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Arabidopsis thaliana is an important model organism for understanding the genetics and molecular biology of plants. Its
highly selfing nature, small size, short generation time, small genome size, and wide geographic distribution make it an ideal
model organism for understanding natural variation. Genome-wide association studies (GWAS) have proven a useful
technique for identifying genetic loci responsible for natural variation in A. thaliana. Previously genotyped accessions (natural
inbred lines) can be grown in replicate under different conditions and phenotyped for different traits. These important features
greatly simplify association mapping of traits and allow for systematic dissection of the genetics of natural variation by the
entire A. thaliana community. To facilitate this, we present GWAPP, an interactive Web-based application for conducting
GWAS in A. thaliana. Using an efficient implementation of a linear mixed model, traits measured for a subset of 1386 publicly
available ecotypes can be uploaded and mapped with a mixed model and other methods in just a couple of minutes. GWAPP
features an extensive, interactive, and user-friendly interface that includes interactive Manhattan plots and linkage disequilibrium
plots. It also facilitates exploratory data analysis by implementing features such as the inclusion of candidate polymorphisms in
the model as cofactors.

INTRODUCTION

Genome-wide association studies (GWAS) are rapidly becoming
the dominant paradigm for investigating the genetics of natural
phenotypic variation. Although GWAS have primarily been used
for human diseases, they have also been successful in mapping
causal variants in many other organisms, including Arabidopsis
thaliana, which is an ideal organism for such studies. In partic-
ular, the ready availability of diverse inbred lines that have al-
ready been genotyped means that it is possible for anyone to
carry out GWAS by simply ordering and phenotyping these lines
(Atwell et al., 2010; Todesco et al., 2010; Baxter et al., 2010;
Horton et al., 2012). The only remaining obstacle is the statistical
analysis. A. thaliana generally displays strong and complex
population structure, mainly due to isolation by distance (Platt
et al., 2010), and this must unequivocally be taken into account

in any GWAS (Aranzana et al., 2005; Atwell et al., 2010). The only
statistical method that appears to be effective for this purpose in
A. thaliana is a mixed model that takes population structure into
account using a genetic relatedness matrix (Yu et al., 2006;
Zhao et al., 2007). Software that implements these models ex-
ists (Bradbury et al., 2007; Kang et al., 2010; Zhang et al., 2010;
Lipka et al., 2011; Lippert et al., 2011; Zhou and Stephens, 2012;
Svishcheva et al., 2012), but requires the user to provide both
the genotype and phenotype data, as well as filtering and or-
dering the data appropriately. In addition, they provide little or no
help in analyzing the results. Some of these concerns were re-
cently addressed in Matapax (Childs et al., 2012), a Web-based
pipeline for conducting GWAS in A. thaliana, which includes some
interactive features but still requires the user to wait hours for the
results.
Here, we present GWAPP, a user-friendly and interactive Web

application for GWAS in A. thaliana. GWAPP places a strong
emphasis on informative and efficient visualization tools for in-
terpreting the GWAS results and provides interactive features
that allow for hands-on in-depth analysis. Using efficient im-
plementations of both a Wilcoxon rank sum test and an ap-
proximate mixed model (Kang et al., 2010; Zhang et al., 2010),
the mapping is performed on-the-fly, with genome-wide scans
for ;206,000 single nucleotide polymorphisms (SNPs) and 1386
individuals completed in minutes. GWAPP enables the user to
view, select subsets, and choose an appropriate transformation
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before carrying out the GWAS. It allows the inclusion of SNPs as
cofactors in the model in an interactive manner and provides
guidelines for how to do this. With interactive Manhattan plots of
association P values along the chromosomes, GWAPP allows
for a quick summary of the results, as well as visualizations of
both genome-wide and local linkage disequilibrium patterns. By
zooming in on certain regions of interest, down to gene level, the
P values are displayed together with the gene models and their
annotation in fast interactive plots. We also display population
genetic statistics, including selection scores and recombination
rate estimates (Horton et al., 2012). GWAPP can be accessed at

http://gwas.gmi.oeaw.ac.at; all code is public and can be ob-
tained at https://github.com/timeu/GWAPP.

RESULTS

User Interface

GWAPP consists of a Web front end with a graphical user in-
terface, and a back end that handles the data and performs the
mapping. The main menu in the top section contains five entries
that allow access to different functions of the Web front end.

Figure 1. Phenotype View.

The phenotype view shows phenotype specific information in four panels. Panel (A) displays phenotype name and number of values. In (B), a list of data
sets is shown. Selecting a data set from that list will update the geographic distribution map (C). Two bar charts in (D) show statistical information about
the phenotype. The navigation tree on the left side (E) reflects the stored phenotype structure and is used to access different views.
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HOME is the landing page and provides general information
about GWAPP and a quick tutorial. A more detailed tutorial and
description of the functionality can be found under the HELP
tab. The ACCESSIONS section displays a list of the 1386 pub-
licly available A. thaliana accessions for which GWAPP provides
genotype data. This page also displays information about the
geographic distribution of the data set and the location of each
accession. In the UPLOAD PHENOTYPE section, phenotypes
can be uploaded. The server supports multiple phenotypes, and
these are stored, together with any analysis results, on the server
and tied to a unique data set key and a cookie on the user’s client
computer. This allows the user to continue the analysis from where
he left off, without having to redo any previous analysis steps, from
a different computer. The ANALYSIS section is the most important
part of the Web interface, where users can view the uploaded

phenotypes, create data sets, apply transformations, run GWAS,
and analyze the results. We will discuss these features further in
the following sections.

ANALYSIS Page

Once a phenotype file has been uploaded, the user can verify
and view the phenotype(s) on the ANALYSIS page. The page is
split into two sections: (1) a hierarchical tree on the left side in
the “Navigation” box allows quick access to different pheno-
types that have been uploaded and four levels of information
(see Supplemental Figure 1 online); and (2) the right section of
the ANALYSIS page, which is used for displaying the main con-
tent. The components in the hierarchical tree reflect the stored
phenotype data structure. The four levels of information are (1)

Figure 2. Data Set View.

(A) The filter box allows the user to exclude specific accessions as well as change the name and the description of the data set.
(B) The data set list displays information for each accession in the data set. In edit mode, the user can use the checkbox to add and remove accessions
from the data set.
(C) A Google map shows the locations of all accessions in the data set. Clicking on one marker will show a pop-up with information about the name and
ID of the selected accession.
(D) The geographic distribution map (GeoMap) shows the geographic distribution of the accessions in the data set. Moving the mouse over a country
will show the number of accessions located in that region.

GWAPP 4795

http://www.plantcell.org/cgi/content/full/tpc.112.108068/DC1


Figure 3. Transformation View.

The transformation view consists of four panels. The list of stored transformations is displayed in (A). The use can create a new transformation, delete
an existing one, or run one of three available GWAS analysis methods on the transformed phenotype values. Dependent on the selected transformation
a histogram of the transformed phenotype values are displayed below the transformation list (B). The Accession-Phenotype-Explorer (C) visualizes
additional accession information through a bar chart or a scatterplot. Panel (D) shows the stored GWAS results for the specific transformation.



the root level contains phenotype information, (2) each phenotype
contains one or more subsets of the data, (3) each data set can
have one or more transformations, and (4) each transformation
can contain one or more GWAS results.

Phenotype View

The phenotype view (Figure 1) is visible upon selecting a specific
phenotype from the left navigation tree. Information is displayed
in three related information panels. The top panel contains gen-
eral information about the selected phenotype (Figure 1A). The
center panel contains a list of all data sets, where a data set is
defined as a subset of lines with phenotype values, together with
the geographic distribution of the phenotyped accessions (Fig-
ures 1B and 1C). By default, every uploaded phenotype contains
a “Fullset” data set that contains all the phenotype values avail-
able. The plot showing the geographical distribution is updated
when a different data set (subset) is chosen. In the bottom panels
(Figure 1D), basic statistics are shown for all the data sets.

Data Set View

By choosing an existing data set or by creating a new one, the
user is directed to the data set view (Figure 2). This view consists

of a list of the accessions and two geographical plots. Using the
list of accessions, the user can edit or create new data sets/
subsets that contain, for example, only accessions from a spe-
cific country or collection. Using the list and the geographical
map, the user can exclude, or include, certain accessions from
specific regions. As different advantageous alleles can be ex-
pected to arise in some local adaptation scenarios (Chan et al.,
2010), it may be beneficial for some traits to use regional data
sets for mapping causal alleles.

Transformation View

Applying a transformation to the phenotype may result in more
reliable results for parametric tests. The transformation aims to
facilitate the process of selecting a reasonable transformation,
allowing the user to instantly preview the resulting phenotypic
distribution. The view consists of four panels (Figure 3). The
center panel (Figure 3C) contains a phenotype-explorer com-
ponent (Huang et al., 2011), which, among other things, allows
the user to plot phenotype values against latitude and longitude
in a motion chart.
The transformations implemented include logarithmic, square

root, and Box-Cox transformations (Box and Cox, 1964). The P

Figure 4. Result View.

The result view displays GWAS plots for each of the five chromosomes. Each GWAS plot itself consists of three panels. The top panel (A) contains
a scatterplot. The positions on the chromosome are on the x axis and the score on the y axis. The dots in the scatterplot represent SNPs (E). A
horizontal dashed line (H) shows the 5% FDR threshold. At the top of the GWAS results view, a search box for genes is displayed (D). These genes will
be displayed as a colored band (red in the figure). The second panel (B) shows the gene annotation and is only shown for a specific zoom range (<1.5
Mb). It will display genes, gene features, and gene names. Moving the mouse over a gene will display additional information in a pop-up (F), and clicking
on a gene will open the TAIR page for the specific gene. Panel (C) displays various chromosome-wide statistics. The region highlighted by a yellow
band (I) is shown in the scatterplot and in the gene annotation. The gear icon opens a pop-up (G) with the available statistics the user can choose from.
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value for Shapiro-Wilks test for normality is reported in the
histogram and may assist in choosing an appropriate trans-
formation. However, we note that choosing an appropriate
transformation in structured samples is not trivial since phe-
notypes are expected to have a multivariate distribution with
non-zero correlations (Fisher, 1918). Since the phenotypes are
not independent observations, their distribution may deviate
from a bell-shaped univariate Gaussian distribution, even if
they follow a multivariate Gaussian distribution. After deciding
on a transformation, a genome-wide association scan can be
performed. In the current version, the user can choose be-
tween (1) a nonparametric Wilcoxon rank sum test (Wilcoxon,
1945), (2) a simple linear regression (LM), and (3) an acceler-
ated mixed model (AMM). AMM first performs a genome-wide
scan using the approximate inference proposed by Zhang
et al. (2010) and Kang et al. (2010) and then updates the smallest
100 P values using an exact mixed model inference (Kang
et al., 2008). Both LM and AMM employ a parametric F-test to
obtain the P values. For examining P value bias due to pop-
ulation stratification, one can use the Kolmogorov-Smirnov
statistic, the median P value, as well as the QQ plots (Atwell
et al., 2010).

Results View

The results view has two main components that can be ac-
cessed via the Plots and Statistics tabs. Under the Plots tab, an
interactive Manhattan plot (a scatterplot with the negative log-
arithm P values for the SNP association plotted against the SNP
positions) for all five chromosomes is shown. The Benjamini-
Hochberg-Yekutieli multiple testing procedure (Benjamini and
Yekutieli, 2001) was used to control the false discovery rate.
Assuming arbitrary dependence between SNPs, the 5% false
discovery rate (FDR) threshold is plotted as a dashed horizontal
line. Moving the mouse over a specific point in the plot will
display the position of the corresponding SNP and its P value.
The Manhattan plot supports zooming, which can be achieved
by a “click, hold, and drag mouse” gesture that defines the area
for the zoom action. If the zoom level is below a specific
threshold (;1.5 Mb), a gene annotation view (GeneViewer),
which we developed specifically for this application, is displayed
(Figure 4). Moving the mouse over a point in the Manhattan plot
will also display a vertical line in the gene annotation view. If the
zoom level is below 150 kb, a more detailed gene annotation
view containing gene features (e.g., the coding sequence region

Figure 5. LD Visualization.

The LD is shown for a specific region with 500 SNPs. The triangle plot below (B) the gene annotation panel shows the r2 values for the 500 SNPs. Only r2

values above a certain threshold (0.3) are color coded, ranging from yellow (low) to red (high).
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and the untranslated regions will be shown). Moving the mouse
over a specific gene in the GeneViewer will display a pop-up
with additional functional description for the gene. Clicking on
the gene will direct the user to The Arabidopsis Information Re-
source (TAIR) website for the gene, containing more detailed in-
formation. Finally, the user can highlight specific genes using a
gene search field above the scatterplot for the first chromosome.

When the zoom level in the P value plot is below ;1.5 Mb,
a statistics panel is displayed below the gene annotations. By
default, the statistics panel will show the gene density as a filled
bar chart, but other statistics can be selected by clicking on the
gears icon. Currently, five other statistics can be chosen: (1)
Wright’s fixation index, Fst, between north and south (Lewontin
and Krakauer, 1973); (2) the composite likelihood ratio (CLR)

Figure 6. First AMM Scan for Flowering Time.

A screenshot showing the first mixed-model scan for flowering time, highlighting the positions of four interesting candidate genes (FT, FRI, FLC, and
DOG1) for which there seem to be associations.
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from Sweepfinder (Nielsen et al., 2005); (3) the pairwise haplotype-
sharing score (PHS) (Toomajian et al., 2006); (4) a recombination
estimate (rho) (McVean et al., 2004); and (5) sequence similarity
with Arabidopsis lyrata (Hu et al., 2011). Four of these statistics,
Fst, CLR, PHS, and the recombination rate estimate, were cal-
culated using the data set of Horton et al. (2012) and may not be

representative for the subset being analyzed. In an attempt to
address this issue, the user can upload statistics provided in a
file with three comma-separated columns (chromosome, posi-
tion, and value). This further enables the user to plot miscel-
laneous statistics underneath the Manhattan plots. All of the
plotted statistics are binned and displayed in a similar interactive

Figure 7. Conditional Mixed-Model Scans for Flowering Time.

The first AMM scan (A) without any cofactors is shown on the left. The second AMM scan (B) in the middle is the result from adding the SNP with the
smallest P value within the FRI gene into the model as a cofactor. Finally, the third AMM scan (C) on the right is the result from adding the top SNP from
the middle figure, which is 5 kb upstream of the FRI gene into the model as a cofactor. The negative log P values are shown on the y axis and the
positions on the x axis. The 5% FDR threshold is denoted by a horizontal, dashed, green line.

Figure 8. Partition of Variance for the Conditional Mixed-Model Scans.

Two screenshots showing the five SNPs included in the model (A) and how the partition of phenotypic variance changes as the five cofactors (FRI, FT,
FLC, and DOG1) are added to the mixed model (B).
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chart as the P values, which also allows for vertical and hori-
zontal zooming. The region that the user has zoomed in on in the
P value chart is highlighted in yellow. The bin size used to show
the statistics can be adjusted by changing the number in the
white text box in the lower left corner of the plot.

Users can also visualize the linkage disequilibrium (LD) struc-
ture. This can be done by clicking on any SNP and choosing from
three different methods: (1) show LD in this region, (2) calculate
exact LD in this region, and (3) highlight SNPs in LD for this SNP.

The first two options (“show LD in this region” and “calculate
exact LD in this region”) display a LD triangle plot below the
gene annotation panel and color code the SNPs in the Man-
hattan plot (Figure 5). The difference between the first two op-
tions is that the former only displays r2 values for the visible
SNPs and the latter will calculate and show the r2 values of all
SNPs regardless if they are displayed or not. Both options dis-
play pairwise r2 values of at most 500 SNPs (due to limitations
regarding visualization and computational complexity). For the
sake of visual clarity, only r2 values above 0.3 are color coded.
Furthermore, selecting an SNP in the Manhattan plot will color
code all neighboring SNPs according to their r2 value. At the
same time, all pairwise r2 values in the triangle plot will be high-
lighted (see Supplemental Figure 2 online). Similarly, when a spe-
cific r2 value in the triangle plot is selected, the corresponding pair
of SNPs in the Manhattan plot and the triangle plot is highlighted
with corresponding color coding (see Supplemental Figure 3 on-
line). Lastly, the third option (“highlight SNPs in LD for this SNP”)
will calculate genome-wide r2 values between the selected SNP
and all other displayed SNPs and color code them in the Man-
hattan plot (see Supplemental Figure 4 online).

When using AMM, SNPs can be included as cofactors in
the mixed model by clicking on a specific SNP and choosing
“run conditional GWAS.” This allows the user to perform condi-
tional analysis on both local and global scales. Including causal loci
in the model has been shown to be beneficial for finding other
causal markers in structured data (Segura et al., 2012; Vilhjálmsson
and Nordborg, 2012). The second tab of the results view contains
statistical descriptors and plots, which are useful when com-
paring models with different SNPs included as cofactors. These
include three different model selection criteria: (1) the Bayesian
information criterion (Schwarz, 1978), (2) the extended Bayesian
information criterion (Chen and Chen, 2008), and (3) the multiple
Bonferroni criterion (Segura et al., 2012). These model selection
criteria can guide the user to select reasonable models (and
cofactors) in the absence of other prior knowledge. AMM has
the added advantage that it estimates the variance components,
from which the overall narrow sense heritability estimates (also
known as the pseudo-heritability) can be obtained. When co-
factors are included and the analysis is rerun, these estimates
are updated, providing an overview of how the phenotypic
variance is partitioned among three categories: (1) the fixed ef-
fects (i.e., the variance explained by the SNP cofactors); (2)
the random genetic term, which estimates the amount of un-
explained variance attributable to genetics; and (3) the random
error term, which is the fraction of variance attributed to random
noise. These statistics provide a rough estimate of whether, and
to what degree, further genetic effects can be detected. Hence,
if the remaining genetic fraction of phenotypic variance is small,

there may not be much reason for including more cofactors in
the model.

A GWAPP Analysis Example for Flowering Time

To demonstrate how GWAPP can be used to make real bi-
ological discoveries, we use a flowering time data set published
by Li et al. (2010). We focus on flowering time measured in 479
plants grown in growth chambers set to simulate Swedish spring
conditions (Li et al., 2010). Flowering time in A. thaliana has been
extensively studied with both linkage mapping (Salomé et al.,
2011) and GWAS (Atwell et al., 2010; Brachi et al., 2010; Li et al.,
2010). Furthermore, several genes have been shown to harbor
genetic variants that affect flowering time, including FLOWERING
LOCUS C (FLC) (Michaels and Amasino, 1999) and FRIGIDA (FRI)
(Johanson et al., 2000).
For the association mapping, we transformed the phenotypes

using a logarithmic transformation, which yields values that gener-
ally cause extreme late flowering plants to be less extreme. We then
used AMM to map the phenotype, resulting in several interesting
regions (Figure 6), including ones harboring known flowering genes,
such as FRI (Johanson et al., 2000), FLC, FLOWERING LOCUS
T (FT) (Huang et al., 2005; Shindo et al., 2005), and DELAY OF
GERMINATION1 (DOG1) (Alonso-Blanco et al., 2003; Bentsink
et al., 2006) (although DOG1 is not a traditional candidate gene
for flowering time, it has repeatedly been suggested to affect
flowering time in recent GWAS studies; Atwell et al., 2010; Brachi
et al., 2010; Li et al., 2010).
Zooming in on the FRI gene (chromosome 4, position 269025

to 271503), we conditioned the most significant SNP within the
gene [position 269260, 2log(p) = 4.8]. This results in a very dif-
ferent association landscape around the FRI region, causing other
SNPs near FRI to become significant at the 5% FDR threshold,
where the SNP with the genome-wide smallest P value (negative

Figure 9. Runtime for Different Mapping Methods.

The time, from starting the analysis until the P values are visible in the
Manhattan plot, is plotted against the number of individuals used for the
GWAS. Lines for all three mapping methods are shown: AMM, LM, and
the Wilcoxon rank sum test.
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log P value 7.7) was at position 264,496, <5 kb from the tran-
scription start site of FRI (Figure 7). After adding this SNP to the
model as a cofactor, both SNPs become significant at the 5%
FDR threshold and appear to explain most of the signal in the
region. These results are consistent with what is known about the
role of FRI in flowering time (Aranzana et al., 2005; Shindo et al.,
2005) (i.e., there are at least two segregating variants within and
near FRI that affect flowering time). Given that the indels are in
negative linkage disequilibrium, it is not surprising that the signal
becomes more pronounced after conditioning on one SNP within
FRI (Atwell et al., 2010; Platt et al., 2010). Although the two known
causal variants are not included in the data set, because they are
indels not SNPs, our analysis is still consistent with the known
allelic heterogeneity.

We also included the most significant SNPs near known
candidate genes, FLC, FT, and DOG1, in the model as co-
factors. By doing so, many of the remaining peaks observed in
the original scan dissipated (see Supplemental Figure 5 online),
leading us to believe that they were synthetic associations
(Dickson et al., 2010; Platt et al., 2010). However, two peaks on
chromosome 5 still remain. The first of these is located in the
pericentromeric region (12.51 to 12.56 Mb) and contains only
a handful of genes, none of which are obvious candidates (see
Supplemental Table 1 online). The second region (25.34 to 25.40
Mb) spans roughly 60 kb and includes SNPs with genome-wide
significant P values. This region does not contain any obvious
candidate genes (see Supplemental Table 2 online); however, it
overlaps with a quantitative trait locus region recently observed
for flowering time (Salomé et al., 2011).

Finally, the mixed model estimated the narrow-sense heritability
of flowering time to be 100%, which may seem extreme, but in
fact is not far from the more robust broad-sense estimate of 92%.
The five cofactors included in the model explained 43% of the
phenotypic variance. The estimated fraction of remaining genetic
variance was 57%, and the estimated fraction of remaining error
variance was 0% (Figure 8). This indicates that there are still un-
explained genetic effects in the genome, with the two remaining
peaks on chromosome 5 as prime candidate regions.

DISCUSSION

This article is part of our overall effort to enable the Arabidopsis
community to capitalize on the unique resources of thousands
of densely genotyped lines. Over 1300 lines have been geno-
typed using a 250k SNP chip (Horton et al., 2012), and a thou-
sand more will be sequenced by the end of this year (Cao et al.,
2011; Gan et al., 2011; www.1001genomes.org). It is our hope
that these lines will be routinely phenotyped to reveal function-
ally important polymorphisms via GWAS. One obstacle to this
becoming a reality is the difficulty of analyzing the data: Over-
coming this difficulty is the direct objective of this work.

Our goal was to provide an easy-to-use tool for GWAS that
enables users to focus on biology instead of spending time
programming or converting file formats. All that is required is
a simple import of the phenotypic data, which can easily be
managed in a spreadsheet. GWAPP provides several interactive
features, including the possibility of analyzing different subsets
of the sample as well as some basic transformations of the raw

phenotypic data. With interactive Manhattan and genome an-
notation plots, it is possible to browse through the results, zoom
in on association peaks, and quickly gain an overview of what
genes may harbor causal variants. Patterns of LD can analyzed,
both local LD patterns as well as genome-wide LD patterns,
which are calculated on-the-fly. To further aid interpretation,
several statistics, including recombination rate and selection
statistics, can be plotted along the chromosome. Conditional
analysis using SNPs as cofactors makes it possible to investigate
genetic heterogeneity, and estimates of variance components
provide insight into the genetic architecture of the traits (Yang
et al., 2010). Furthermore, GWAPP can do all this in minutes.
Using similarly sized data sets for benchmarking, as used for the
benchmarks in Matapax (Childs et al., 2012), we observed up to
50-fold increase in speed for a mixed model analysis of a single
trait (see Methods).
To demonstrate how one might use GWAPP, we reanalyzed

a previously published flowering time phenotype data set (Li
et al., 2010). By leveraging a priori biological knowledge, we
identified two independent loci near FRI, which when included in
the mixed model explain a quarter of the total phenotypic vari-
ance. After including associated SNPs near four genes known to
be involved in flowering time, there were still loci of potential
interest. Interestingly, one of these is in a region that was re-
cently shown to be associated with flowering time in a linkage
mapping study (Salomé et al., 2011).
The Web application presented here, GWAPP, is a work in

progress. It can be extended in several ways, and we are ac-
tively working on this. Most obviously, we will continuously in-
crease the SNP data set by including overlapping SNP data from
newly sequenced accessions (Cao et al., 2011; Gan et al., 2011).
We will of course make it possible to use full sequence data from
the 1001 genomes project, but this will require optimizations in
order to run in real time. Another major improvement will be the
ability to look for pleiotropy by looking for associations across
all published phenotypic data. With the cooperation of the Arabi-
dopsis community, it should be possible to establish a database
that aims to functionally annotate every segregating polymor-
phism in the genome.
More trivially, the interface, tools, and methods can easily be

changed, updated, and expanded based on user input. Finally,
although GWAPP is currently dedicated to GWAS in A. thaliana,
some parts of the application, including the interactive plots
and the underlying data structures and mapping algorithms, can
readily applied to data from other organisms, including humans.
By structuring the application in modules, certain parts (e.g.,
interactive visualization components or the association mapping
algorithms) can be easily reused for other projects. Importantly,
all source code for our application is freely available.

METHODS

Genotype Data

The genotype data used was obtained by combining data from two
different sources, namely, 1386Arabidopsis thaliana accessions that were
genotyped for 214k SNPs (Horton et al., 2012) and 80 A. thaliana ac-
cessions that were sequenced using next-generation sequencing (Cao
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et al., 2011). One accession (Fei-0) was characterized in both analyses (n =
1386), and we used the SNP calls from Horton et al., (2012) to correct the
discordant SNPassignments (discordant ratewas2.5%). For the sequence
data, we extracted the base calls corresponding to the 214k SNP positions
from the combined matrix and imputed the missing alleles with BEAGLE
version 3.3.1 (Browning and Browning, 2011). We used 30 iterations for the
imputation, with the full merged data set as phased input. All triallelic SNPs
were discarded for simplicity, leaving 206,087 SNPs in the final data set.
The coordinates shown in the browser are TAIR 10 coordinates.

GWAPP does not provide any easy way to upload custom genotype
data yet. However, users can download the virtual machine (VM) image of
the application (see section VM image) and replace or extend the provided
genotype data with custom ones.

Web Application

In order to minimize installation time and allow for widespread access, we
implemented GWAPP as a Web application. The only client-side re-
quirement is a browser that supports HTML5. The application consists of
a back end, front end, and data exchange protocol (see Supplemental
Figure 6 online). The server front end is the part of GWAPP that the user
interacts with. The user interface and all visualization tools used for the
analysis are a part of the front end. The front end is primarily implemented
using modern Web technologies (HTML5 and Javascript). The back-end
implements all association mapping methods, various statistics, and
performs all handling of data, such as parsing, coordination, and filtering
of phenotypes and genotypes. The back end is written almost entirely in
Python and is all server side. Finally, the data exchange protocol com-
municates between the front end and the back end. The implementation
details for the server (i.e., front end, back end, and the data exchange
protocol) are described in Supplemental Methods 1 online.

VM Image

Since genotype data are typically large in size, GWAPP does not support
uploading custom genotype data. Instead, we provide a shrink-wrapped
package that has a version of GWAPP and all dependencies preinstalled
and preconfigured as a VM image. The package also includes all non-
standard packages necessary for installation and deployment of GWAPP
on either on-premise/private cloud or public cloud services. The VM image
can be downloaded here: https://cynin.gmi.oeaw.ac.at/home/resources/
gwapp/gwapp.

Further information for installing GWAPP locally is provided there, in-
cluding information on how to use a different genotype data set than the
Horton et al. (2012) data set: https://cynin.gmi.oeaw.ac.at/home/resources/
gwapp/gwapp.

Mapping Methods

Three different mapping methods were implemented for GWAPP: a
standard linear regression (LM), an AMM (Kang et al., 2010; Zhang et al.,
2010), and a Wilcoxon rank sum test (Wilcoxon, 1945). AMM differs
slightly from EMMAX (Kang et al., 2010) and P3D (Zhang et al., 2010), in
that it reestimates the P values for the k = 100most significant SNPs using
exact inference (Kang et al., 2008; Lippert et al., 2011). The exact in-
ference reestimates the variance components with the SNP in the model
as a cofactor and then uses these updated variance components to
reestimate the P value of that SNP. AMMhas running time complexity ofO
(n2m+n3k), where n denotes the number of individuals and m the number
of SNPs. If we choose k#m/n, the running time becomesO(n2m) (i.e., the
same as EMMAX [Kang et al., 2010], FaST-LMM [Lippert et al., 2011], and
GEMMA [Zhou and Stephens, 2012]). Furthermore, LM and AMM were
implemented to allow for inclusion of SNPs into the model (Segura et al.,
2012) using the Gram-Schmidt process to ensure efficiency regardless of

the number of cofactors included. See online methods in Segura et al.
(2012) for further details. The three mapping methods were imple-
mented in Python by extending mixmogam (https://github.com/bvilhjal/
mixmogam) (Segura et al., 2012). We compiled SciPy (Jones et al., 2001)
with the GotoBlas2 (Goto and Van de Geijn, 2008) Basic Linear Algebra
Subroutines implementation on the publicly available GWAPP Web
server. For AMM, the genetic relatedness matrix used is the identity by
state (IBS) genetic relatedness matrix, which for a pair of individuals is the
fraction of shared alleles among segregating SNPs in the sample. This is
calculated a priori for the full genotype data set and then adjusted for each
specific subset of accessions by removing the contributions of SNPs,
which are not segregating the subset (monomorphic SNPs).

Runtime Analysis

To benchmark the performance of GWAPP, six data sets were generated
using random phenotype values (sampled from a uniform distribution),
and using all 214k SNPs. The benchmark was conducted on the public
Web server, where GotoBlas2 (which is used by AMM and LM for linear
algebra operations) was configured to use up to four cores. The time was
measured from pressing the analysis method button until all the P values
were displayed in the Manhattan plots. All three mapping methods fin-
ished within 5 min for all the data sets (Figure 9). AMM was considerably
slower than the other two, but all methods finished the analysis within 2
min when using <500 individuals. This is ;50 times faster than Matapax
(Childs et al., 2012), which requiredmore than 1 h to run on 500 individuals
using a single trait and a similar sized genotype data set.

Accession Numbers

The four candidate genes for flowering time have the following Arabidopsis
Genome Initiative locus identifiers: FRI (At4g00650), FLC (At5g10140), FT
(At1g65480), and DOG1 (At5g45830). The genotype data can be found
here: https://cynin.gmi.oeaw.ac.at/home/resources/atpolydb/250k-snp-
data/call_method_82.tar.gz/view. GWAPP can be accessed at: http://gwas.
gmi.oeaw.ac.at. All code is public and can be obtained at https://github.com/
timeu/GWAPP.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. Analysis Levels of GWAPP.

Supplemental Figure 2. LD Visualization: Highlighting an SNP.

Supplemental Figure 3. LD Visualization: Highlighting an r2 Value.

Supplemental Figure 4. Genome-Wide LD Visualization.

Supplemental Figure 5. AMM Scan after Conditioning on Five SNPs.

Supplemental Figure 6. Overview of the Web Application Structure.

Supplemental Table 1. Genes Located in a Region (12.51 to 12.56 Mb)
on Chromosome 5, Which Displayed Association with Flowering Time.

Supplemental Table 2. Genes Located in a 60-kb Region (25.34 to
25.39 Mb) on Chromosome 5, Which Displayed Association with
Flowering Time.

Supplemental Methods 1. GWAPP Implementation Details.
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