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Hair follicles facilitate the study of stem cell behavior because stem
cells in progressive activation stages, ordered within the follicle
architecture, are capable of cyclic regeneration. To study the gene
network governing the homeostasis of hair bulge stem cells, we
developed a Keratin 15-driven genetic model to directly perturb
molecular signaling in the stem cells. We visualize the behavior of
these modified stem cells, evaluating their hair-regenerating ability
and profile their molecular expression. Bone morphogenetic protein
(BMP)-inactivated stem cells exhibit molecular profiles resembling
those of hair germs, yet still possess multipotentiality in vivo. These
cells also exhibit up-regulation of Wnt7a, Wnt7b, and Wnt16 ligands
and Frizzled (Fzd) 10 receptor. We demonstrate direct transcriptional
modulation of the Wnt7a promoter. These results highlight a previ-
ously unknown intra-stem cell antagonistic competition, between
BMP and Wnt signaling, to balance stem cell activity. Reduced BMP
signaling and increased Wnt signaling tilts each stem cell toward
a hair germ fate and, vice versa, based on a continuous scale de-
pendent on the ratio of BMP/Wnt activity. This work reveals one
more hierarchical layer regulating stem cell homeostasis beneath
the stem cell–dermal papilla-based epithelial–mesenchymal inter-
action layer and the hair follicle–intradermal adipocyte-based
tissue interaction layer. Although hierarchical layers are all
based on BMP/Wnt signaling, the multilayered control ensures
that all information is taken into consideration and allows hair
stem cells to sum up the total activators/inhibitors involved in
making the decision of activation.
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Understanding the basic processes that maintain the homeo-
stasis of adult stem cells (SCs) and how they respond to

physiological changes (1) and injury (2) throughout life is of fun-
damental importance. Regeneration of hair follicles (HFs) is an
excellent model because of the distinct topological layout of stem
cell populations, their ability to activate cyclically, and their re-
sponsiveness to multilayered environmental modulators (3). In
adult skin, each HF contains a reservoir of hair follicle stem cells
(hfSCs), with label-retaining, slow-cycling cells localized in the
bulge (4, 5). hfSCs maintain self-renewal and multipotency in vitro
as well as in vivo and are able to regenerate epidermis, HFs, and
sebaceous glands (6–8). HFs undergo episodic cycles of growth
(anagen), degeneration (catagen), and rest (telogen) (9). Although
hfSCs are the main engine that fuels the growth phase, other cells
localized in the hair germ (HG) are primed to initiate HF re-
generation in response to dermal papilla (DP) signals (10). During
the hair cycle, the behavior of slow-cycling hfSCs is tightly governed
by an intricate balance of two known signaling pathways [bone
morphogenetic protein (BMP) and wingless-type MMTV in-
tegration site family (Wnt)] that converge to induce bouts of hfSC
quiescence and activation, resulting in new hair formation (11–13).
Apart from the intrafollicular role played by the DP on SCs,

extrafollicular s.c. adipose tissue affects hfSC activity via BMPs
(13), DKK, Sfrp4 (14), and PDGF (15). Furthermore, hfSCs
respond to body hormone status (3) and changes in circadian

rhythms (16, 17). Thus, hfSCs present a unique adult stem cell
population for us to identify the essential property of a robust
gene network capable of maintaining stem cell homeostasis while
allowing plasticity to shift between a continuum of quiescent and
activated states before becoming irreversibly committed. To be
responsive to various physiological conditions, this stem cell gene
network module must sense multiple signal inputs. BMP signaling
is essential for hair cycling (12, 18–22), and Wnt pathway acti-
vation is required to stimulate hair growth (23). Although there is
evidence for cross talk between the BMP- and Wnt-signaling
pathways in hair follicles (12, 18), direct perturbation of molec-
ular networks within hfSCs in vivo has not been explored.
In this report, we address the underlying molecular mecha-

nisms of BMP signaling in hfSC regulation in vivo. We developed
strategies to isolate, characterize, and culture hfSCs where BMP
signaling was inactivated. Gene expression data revealed puta-
tive in vivo targets of BMP signaling in hfSCs. hfSCs switched
from quiescence to activation and acquired molecular charac-
teristics resembling the HG. Interestingly, these activated hfSCs
behaved differently from the HG and still maintained charac-
teristics of SCs when cultured in vitro and multipotency after
transplantation in vivo. hfSCswith suppressedBMP signaling have
altered BMP and Wnt pathway expression. Together, our results
suggest an intrinsic mechanism of ligand–receptor-dependent
cross talk between BMP and Wnt signaling in hfSC homeostasis.

Results
Use of a Genetic Model to Visualize hfSC Molecular Dynamics with
Direct Modulation of BMP Levels in Vivo.Because CD34 is lost upon
BMP inhibition, it has been difficult to isolate these cells via cell
sorting. We overcame this obstacle by generating BMP receptor
1A (Bmpr1a) floxed mice using a keratin 15 promoter (K15)-
driven recombinase (Cre) conjugated to a truncated progesterone
receptor (PR) (K15CrePR) (Fig. S1A) (7). Along with specific
inactivation of BMP signaling in hfSCs, we simultaneously labeled
hfSCs by crossing these mice with a Cre-dependent YFP (yellow
fluorescent protein) reporter knocked into the ubiquitously
expressed Rosa26 locus (R26YFP) (Fig. S1A) (24). Offspring
frommatings of K15CrePR/Bmpr1a(fl/+)/YFP(fl/+) mice yielded
litters of the expected numbers, genotype, and Mendelian ratios
(Fig. S1 B and C). RU486 (RU) was applied topically to back skin
(BS) of adult mice to induce Cre-dependent recombination
when HFs were in the second extended and synchronized post-
natal telogen at postnatal day 43 (P43) (Fig. 1A) and were in-
distinguishable at the end of RU treatment at P59 (Fig. 1B andE).
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Before RU treatment, K15CrePRRU/Bmpr1a(fl/fl)/YFP(fl/+) or
K15CrePRRU/Bmpr1a(fl/fl)/YFP(fl/fl) (cKO) were indistinguish-
able from control (CON) animals. As expected, RU inducible
conditional knockout (cKORU) mice at P120 showed a strong
phenotype with visible hair loss [Fig. S1E vs. Fig. S1D, control
after RU treatment (CONRU)], which confirmed high re-
combination efficiency in vivo (12). At P59, after 16 d of RU
treatment, activated YFP expression in both cKORU (Fig. 1 F–G)
and CONRU (Fig. 1 C and D) bulges displayed telogen HFs with
quiescent morphology verified by BrdU incorporation into YFP+
hfSCs (Fig. S1G and F). This was also confirmed by fluorescence-
activated cell sorting (FACS) analysis, checking selective BrdU
incorporation into YFP-positive hfSCs at P59 (Fig. S1 J–K′).
However, at P62, cKORU follicles displayed precocious anagen
activation with numerous BrdU-labeled cells in the bulge and HG
(Fig. S1I), whereas CONRU HFs were still in telogen (Fig. S1H).
Thus, before morphological changes occurred at P59, we isolated
YFP+ hfSCs from cKORU or CONRU by FACS (Fig. 1 J and H,
respectively). Approximately 1–2% of the whole BS cell pop-
ulation was YFP+. These YFP+ cKORU or CONRU hfSC pop-
ulations were then fractionated into three distinct subpopulations
by using α6-integrin and CD34 antibody staining as previously
described (6): YFP+ α6+; YFP+ CD34+ (suprabasal hfSCs) and
YFP+ α6+ CD34+ (basal hfSCs, marked by R1 gate) (Fig. 1 K
and I, R1 gates, respectively). Although morphologically the HFs
remained in telogen phase, upon BMP signaling inactivation,
hfSC CD34 marker expression was decreased in cKORU cells
(Fig. S1M), compared with CONRU YFP+ CD34 high fractions
(Fig. S1L). This was confirmed by immunofluorescent staining for
CD34 (compare Fig. S1 O and Q with Fig. S1 N and P).

Reducing BMP Signaling in hfSCs Induces Hair Germ-Like Molecular
Characteristics. To characterize target genes relevant for BMP
signaling, total RNAs from cKORU and CONRU basal hfSC pop-

ulations (b-hfSCs; YFP+ α6+ CD34+; Fig. 1 K and I, R1) were
used to perform microarray analysis. We confirmed that Bmpr1a
was efficiently targeted in cKORU hfSC populations by RT-PCR
detection of an exon 2 deletion in the sorted YFP+ b-hfSCs
fraction (Fig. S2A). In our microarray dataset, we first focused on
changes in the signature genes commonly up-regulated in qui-
escent hfSCs (5, 6, 10, 25). Inhibition of BMP signaling in the
hair bulge resulted in the down-regulation of 103 gene probes
(∼24%) whereas only 16 of 426 probes tested (∼4%) were up-
regulated (Table S1). We then investigated potential similarities
between cKORU hfSCs and the HG by performing immunos-
taining against P-cadherin (Pcad), which is highly expressed by

A

P59 CON
RU

B

YFP+ CON
RU

Bu

Bu

Bu

Bu

Bu

C D
P59 cKO

RU

E

Bu
Bu

Bu
Bu Bu

F G

C
D

3
4

a6-integrin

YFP+ CON
RU

Forward scatter

Y
F

P
+

C
D

3
4

a6-integrinForward scatter

Y
F

P
+

YFP+ cKO
RU

YFP+ CON
RU

YFP+ cKO
RU

KJIH

RU486

A
n
a
g
e
n

A
n
a
g
e
n

A
n
a
g
e
n

C
a
ta

g
e
n

C
a
ta

g
e
n

T
e
lo

g
e
n

T
e
lo

g
e
n

P1 P7 P14 P21 P28 P35 P42 P49 P56 P63 P70 P77

P43 P59

YFP+ cKO
RU

R1 R1

Fig. 1. Labeling and isolation hfSCs after BMP-signaling inhibition in vivo. (A)
Chart illustrating the first and second postnatal hair cycles with RU adminis-
tration. (B and E) CONRU and cKORU mice showed no differences phenotypi-
cally at the end of RU treatment (P59). (C and F) Whole-mount back-skin view
of the dermis from CONRU and cKORU mice showing specific activation of YFP
in the hfSCs after 16 d of RU treatment. (D and G) Sections through the HFs
from CONRU and cKORU skin showing YFP-positive bulges in telogen. (H and J)
Isolation of YFP+ CONRU and cKORU bulge cells fromwhole-mount back skin by
FACS. (I and K) YFP+ fractions from CONRU and cKORU were further gated into
three distinct subpopulations: YFP+CD34+ (suprabasal hfSCs); YFP+α6+CD34+
(basal hfSCs, R1 gates) and YFP+ α6+. Bu, bulge; RU, RU486. (Scale bars: 50 μm.)
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Fig. 2. hfSCs after BMP inhibition in vivo switch from quiescence to acti-
vation and acquire molecular characteristics resembling the HG. (A–B and
C–D) At P59, in CONRU HFs, strong P-cadherin staining was restricted to the
HG and did not overlap with YFP+ cells in the bulge (arrows). In the bulge of
cKORU HFs, P-cadherin staining was expanded and increased with over-
lapping expression observed by YFP+ cells in both the HG and the bulge
(arrows). (I–J and G–H) At P62 in the bulge of cKORU, elevated P-cadherin
correlated with YFP activation (arrows), whereas, in the CONRU bulge, P-
cadherin staining was absent. (E–F and K–L) At P59 and P62, FACS analysis
confirmed increased P-cadherin staining in YFP+ cKORU hfSCs compared with
CONRU, respectively. (M) Changes in the pool of HG signature genes in cKORU

hfSCs were either up-regulated (red type) or down-regulated (green type).
Only three genes characterized in cKORU hfSCs were inversely regulated,
namely BMP6, NFATc1, and Col20α1 (marked in blue). (Scale bars: 50 μm.)
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the HG (10). At P59, strong Pcad staining was restricted to the
CONRU HG with the majority of bulge cells expressing YFP
alone (Fig. 2 A and B), whereas Pcad staining was expanded
in the cKORU bulge and overlapped with activated YFP+ HG
and bulge cells (Fig. 2 C and D). Furthermore, 3 d later at P62,
stronger Pcad staining in the cKORU bulge correlated with YFP
activation (Fig. 2 I and J), whereas the CONRU bulge remained
Pcad-negative (Fig. 2 G and H). These findings were confirmed
using FACS analysis at P59 (Fig. 2 E and F) and P62 (Fig. 2 K
and L). Then we tested changes in the pool of HG signature
genes in cKORU hfSCs (10). Our data demonstrated that cKORU

hfSCs acquire some molecular characteristics resembling the
HG; 32% of the previously characterized HG signature genes
were either up- or down-regulated following BMP inhibition (Fig.
2M; genes in red and green type, respectively; Table S2). Sur-
prisingly, only three genes characterized in cKORU hfSCs did not
follow similar changes observed in the HG signature genes. In
fact, BMP6, NFATc1, and Col20α1 were inversely regulated
(Fig. 2M; genes in blue type; Table S2). These changes in gene
expression were verified by real-time PCR using independent
FACS-isolated biological samples (Fig. S3).

BMP-Inactivated Stem Cells Retain Multipotentiality. We then
evaluated the self-renewing capacity of FACS isolated and
cultured b-hfSCs from cKORU and CONRU (Fig. S2B). After
initially similar attachment rates (Fig. S2C, 24 h) over a period
of 7 d, cKORU hfSCs displayed a faster proliferation rate with
a larger overall colony size (defined as more than four cells)
over CONRU hfSCs (Fig. S2B, days 3–7 and Fig. S2C, day 7 and
FACS). Indeed, although colony-forming efficiency was rela-
tively similar during the first 3 d (Fig. S2D), cKORU hfSC colonies
were significantly larger than CONRU ones with a higher aver-
age cell number per colony (Fig. S2E). Both cKORU and CONRU

hfSC lines could be passaged multiple times (>20 passages). Next,
we checked if cKORU hfSCs retained multipotency characteristics
and regenerative potential in vivo by performing chamber graft
experiments (Fig. S2F) (26). Cultured YFP+ hfSCs from both
cKORU and CONRU were mixed with freshly isolated newborn
dermal fibroblasts and engrafted into athymic mice (Fig. 3 A and F
and Fig. S2F). Following removal of the chamber dome 2 wk after
engraftment, the grafts became covered by YFP+ epidermis (Fig.
3 B and G), indicating survival of the hfSCs (Fig. 3 C and H). At 8
wk post engraftment, we observed visible hair (with shafts) on the
surface of the CONRU but not the cKORU grafted regions (Fig. 3
D and I, respectively). However, graft cryosections revealed that
YFP+ hfSCs from cKORU and CONRU retained multipotency by
regenerating YFP+ epidermis and HFs in vivo, although cKORU

hair shaft formation was compromised (Fig. 3 J and E).

Altered Gene Profile in BMP-Inactivated Stem Cells Reveals a Dynamic
Molecular Equilibrium Within hfSCs. Both BMP and Wnt signaling
are known to be crucial for hfSC homeostasis regulation (5, 7, 12,
23, 25, 27). Therefore, we looked for changes in our cKORU

hfSC microarray data and found profoundly altered expression
of genes involved in both pathways (Fig. 4A). The majority of
these gene changes were consistent with patterns of gene ex-
pression obtained from another microarray dataset generated
using independent biological samples from the whole fractions
of YFP+ CONRU and cKORU hfSCs (Fig. 4A). These data were
confirmed by qPCR (Fig. 4B). After initial BMP inactivation, we
observed down-regulation of Gremlin and Bambi (BMP antag-
onists) and up-regulation of BMP6 (BMP agonist). Additionally,
Wnt signaling-associated genes such as Dkk3, Fzd2, and Fzd3
(up-regulated in hfSCs) (5–7) were down-regulated in cKORU

hfSCs (Fig. 4A). Genes proposed to be direct targets of BMP
signaling, Id2 and Id3 (28, 29), and known to be up-regulated in
hfSCs (5–7), were consistently down-regulated in cKORU hfSCs
(Fig. 4 A and B). Unexpectedly, BMP inhibition in hfSCs up-
regulated the expression of three other Wnt ligands: Wnt7a,
Wnt7b, andWnt16, previously not described to play a role in hfSC
regulation. This was accompanied by activation of only one Wnt
receptor, Fzd 10 (Fig. 4A). We focused on Wnt7a and confirmed
its up-regulation in cKORU hfSCs by qPCR in independent
FACS-sorted YFP+ biological samples (Fig. 4B). Immunostain-
ing localized the up-regulated Wnt7a to the bulge and HG of
cKORU hfSCs at P59 (Fig. 4D, arrows) whereas CONRU hfSCs
remained negative (Fig. 4C). During precocious anagen in
cKORU hfSCs at P62, we observed stronger Wnt7a staining in
both theHG and the bulge over negative CONRU (Fig. 4H andG,
arrows, respectively). It correlated well with stabilized nuclear
β-catenin staining in cKORU hfSCs at both P59 and P62 (Fig. 4 F
and J) whereas telogen CONRU hfSCs remained negative (Fig. 4
E and I). We confirmed that Wnt7a was present in the bulge and
HG during the physiological onset of anagen at P21 (Fig. 4M).
This staining was negative in telogen HFs at P18 (Fig. 4K). Again
there was a correlation with stabilized nuclear β-catenin staining
in the hfSCs (Fig. 4 N vs. L).
In contrast, the normal up-regulation of Wnt7a at P21 was

fully inhibited in FACS-sorted K15-GFP+/double-transgenic
(dTg) hfSCs (Fig. S4A) (12) after in vivo BMP pathway activa-
tion produced by 3 d of doxycycline (Doxy) treatment (Fig. S4B,
Dox; Fig. 4O, P21 vs. P21+Dox). This was confirmed by qPCR.
Skin sections showed that anagen onset was blocked in K15-
GFP+/dTg (Fig. S4 D′ vs. D and C, P21 and P18), keeping the
skin in a prolonged telogen (Fig. S4 E′ vs. E, P25). Long-term
Doxy treatment of these mice resulted in baldness (Fig. S4 G′ vs.
G). Chromatin immunoprecipitation (ChIP) assays of P21
FACS-isolated K15-GFP+/dTg hfSCs (Fig. S4D′) confirmed that
BMP activation results in Phospho-Smads (P-Smads) directly
binding to the Wnt7a promoter and to a known control target,
Id2 (Fig. 4T). These interactions were not detected in P21 con-
trol hfSCs at anagen onset (Fig. 4T). In addition, nonspecific IgG
precipitations were also negative (Fig. 4T). Additionally, at P25,
after 7 d of BMP activation by Doxy treatment, K15-GFP+/dTg
HFs exhibiting K15-GFP in the bulge region remained in telogen
(Fig. S4E′). In contrast, control hfSCs had transitioned into
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Fig. 3. hfSCs without BMP signaling maintain
stem cell characteristics and their multipotency in
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and engrafted into athymic mice (B, G, C, and H).
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CONRU and cKORU grafts showed YFP+ epidermis
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were repeated in triplicate (n = 3) using two independent FACS-isolated cell lines for both the cKORU and CONRU hfSCs. (Scale bars: 50 μm.)
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anagen (Fig. S4E, Inset). At this time point, flow cytometry
revealed more P-Smad–positive cells in K15-GFP+/dTg (Fig.
S4F′) than in anagen K15-GFP+/control hfSCs (Fig. S4F). We
further confirmed that other Wnt pathway components identified
in our microarray, such as Wnt7b and Fzd10 (Fig. 4A), were also
expressed at the protein level in the bulge and HG during
physiological anagen activation at P21 (Fig. 4 P–S).

Augmentation of Wnt Signaling by Ectopic Wnt7a Induces Precocious
Activation of hfSCs. Recently, s.c.-injected Wnt7a soaked beads
were shown to promote nuclear β-catenin stabilization in the HG
of epithelial stem cells (EpSCs) and melanocyte stem cells
(McSCs) (30). However, that research did not show whether
Wnt7a promoted hfSC and HG activation as well as self-renewal.
Thus, to test the functional significance of Wnt7a expression in
hfSC homeostasis in vivo, we s.c.-injected CON mice with PBS
(control) or recombinant Wnt7a-coated agarose beads during
the second prolonged quiescent telogen (Fig. S5A). After 5 d of
daily bead injections evaluated at P59 and P62, H&E staining
revealed an increased HG size in HFs in close proximity to the
Wnt7a-coated beads (Fig. 4 V and V′ and Fig. S5C), showing
morphological signs of precocious synchronized hfSC activation
(>90% of HFs). In contrast, controls remained in telogen (Fig. 4
U and U′ and Fig. S5B). To test this possibility further, we ad-
ministered 3-h pulses of BrdU before skin samples were pro-
cessed. At P59, Wnt7a-treated HFs displayed numerous BrdU-
labeled HG and lower bulge cells (Fig. 4X, Inset, arrows),
whereas PBS-treated control HFs were in telogen without any
visible bulge/HG cells incorporating BrdU (Fig. 4W). The pro-
liferation status of HFs after ectopic Wnt7a exposure was also
confirmed by proliferating cell nuclear antigen (PCNA) staining
at P62 (Fig. S5E). PCNA staining was negative in control HFs
(Fig. S5D). In addition, we confirmed triple-positive staining for
Ki67 staining, CD34, and YFP in the lower bulge region (Fig.
S5G), whereas control telogen HFs remained Ki67-negative (Fig.
S5F). Consequently, with concomitant synchronized hfSCs acti-
vation, nuclear β-catenin stabilization was observed in lower bulge
hfSCs, predominantly in the HG adjacent to Wnt7a-soaked
beads. This demonstrates that canonical Wnt pathway induction
occurs precociously in the HG and lower bulge hfSCs in response
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Fig. 4. Intrinsic changes in gene expression of BMP and Wnt signaling in
hfSCs upon BMP inhibition. Subcutaneous injection of Wnt7a induces pre-
cocious telogen-to-anagen transition. (A) Microarray datasets of P59 cKORU

b-hfSCs (YFP + α6+ CD34+ subpopulation) and cKORU YFP+ hfSCs from two
independent biological samples showed similar expression patterns of genes
involved in both the BMP and Wnt pathways. (B) qPCR analysis confirmed
microarray data, using FACS-sorted YFP+ CONRU and cKORU hfSCs at P59. (C

and D) Wnt7a protein staining was up-regulated in the bulge and HG of
cKORU but not present in CONRU hfSCs at P59 when HFs remained in telogen
(arrows). (G and H) At P62, when precocious anagen takes place in cKORU

HFs, strong Wnt7a staining is found in both the bulge and the HG regions of
cKORU HFs, but not in the CONRU. (F and J) Nuclear β-catenin staining in
cKORU hfSCs at P59 and P62. (E and I) No nuclear β-catenin staining was
visible in CONRU hfSCs at P59 and P62. (M and K) Wnt7a staining was present
at the onset of the physiological anagen at P21 in the bulge and HG, but not
at P18 telogen HFs. (N and L) At P21, physiological up-regulation of Wnt7a
staining correlated with nuclear β-catenin staining in bulge hfSCs, but no
nuclear β-catenin stabilization was observed in telogen HFs at P18. (O) qPCR
analysis showed a physiological ∼5×-fold increase in Wnt7a gene expression
between P18 and P21 in FACS-sorted GFP+ hfSCs without Doxy treatment.
After activation of BMP signaling by Doxy treatment in hfSCs at P18, Wnt7a
up-regulation was inhibited at P21. (Q and S) Wnt7b and Fzd10 up-regula-
tion in the P21 bulge and HG at physiological telogen–anagen transition,
respectively. (P and R) At telogen P18, controls remain negative in HG and
bulge. (T) In vivo ChIP PCR reveals selective precipitation of DNA fragments
that possess canonical Smad-binding motifs. Schematic representation of
primers designed to flank conserved Smad-binding elements within the
promoter regions of mouse ID2 and Wnt7a. (U and V) H&E staining after s.c.
injection of Wnt7a- or PBS-coated agarose beads during the second telogen
showed increased HG size of HFs in proximity to Wnt7a-coated beads, but
HFs adjacent to PBS-coated agarose beads remained in telogen. (U′ and V′)
Higher magnification of the H&E staining from U and V. (X and W) At P62,
Wnt7a-treated HFs displayed BrdU-labeled HG and lower bulge cells
(arrows), whereas no BrdU incorporation was visible in PBS-treated control
HFs. (Z and Y) The lower bulge hfSCs and most of the HG adjacent to the
Wnt7a-soaked beads showed nuclear β-catenin staining, whereas PBS con-
trol HFs remained negative. (Scale bars: 50 μm.)
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to exogenous Wnt7a ligand (Fig. 4Z) whereas the PBS control
remains negative (Fig. 4Y).

Discussion
Here we demonstrate the salient features of the hfSC gene net-
work. We show how the delicate balance between BMP and Wnt
activity within each bulge stem cell can maintain stem cell status in
a state ready to be activated toward hair germ fate upon reduction
of BMP signaling or enhanced Wnt signaling. On the other hand,
excessive BMP signaling, whether derived from an intra- or extra-
folliclular source, can lock hfSCs in quiescent states, as observed in
refractory telogen. Such a competitive equilibrium is at the core of
this unique stem cell gene network module, making it able to sense
multilayered environmental regulation (Fig. 5A) to reversibly tilt
toward either activation or quiescent states (Fig. 5 C–C′′).

Characterization of BMP-Inactivated hfSC Reveals a Molecular Module
Capable of Switching Back and Forth Between Activated and Quiescent
States, Allowing Cyclic Regeneration. Our results demonstrate that
more than 50% of all down-regulated signature genes in the HG
(18 of 35 genes) were affected by BMP inhibition (Figs. 2M and 5D;
Fig. S6; Table S2). Strikingly, all of these BMP-dependent down-

regulatedHGgenes are signature genes of the quiescent bulge (Fig.
5D; Fig. S6; Table S2). This shows that inhibition of BMP signaling
in the bulge works as a “switch” to activate quiescent hfSCs in a very
defined and synchronized manner, instructing these cells to par-
tially adopt an intermediate active state resembling the HG (Fig.
5D). Interestingly, in cKORU hfSCs, three genes—BMP6, NFATc1,
and Col20α1—did not adopt the early HG signature expression
pattern and were inversely regulated (Fig. 2M; genes in blue). This
suggests an auto-regulatory feedback loop after BMP inhibition,
which could work as a very early mechanism to reversibly inhibit
hfSCs and return them to a quiescent state, preventing conse-
quences of hfSC overactivation. That is consistent with previously
published data reporting that BMP6 and NFATc1 were involved in
SC quiescence along with FGF18, which has the opposing trend in
our array (10). Although cKORU cells acquired HG-like gene
profiles, these cells maintain multipotency in vivo (Fig. 3 and Fig.
S2). Thus, this experimental condition reflects a status between the
SC and HG states (Fig. 5B), which may be very transient in vivo.
One attractive scenario in light of two recently published reports
(31, 32) is that these cells may be activated to exit the old bulge and
transiently adopt characteristics of upper outer root sheath (ORS)
cells in the direct vicinity of the old bulge. It will be interesting to
test these possibilities in the future.
Putting our and other’s work together, we can appreciate that

the hfSC gene network is capable of tilting toward either the ac-
tivated or the quiescent state and that such conversion is reversible
when the activator/inhibitor ratio is balanced, but gradually can
become committed toward either extreme (Fig. 5 C–C′′).

Cellular-Autonomous Loop Regulates BMP Signaling Within hfSCs.
Our system gives us a unique opportunity to look at hfSC
properties directly at early time points of the telogen–anagen
transition. Surprisingly, hfSCs with suppressed BMP signaling
revealed profound altered expression in the BMP pathway itself.
These data led us to propose a model (Fig. 5 C–C′′) in which
BMP inhibition in hfSCs leads to a cell-autonomous secretion of
BMP6 and suppression of the BMP antagonists Gremlin and
Bambi (Fig. 4 A and B). Our data indicate that the initial con-
sequences of BMP inactivation will be the temporal activation of
hfSCs in telogen HFs (Fig. 5C′′). Then, these activated hfSCs
will gradually start to re-express the BMP agonist, BMP6 (Fig.
5C), which correlates with the simultaneous inhibition of the
BMP antagonists Gremlin and Bambi. The feedback loop will
then reverse after BMP reaches full activation in hfSCs, resulting
in progressive activation of their own antagonists, Gremlin and
Bambi, completing the cycle (Fig. 5C′). In this way, cyclic regu-
lation of agonists (e.g., BMP6) or antagonists (e.g., Bambi,
Grem1) is directly regulated by BMP canonical signaling in hfSCs.

Cross Talk Between BMP and Wnt Signaling Gives hfSCs Unique
Flexibility to Integrate Multilayered Signaling Inputs. Although the
role of β-catenin in hfSCs was discovered more than a decade ago,
whether canonical Wnt-signaling activation is ligand(s)-dependent
or -independent still remains elusive. Here, our data propose an
intrinsic mechanism of hfSC regulation whereby BMP inhibition
regulates ligand–receptor-dependent canonical Wnt activation
(Fig. 5 C–C′′). The data suggest that, after the initial BMP in-
activation, there is intrinsic activation of Wnt7a, Wnt7b, and
Wnt16 ligands in hfSCs, whereas the Wnt antagonist Dkk3 is
suppressed (Figs. 4 A and B and 5 C–C′′). At the same time, the
expression of Wnt receptor Fzd10 is increased. Thus, the decrease
of BMP signaling unleashes Wnt pathway activation via ligand and
receptor up-regulation and antagonist down-regulation.
Is the Wnt activation effect generic or specific? The role of

Wnt7a as an activator for hair regeneration is further evaluated.
Overexpression of Wnt7a in K14-Wnt7a transgenic mice shows
enhanced HF neogenesis after wounding (33). K14-Wnt7a
mice exhibit shortened telogen and continuous propagation of
regenerative waves (14). Wnt7a-soaked beads cause precocious
nuclear β-catenin stabilization in EpSCs and McSCs (30). Wnt7a
can also mediate epidermal–mesenchymal interactions as it is
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important in maintaining the HFs inducing activity of cultured
DP cells (34). Other Wnts such as Wnt10b were visualized in the
lower, permanent portion of the follicular epithelium (ISH) (27,
30). The exogeneous delivery of Wnt10b can lead to anagen
activation (35). The stem cell module here may be able to sense
different Wnts as activators, and we will focus more on the in-
crease of β-catenin activity in hfSC, rather than on specific Wnts.
Is increasedWnt signaling a direct effect of BMP inactivation or

a consequence of hair germ activation? We consistently observed
Wnt ligand and receptor expression changes immediately follow-
ing BMP inactivation in quiescent hfSCs (Fig. 4 A and B and Fig.
S1 F–G and J–K′), whenmost of the canonicalWnt signaling target
genes were not yet affected (Fig. 2M, overlapping Wnt/HG up-
regulated genes, in brown) (10, 25). At this early point, only one
gene, cyclin B1 (ccnb1), overlapped between the Wnt and BMP
pathways following BMP inhibition in hfSCs (Fig. 2M, overlapping
cKORUand Wnt/HG up-regulated genes, underlined in brown).
This delayed activation of most canonical Wnt-dependent cell
cycle target genes after BMP inactivation is consistent with our
model emphasizing that BMP inhibition precedes ligand–receptor-
dependent canonical Wnt up-regulation and hfSC activation.
Finally, we wonder if BMP regulation of Wnt is at the tran-

scriptional level. We were able to repress Wnt7a in vivo using
our BMP gain-of-function, inducible K15-GFP+/dTg system
(Fig. 4O, P21+Dox) and confirmed direct binding of P-Smads to
the Wnt7a promoter in vivo in FACS-isolated hfSCs by ChIP
assay (Fig. 4T) when HFs remained in a BMP-induced telogen at
P21 (Fig. S4D′).
In summary, we are able to demonstrate the key role of BMP

signaling and its cross talk in the gene network governing the
homeostasis of hfSCs. Inactivation of BMP signaling in K15-
positive bulge stem cells reveals intracellular cross talk between

the BMP/Wnt pathways. Such dynamic balance confers hfSCs
with a robust ability to regenerate cyclically and to sense generic
activators and inhibitors when deciding whether to activate or not.

Materials and Methods
Mice and RU486 Treatment Time Line. All mice were housed and bred within
the animal facility at the University of Southern California in accordance
with the Institutional Animal Care and Use Committee (Protocol 11543). A
series of matings were set up using Bmpr1afl/fl mice (36), K15-CrePR1 mice
(7), and Rosa26-STOP-eYFP (24) mice to generate offspring Bmpr1a+/+

(control, CON), Bmpr1afl/+(CON), or Bmpr1afl/fl (knockout, cKO) mice,
which were genotypically positive for K15CrePR and Rosa-STOP-eYFP.
Targeting was achieved by daily application of 2.5 mg/mouse RU486 [(wt/
vol) in 100% ethanol; VWR] for 16 d to shaved back skins at P43 (corre-
sponding to the start of the second postnatal telogen) and ending at P59.

Mice and Doxy Treatment Time Line. Previously generated doxycycline (Doxy)-
inducible double-transgenic (dTg) mice that express a constitutively active
form of Bmpr1a gene (12) were crossed in the background of K15-GFP re-
porter mice (37). GFP+ hair follicle stem cells (hfSCs) for quantitative PCR
(qPCR) analysis were sorted by FACS from either untreated or Doxytreated
(3 d) postnatal day 21 (P21) mice.
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