5.81
 −0.015
 0.069
 4.88/4.41/4.37
 −0.053
 0.027
 0.015

19q13 (KLK2)
 rs1354774 (G)
 5.89/5.85/6.00
 0.002
 0.846
 4.58/4.49/4.31
 −0.024
 0.342
 0.904
*Pcombined values were estimated using inverse variance–weighted meta-analyses according to regression coefficients (β ) and corresponding SEs across studies.
†Mean values of tPSA (%) by genotypes (major homozygote/heterozygote/minor homozygote).
‡P values were from linear regression models adjusted for age.
Figure 2. Regional plots of the associations between 12p13 (A) and 19q13 (B) and%fPSA. Associations of individual SNPs have been plotted
as −log10 P against the chromosomal position. Results of both genotyped and imputed SNPs are shown. Colors indicate the LD strength
between the most significant SNPs (shown at the top of each plot with a point in purple) and the other SNPs assessed. The right Y-axis shows
the recombination rate estimated from the 1000 Genomes Utah residents with Northern and Western European ancestry (CEU) population.
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not in LD with either rs17632542 (r2 = 0.000 and 0.049 for REDUCE
GWAS and 1000Genomes, respectively) or rs2735839 (r2 = 0.001 and
0.002 for REDUCE GWAS and 1000 Genomes, respectively). In
contrast to the complex associations observed between rs1763542 (or
rs2735839) and tPSA and prostate cancer risk, rs1354774 was not
associated with prostate cancer risk and aggressiveness. Interestingly,
Nam et al. [21,22] and our group [23] have shown that this locus (de-
fined by rs198977) was also associated with blood KLK2 levels. The
SNP rs198977, showing moderate LD with rs1354774 (r2 = 0.505
and 0.547 for REDUCE GWAS and 1000 Genomes, respectively),
was also associated with %fPSA (P = 4.77 × 10−8 in REDUCE) and
fPSA (P = 6.55 × 10−7 in REDUCE) in this study. Because multiple
SNPs in LD with rs135774 at 19q13 were associated with %fPSA and
fPSA, we cannot dissect whether any of these variants are independently
functional and how these variants at 19q13 might affect individual %
fPSA and fPSA values at this stage. The KLK2 gene product has been
shown to convert the inactive PSA zymogen to catalytically active PSA,
which may influence the ratio (%fPSA) in the blood, and act as a
physiologic PSA processing protease in the conversion of pro-PSA into
active PSA [24–26]. %fPSA was decreased when KLK3 and KLK2-
expressing cells were co-inoculated subcutaneously and double trans-
genic mice expressing both KLK2 and KLK3 in the prostate produced
more active PSA compared to single transgenic animals [27]. Taken
together, these multiple lines of evidence suggest that genetic variants
in 19q13may modify fPSA and%fPSA by influencing the biologic func-
tion of the KLK2 gene product.

We also identified a locus at 12p13 that was associated with %fPSA
at a genome-wide significance level. The most significant SNP,
rs3213764, results in an amino acid substitution (K530R) in ATF7IP,
which encodes for the activating transcription factor 7 interacting pro-
tein [also known as MBD1-containing chromatin-associated factor 1
(MCAF1)]. Of interest, ATF7IP has been identified as a susceptibility
gene for testicular germ cell tumor (TGCT) in a recent GWAS [28].
The reported SNP rs2900333 in TGCT GWAS is in moderate LD
with missense variant rs3213764 (r2 = 0.534 and 0.553 for REDUCE
GWAS and 1000 Genomes, respectively). The TGCT-related SNP
rs2900333 was also associated with %fPSA in our REDUCE GWAS
(P = 6.56 × 10−8). These results suggest that %fPSA shares the same
genetic locus in ATF7IP as that for TGCT susceptibility. ATF7IP was
found to regulate telomerase activity by acting on the promoter of
TERT and TERC in an Sp1-dependent manner [29]. Overexpression
of ATF7IP was also frequently observed in cancers [29]. The locus at
TERT on 5p15 (defined by rs2736098) regulates telomerase activity
and has been associated with tPSA and risk of multiple cancers, includ-
ing prostate cancer [30] and TGCT [28]. In addition, we observed a
suggestive association of rs3213764 in ATF7IP with circulating levels
of tPSA (P = .015) but not with prostate cancer risk (P = .214) or
aggressiveness (P = .737). However, these results were primarily because
of the limited sample size, and further studies with larger sample sizes
are needed to further clarify the relationships. Nevertheless, the exact
mechanism by which genetic variants in ATF7IP may have an effect
on PSA regulation is not known. It is possible that ATF7IP may regu-
late key genes in PSA processing as it does in TERT [29] and thus me-
diates the overall proportion of fPSA in circulation.

The relatively small sample size in the replication set is a limitation
of this study, especially in the analyses restricted to individuals with a
tPSA level range of 2.5 to 10 ng/ml. This may have resulted in false-
negative findings because of limited statistical power. The moderate
sample size also did not provide sufficient power to more extensively
replicate additional suggestive signals (e.g., P values ranging from 10−3

to 10−5) observed in the REDUCE GWAS. In addition, the different
levels of %fPSA between REDUCE and CAPS may also result in false-
negative results. However, this is not a major concern since we success-
fully replicated our findings in the CAPS population. Nevertheless, the
two identified variants could explain only 2% of variance of %fPSA,
which may lead to limited clinical utility. The identification of addi-
tional genetic loci that contribute to the level of %fPSA is needed in
order to define a more differentiated personal cutoff value. The clinical
value of personalized PSA test also needs to be evaluated in other inde-
pendent and large prospective studies.
Conclusions
Two loci at 12p13 (rs3213764 in ATF7IP) and 19q13 (rs1354774
near KLK2) are identified to be associated with %fPSA. These find-
ings may provide insight into individual variance of %fPSA and may
be clinically useful for improving the predictive accuracy of %fPSA in
PSA screening.
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Table W1. Selected Characteristics of Participants in REDUCE and CAPS.
Characteristic*
 REDUCE†
 CAPS
All [N = 3239 (%)]
 Non-cases in Placebo [N = 1244 (%)]
 Cases in Placebo [N = 410 (%)]
 Controls [N = 1722 (%)]
 Cases [N = 2899 (%)]
Age (years)

Mean ± SD
 62.76 ± 6.00
 62.22 ± 6.01
 63.52 ± 5.98
 67.14 ± 7.39
 66.37 ± 7.14

Range
 49–76
 49–76
 50–76
 45–80
 45–82

<63
 1561 (48.19)
 639 (51.37)
 185 (45.12)
 547 (31.77)
 998 (34.43)

≥63
 1678 (51.81)
 605 (48.63)
 225 (54.88)
 1175 (68.23)
 1901 (65.57)
tPSA level (ng/ml)

Median (Q1–Q3)
 5.7 (4.4–7.2)
 5.7 (4.3–7.2)
 5.7 (4.7–7.4)
 1.45 (0.78–2.92)
 12.0 (7.0–34.0)

<2.5
 8 (0.25)
 4 (0.32)
 0
 1204 (69.96)
 57 (2.03)

2.5–3.9
 529 (16.37)
 220 (17.74)
 50 (12.22)
 234 (13.60)
 91 (3.23)

4.0–10.0
 2677 (82.85)
 1011 (81.53)
 358 (87.53)
 230 (13.36)
 1082 (38.45)

>10.0
 17 (0.53)
 5 (0.40)
 1 (0.24)
 53 (3.08)
 1584 (56.29)

Missing
 8
 4
 1
 1
 79
fPSA level (ng/ml)

Median (Q1–Q3)
 0.9 (0.7–1.2)
 0.9 (0.7–1.2)
 0.9 (0.6–1.2)
 0.45 (0.27–0.79)
 0.31 (0.03–1.21)

<0.70
 799 (24.74)
 302 (24.37)
 103 (25.18)
 1222 (71.01)
 1828 (63.19)

0.70–0.89
 718 (22.23)
 296 (23.89)
 93 (22.74)
 147 (8.54)
 135 (4.67)

0.90–1.20
 1043 (32.29)
 398 (32.12)
 134 (32.76)
 131 (7.61)
 203 (7.02)

>1.20
 670 (20.74)
 243 (19.613)
 79 (19.32)
 221 (12.84)
 727 (25.13)

Missing
 9
 5
 1
 1
 6
%fPSA (%)

Median (Q1–Q3)
 16.0 (12.5–20.0)
 16.0 (12.5–19.79)
 15.52 (11.63–18.87)
 31.1 (23.4–40.3)
 15.5 (10.85–23.2)

<10.0
 330 (10.22)
 109 (8.80)
 65 (15.89)
 27 (1.55)
 460 (20.68)

10.0–25.0
 2679 (82.94)
 1044 (84.26)
 320 (78.24)
 496 (28.49)
 1291 (58.05)

>25.0
 221 (6.84)
 86 (6.94)
 24 (5.87)
 1218 (69.96)
 473 (21.27)

Missing
 9
 5
 1
 5
 651
Prostate cancer‡
Nonaggressive (%)
 286 (69.76)
 1619 (56.81)

Aggressive (%)
 124 (30.24)
 1231 (43.19)
*Age, tPSA and fPSA levels, and %fPSA were measured at baseline for REDUCE, at recruitment for CAPS controls, and at diagnosis for CAPS cases.
†Cases were prostate cancer patients newly diagnosed in the placebo group during a 4-year follow-up.
‡For REDUCE, those who developed a prostate tumor with a Gleason score of 7 or higher, stage T3b or higher, and/or lymph node or metastasis positive (N+ or M+, respectively) were defined as having
an aggressive disease; for CAPS, patients were classified as having aggressive disease if their tumors had a clinical stage of T3/T4, N+, M+, Gleason score of 8 or higher, or a serum PSA level of >50 ng/ml;
otherwise, the patients were classified as nonaggressive cases.
Table W2. Summary Results for Selected SNPs Associated with %fPSA in REDUCE GWAS and Replication in CAPS Controls with Intermediate tPSA Levels (2.5–10 ng/ml).
Chromosome
 SNP
 Position
 Major/Minor Allele
 GWAS in REDUCE (N = 3192)
 Replication in CAPS (N = 464)
 Pcombined*
MAF
 Mean†
 β
 P‡
 MAF
 Mean†
 β
 P‡
2
 rs1432302
 122669620
 C/T
 0.298
 16.13/16.83/17.19
 0.042
 6.42E−06
 0.302
 26.12/25.86/24.73
 −0.015
 0.581
 3.96E−05

7
 rs7456553
 1210051
 T/C
 0.380
 17.04/16.29/15.84
 −0.043
 1.15E−06
 0.384
 26.27/25.11/27.17
 −0.010
 0.697
 2.10E−06

7
 rs10238880
 26441399
 T/C
 0.182
 16.85/15.94/15.06
 −0.052
 4.06E−06
 0.212
 25.18/27.27/24.09
 0.039
 0.217
 8.82E−05

12
 rs3213764
 14478568
 A/G
 0.467
 15.73/16.61/17.34
 0.049
 1.85E−08
 0.504
 23.85/26.22/27.15
 0.065
 9.65E−03
 6.45E−10

19
 rs1354774
 56084930
 A/G
 0.343
 15.64/17.14/17.45
 0.058
 7.39E−11
 0.309
 23.98/27.82/27.05
 0.075
 4.71E−03
 1.25E−12
*Pcombined values were estimated using inverse variance–weighted meta-analyses according to regression coefficients (β ) and corresponding SEs.
†Mean levels of %fPSA (%) by genotypes (major homozygote/heterozygote/minor homozygote).
‡P values were from linear regression models adjusted for age.



Table W3. Summary Results for Selected SNPs Associated with %fPSA in REDUCE GWAS and Replication in All of the CAPS Controls.
Chromosome
 SNP
 Position
 Major/Minor Allele
 GWAS in REDUCE (N = 3192)
 Replication in CAPS (N = 1722)
 Pcombined*
MAF
 Mean†
 β
 P‡
 MAF
 Mean†
 β
 P‡
2
 rs1432302
 122669620
 C/T
 0.298
 16.13/16.83/17.19
 0.042
 6.42E−06
 0.297
 32.37/32.62/32.58
 0.005
 0.730
 4.99E−05

7
 rs7456553
 1210051
 T/C
 0.380
 17.04/16.29/15.84
 −0.043
 1.15E−06
 0.378
 32.61/32.27/32.74
 0.001
 0.936
 3.65E−05

7
 rs10238880
 26441399
 T/C
 0.182
 16.85/15.94/15.06
 −0.052
 4.06E−06
 0.213
 32.43/32.69/31.48
 0.007
 0.691
 2.56E−04

12
 rs3213764
 14478568
 A/G
 0.467
 15.73/16.61/17.34
 0.049
 1.85E−08
 0.499
 31.21/32.85/33.02
 0.032
 0.023
 1.97E−09

19
 rs1354774
 56084930
 A/G
 0.343
 15.64/17.14/17.45
 0.058
 7.39E−11
 0.335
 29.77/34.50/35.34
 0.101
 1.05E−11
 6.48E−20
*Pcombined values were estimated using inverse variance–weighted meta-analyses according to regression coefficients (β ) and corresponding SEs.
†Mean levels of %fPSA (%) by genotypes (major homozygote/heterozygote/minor homozygote).
‡P values were from linear regression models adjusted for age.
Figure W1. Q-Q plots and genomic inflation factors (λ) for the associations with %fPSA, with observed P values plotted as a function of
expected P values; red areas indicate the 90% confidence region from a null distribution of P values (generated from 100 simulations).



Table W4. SNPs at 12p13 and 19q13 Associated with %fPSA with a P Value Less than 1 × 10−5.
Chromosome
 SNP
 Position
 Status
 Major/Minor Allele
 MAF
 Mean*
 β
 SE
 P†
 LD with Lead SNP‡
 P Conditioned by Lead SNP§
SNPs at 12p13 associated with %fPSA

12
 rs6488674
 14380181
 Genotyped
 G/T
 0.459
 15.92/16.49/17.36
 0.041
 0.009
 2.70E−06
 0.822
 0.534

12
 rs6488679
 14412643
 Imputed
 T/G
 0.493
 15.84/16.50/17.34
 0.043
 0.009
 9.73E−07
 0.745
 0.881

12
 rs7137532
 14415239
 Imputed
 T/G
 0.493
 15.85/16.51/17.35
 0.043
 0.009
 1.02E−06
 0.745
 0.871

12
 rs7312042
 14424757
 Imputed
 A/G
 0.490
 15.85/16.46/17.34
 0.043
 0.009
 9.38E−07
 0.747
 0.826

12
 rs11055956
 14425693
 Imputed
 A/G
 0.490
 15.83/16.48/17.35
 0.044
 0.009
 5.72E−07
 0.746
 0.696

12
 rs11055960
 14427933
 Imputed
 T/G
 0.447
 15.92/16.56/17.41
 0.042
 0.009
 1.93E−06
 0.905
 0.149

12
 rs10734875
 14433808
 Imputed
 G/A
 0.489
 15.85/16.48/17.35
 0.043
 0.009
 6.29E−07
 0.747
 0.708

12
 rs7954210
 14439581
 Imputed
 C/A
 0.487
 15.81/16.49/17.38
 0.045
 0.009
 1.80E−07
 0.773
 0.297

12
 rs7966054
 14442292
 Imputed
 C/T
 0.445
 15.92/16.56/17.42
 0.043
 0.009
 1.12E−06
 0.907
 0.155

12
 rs7970587
 14466726
 Genotyped
 G/A
 0.486
 15.82/16.49/17.37
 0.045
 0.009
 2.05E−07
 0.746
 0.496

12
 rs2417349
 14472716
 Imputed
 C/T
 0.411
 17.20/16.28/15.61
 −0.047
 0.009
 1.06E−07
 0.617
 0.126

12
 rs3213764
 14478568
 Genotyped
 A/G
 0.467
 15.73/16.61/17.34
 0.049
 0.009
 1.85E−08
 –
 –
12
 rs10772782
 14484110
 Imputed
 A/G
 0.383
 17.16/16.31/15.53
 −0.046
 0.009
 3.96E−07
 0.564
 0.118

12
 rs7310929
 14485169
 Genotyped
 T/C
 0.375
 17.14/16.31/15.48
 −0.046
 0.009
 1.69E−07
 0.527
 0.087

12
 rs7964899
 14487023
 Imputed
 G/A
 0.446
 15.93/16.56/17.42
 0.042
 0.009
 1.47E−06
 0.908
 0.154

12
 rs7298685
 14498988
 Genotyped
 C/A
 0.433
 17.25/16.27/15.89
 −0.040
 0.009
 4.09E−06
 0.520
 0.406

12
 rs12366507
 14500066
 Imputed
 G/A
 0.438
 17.26/16.30/15.87
 −0.039
 0.009
 6.31E−06
 0.531
 0.434

12
 rs962504
 14501706
 Imputed
 G/A
 0.448
 15.91/16.54/17.42
 0.043
 0.009
 1.03E−06
 0.926
 0.278

12
 rs11055980
 14502789
 Imputed
 C/T
 0.450
 15.86/16.54/17.42
 0.045
 0.009
 4.52E−07
 0.937
 0.575

12
 rs4764090
 14503590
 Imputed
 A/G
 0.450
 15.86/16.54/17.42
 0.045
 0.009
 4.38E−07
 0.939
 0.548

12
 rs4237951
 14515841
 Imputed
 A/C
 0.413
 17.21/16.31/15.63
 −0.046
 0.009
 2.15E−07
 0.621
 0.128

12
 rs2900333
 14545134
 Imputed
 C/T
 0.372
 17.16/16.27/15.44
 −0.049
 0.009
 6.51E−08
 0.538
 0.048

SNPs at 19q13 associated with %fPSA

19
 rs198972
 56071705
 Genotyped
 G/A
 0.296
 15.84/17.25/16.97
 0.048
 0.009
 2.78E−07
 0.519
 0.499

19
 rs16987929
 56077065
 Genotyped
 A/G
 0.240
 15.92/17.29/17.70
 0.065
 0.010
 7.90E−11
 0.591
 0.020

19
 rs8103659
 56077214
 Imputed
 A/G
 0.235
 15.92/17.30/17.74
 0.065
 0.010
 1.35E−10
 0.593
 0.040

19
 rs198957
 56081372
 Imputed
 C/T
 0.341
 15.63/17.19/17.36
 0.057
 0.009
 1.81E−10
 1.000
 –
19
 rs198956
 56082165
 Imputed
 A/G
 0.342
 15.63/17.18/17.36
 0.057
 0.009
 1.83E−10
 1.000
 –
19
 rs7256586
 56082621
 Imputed
 C/A
 0.238
 15.93/17.28/17.77
 0.066
 0.010
 6.51E−11
 0.614
 0.018

19
 rs1354774
 56084930
 Genotyped
 A/G
 0.343
 15.64/17.14/17.45
 0.058
 0.009
 7.39E−11
 –
 –
19
 rs2739482
 56086098
 Imputed
 C/T
 0.343
 15.64/17.14/17.39
 0.057
 0.009
 2.28E−10
 1.000
 –
19
 rs61044983
 56088734
 Imputed
 G/T
 0.238
 15.93/17.27/17.77
 0.065
 0.010
 7.77E−11
 0.617
 0.019

19
 rs8105985
 56089883
 Imputed
 C/A
 0.238
 15.93/17.27/17.77
 0.065
 0.010
 7.77E−11
 0.617
 0.019

19
 rs1629856
 56090700
 Imputed
 A/C
 0.343
 15.64/17.14/17.41
 0.057
 0.009
 1.68E−10
 1.000
 –
*Mean levels of %fPSA (%) by genotypes (major homozygote/heterozygote/minor homozygote).
†P values were from linear regression models adjusted for age.
‡The r2 values were presented as a measure of LD for each SNP at 12p13 or 19q13 with rs3213764 or rs1354774, respectively.
§P values were from linear regression models adjusted for age and conditioned by rs3213764 at 12p13 or rs154774 at 19q13.



Figure W2. Cumulative distribution of the personalized %fPSA cutoff values after genetic correction. Personalized %fPSA cutoff values
(shown on the Y-axis) were estimated by using a genetic correction for the two %fPSA-associated SNPs (rs3213764 and rs1354774) to
the commonly used %fPSA cutoff value of 0.25 in the GSK (red line) and CAPS (blue line) study populations. The X-axis represents the
percentile of the population.


