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Water plays a crucial part in virtually all protein–ligand binding pro-
cesses in and out of equilibrium. Here, we investigate the role of
water in the binding kinetics of a ligand to a prototypical hydro-
phobic pocket by explicit-water molecular dynamics (MD) simula-
tions and implicit diffusional approaches. The concave pocket in the
unbound state exhibits wet/dry hydration oscillations whose mag-
nitude and time scale are significantly amplified by the approaching
ligand. In turn, the ligand’s stochastic motion intimately couples to
the slow hydration fluctuations, leading to a sixfold-enhanced fric-
tion in the vicinity of the pocket entrance. The increased friction
considerably decelerates association in the otherwise barrierless
system, indicating the importance of molecular-scale hydrodynamic
effects in cavity–ligand binding arising due to capillary fluctuations.
We derive and analyze the diffusivity profile and show that the
mean first passage time distribution from the MD simulation can
be accurately reproduced by a standard Brownian dynamics simu-
lation if the appropriate position-dependent friction profile is in-
cluded. However, long-time decays in the water–ligand (random)
force autocorrelation demonstrate violation of the Markovian as-
sumption, challenging standard diffusive approaches for rate pre-
diction. Remarkably, the static friction profile derived from the force
correlations strongly resembles the profile derived on the Markov-
ian assumption apart from a simple shift in space, which can be
rationalized by a time–space retardation in the ligand’s downhill
dynamics toward the pocket. The observed spatiotemporal hydro-
dynamic coupling may be of biological importance providing the
time needed for conformational receptor–ligand adjustments, typi-
cal of the induced-fit paradigm.

hydrodynamics | molecular recognition | hydrophobic interaction |
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Molecular recognition and ligand binding are fundamental in
various fields of molecular and biological sciences. Water is

not just a passive bystander but actively participates in binding
events by partially mediating the interactions between the ligand
and the receptor site (1, 2). Underlying hydration effects are par-
ticularly important in the vicinity of hydrophobic protein patches or
in hydrophobic confinement, where dewetting or capillary fluctu-
ation effects significantly contribute to interactions that drive self-
assembly and association (3–7).
It has been indeed demonstrated that there is a direct corre-

lation between capillary evaporation and the binding affinity of
ligands to hydrophobic protein pockets (8–11). The latter can be
empty, filled, or transiently hydrated depending on geometry and
local polarity (12–14). Hence, it has been suggested that pockets
prone to evaporation represent a general motif for molecular
recognition of hydrophobic groups of ligands that are comple-
mentary to the pocket geometry and displace unfavorable water
molecules (9). Such an expulsion of water from weakly hydrated
cavities upon binding was indeed observed in computer simu-
lations of generic hydrophobic pocket–ligand systems (15–18).
The hydrophobic association was accompanied with a remarkable
enthalpic signature, owing to the highly distorted water network
in the pocket (17–20).

Whereas the effect of solvent fluctuations on equilibrium bind-
ing affinities has attracted much attention, our knowledge of its
influence on binding kinetics and rates is poor, despite its impor-
tance for structure-based drug design and the interpretation of
kinetic measurements. Theoretically, binding rates are often cal-
culated using implicit approaches, where explicit solvent effects are
neglected or only coarsely described (21–24). In the typical view of
diffusive encounter of the two reactants, binding kinetics is then
governed not only by the free energy (potential of mean force)
along the reaction path but also the local diffusivity (or friction)
profile (25–29), which, however, is a priori unknown due tomissing
microscopic insights. In fact, wet/dry hydration fluctuations in the
pocket confinement may propagate a new time scale to binding,
which can range from a few tens of picoseconds to hundreds of
nanoseconds sensitively depending on the size and geometry of the
nanocontainer (11, 15, 30–34).
Very recently, Morrone and coworkers demonstrated that sol-

vent fluctuations give rise to important hydrodynamic interactions
(HI) in hydrophobic collapse. They investigated the interplay be-
tween HI and the free-energy landscape in the pair association
kinetics of fullerenes and hydrophobic plates by explicit-water
molecular dynamics (MD) simulations and diffusive approaches
(35, 36). Local friction was found to increase an order of mag-
nitude due to HI, which slowed the assembly considerably by
opposing the overall favorable free energy. However, mean
binding times were found to be on the order of the time scale of
hydration fluctuations, suggesting a breakdown of the assumption
of diffusive (Markovian) behavior (36). A detailed characteriza-
tion of non-Markovian effects, however, is needed for a better
evaluation of the quality of the theoretical tools used for rate
prediction. Whether the important findings by Morrone and
coworkers are transferable to the biological problem of hydro-
phobic cavity–ligand binding is still unclear.
In the present paper we investigate whether, and to what mag-

nitude, HI are significant in the molecular association of ligands
with hydrophobic pockets. The system is qualitatively different
from related previous studies, as it possesses a concave–convex
geometry, thus serving as a relevant generic prototype for key–
lock-like association events, such as those found for protein–ligand
or host–guest systems. To explore the binding kinetics in detail, we
calculate the mean first passage time (mfpt) (25) distribution and
hydration correlation functions for a ligand binding to a generic
model hydrophobic pocket, as shown in Fig. 1, using explicit-water
MD simulations. Implicit solvent Brownian dynamics (BD) com-
puter simulations and diffusional Smoluchowski approaches are
then used to derive and analyze the spatially dependent friction
profiles, predict mfpt distributions, and illuminate non-Markovian
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effects that are shown to be nonnegligible. Our findings provide
useful perspectives for the improvement of theoretical tools for
binding rate prediction, or the experimental design of functional
ligands, drugs, or synthetic hydrophobic host–guest systems.

Results and Discussion
Distribution of mfpt for Ligand Binding. The mfpt defined in this
study describes the time scale for binding the ligand as a function of
distance from the binding site. The model and coordinate system
are illustrated in Fig. 1. The ligandmoves one-dimensionally in the
z direction, whereas the origin z= 0 is placed right at the pocket
mouth. The mfpt distribution τmfptðz; zf Þ for the ligand to start at
z and reach the target position deep inside the pocket at zf = − 4 Å,
calculated from explicit-water MD simulations, is plotted in Fig.
2A up to a maximum distance zmax = 15:5 Å. The distribution
τmfptðz; zf Þ monotonically increases from zf to zmax because the li-
gand has to travel farther to the pocket from larger distances. At
zmax wefind that it takes the ligand amean τmfptðzmax; zf Þ= 432 ps to
bind to the target. For z< 0 themfpt is vanishingly small, indicating
either a very small solvent friction or a highly attractive potential of
mean force (pmf), that is, the free energy along z.
The pmf V ðzÞ along the reaction pathway is plotted in Fig. 2B.

Two distinct features are observed: first, a small repulsive barrier
of about 0.2 kBT between z ’ 4 and 10 Å; second, a strong linear
decay for z(4:0 with a slope (attractive force) of ’ 0:9kBT=�A.
The latter attraction must be attributed to hydrophobic inter-
actions whose interesting thermodynamics was analyzed in detail
previously (17).
The question now arises whether the mfpt distribution can be

described by a computationally cheap, standard diffusional rate
approach, using the ligand’s bulk self-diffusion constant D0 and
the free-energy landscape V ðzÞ as input. According to diffusional
passage time theory, the mfpt distribution is given by (25)

τmfpt
�
z; zf

�
=

Zz

zf

dz′
eβVðz′Þ
Dðz′Þ

Zzmax

z′

dz″e−βVðz″Þ: [1]

We now use DðzÞ=∞ for z< 0 to account for the fact that
binding is essentially instantaneous once the pocket entrance is
passed, and DðzÞ=D0 for z≥ 0. We calculate a bulk self-diffusion
constant for the ligand in explicit water of D0 = 0:26± 0:01 Å2/ps.
The result for τmfptðz; zf Þ is plotted in Fig. 2A, together with
the prediction from an overdamped BD simulation using the

mean force −dV ðzÞ=dz and a homogeneous friction constant
ξ0 = kBT=D0. Both diffusional approaches yield equivalent
results, whereas the predicted mfpt is too fast by a constant shift
Δτmfpt ’ 90 ps compared with the MD results. In the vicinity of
the pocket (z ’ 4 �A) the relative error Δτmfpt=τmfpt is sub-
stantial (>100%).

Fig. 1. Hydrophobic ligand–pocket model. (Left) MD snapshot of pocketed
wall and ligand (green sphere) in explicit water. (Right) Coordinate system. A
hemispherical, purely nonpolar pocket with a ligand-accessible radius of
jzf j ’ 4:0 Å embedded in a planar wall is in contact with explicit water at
normal conditions. The ligand is modeled by a hydrophobic methane sphere
and is restrained to the symmetry axis z. In the “umbrella runs” the ligand is
additionally constrained to position z0 by a harmonic potential.
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Fig. 2. (A) Distribution of mfptτmfptðz; zf Þ for the ligand to start at z and
reach the target zf = − 4 Å deep inside the hydrophobic pocket. Results from
explicit-water MD simulations (black solid line) are compared with over-
damped BD simulations and the Smoluchowski approach (Eq. 1 without HI
corrections (no HI, red lines). Also shown are BD results including HI cor-
rections derived from the inversion of the Smoluchowski approach, Eq. 2) (HI
Smol, green line) and those from the water–solvent force acf (blue line). (B)
Equilibrium pmf VðzÞ. (C) Diffusivity profile DðzÞ from the inversion of the
Smoluchowski approach, Eq. 2 (black line), its corresponding friction profile
ξðzÞ= kBT=DðzÞ (red line), and a Gaussian fit to the latter (green line). Also
shown is the friction profile

~
ξðzÞ calculated from the solvent force acf (blue

line) as defined in Eq. 5.
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Diffusivity Profile Under the Markovian Assumption. Our results
based on the implicit solvent approach were not sufficient to re-
capitulate themfpt observed in ourMD simulations. This error, we
believe, arises due to themodels’ assumption of constant diffusivity
along the reaction coordinate, which may be inappropriate near
the binding site. This failure may be reconciled by introducing
a local (z-dependent) diffusivity profile DðzÞ or friction profile
ξðzÞ= kBT=DðzÞ. If one assumes the dynamics to be strictly
Markovian, Netz and coworkers recently demonstrated that the
diffusivity profile D(z) can be obtained from theMD-derivedmfpt
by differentiating Eq. 1, leading to (28, 29)

DðzÞ = eβV ðzÞ

∂τmfpt
�
z; zf

�
=∂z

Zzmax

z

dz′e−βVðz′Þ: [2]

The result for DðzÞ, evaluated for the whole range in
−4< z< 15:5 Å, is displayed in Fig. 2C. The diffusivity profile is
constant and close to D0 for larger distances from the pocket,
whereas deviations arise for z< 8 Å. Remarkably, for z(4Å the
diffusivity decreases to a minimum value of D=D0 ’ 0:15 at z ’
1:6 Å, that is, the diffusion is slowed down by a factor of 6 in the
vicinity of the pocket entrance. After passing the pocket mouth
at z= 0 the diffusivity significantly increases inside the pocket,
pointing to a sharp transition to ballistic motion. The corre-
sponding friction profile ξðzÞ= kBT=DðzÞ is also shown in Fig. 2C
and can be fitted to a Gaussian distribution

ξðzÞ= ξ0 +Δξ exp
h�
z− zp

�2=σ2i; [3]

with the peak at zp = 1:65 Å, Δξ=ξ0 = 5:1, and width σ = 1:0 Å.
The characteristics of the friction profile are qualitatively similar
to those calculated between associating fullerenes and hydropho-
bic plates (35, 36).
By construction, the diffusivity profile DðzÞ derived from Eq. 2

used in Eq. 1 exactly reproduces theMD-derived mfpt distribution
in Fig. 2A. The result of the overdamped BD simulation, using the
Gaussian-fitted local friction ξðzÞ in Eq. 3, is also plotted in Fig. 2A
and is in very good agreement with the Smoluchowski approach,
exemplifying full equivalence of the two implicit methods. Hence,
the mfpt distribution is reproducible by a standard BD simulation,
provided that the correct friction profile is implemented. The
analysis demonstrates that introducing the appropriate diffusivity
function DðzÞ could allow a quantitative prediction of the binding
kinetics in implicit-solvent applications.
To rationalize how the correction Δτmfpt is controlled by the

shape of the friction profile ξðzÞ and the magnitude of the hy-
drophobic driving force, we can make use of Eq. 1. For this, let
us assume that the pmf can be essentially described by a con-
stant force V ðzÞ= f ðz− zÞ with f > 0 for z< z, f = 0 otherwise, and
we assume that the location of the friction peak zp < z. From
Eqs. 1 and 3 and setting the target at zf = 0, we then obtain for
the mfpt shift

Δτmfpt = β
ffiffiffi
π

p
σΔξ

"
1− eβfðzp−zÞ

βf
+
�
zmax − z

�
eβfðzp−zÞ

#
: [4]

For very small forces this expression simplifies to Δτmfpt =ffiffiffi
π

p
βσΔξðzmax − zpÞ. For moderate to high forces and a large at-

traction range z � zp, the correction is Δτmfpt ’ ffiffiffi
π

p
σΔξ=f :Here,

we find a correction with a physically sound order of magnitude
(40 ps). However, in our system z � zp is not fully justified; using
the full expression Eq. 4 with z= 4 Å, we find indeed Δτmfpt ’ 90
ps as found above and displayed in Fig. 2A. Hence, the temporal
shift depends not only on magnitude and width of the local fric-
tion, but is furthermore inversely proportional to the hydropho-
bic equilibrium force f. The reflective boundary value zmax plays

a role because of the possibility of multiple crossing of the large
friction region around zp and subsequent recurrent reflections at
zmax. We note that a generalization of Eq. 4 to 3D within the
Smoluchowski approach should be feasible, yet it is out of the
scope of the current work.
Implicit in our models thus far is the assumption that the sys-

tem is memoryless; however, the highly dynamic solvent and its
possible interplay with the ligand challenge the validity of this
Markovian description under these conditions (36). In the fol-
lowing, we investigate more closely the nature of the diffusion
kinetics focusing on two questions: What are the governing
physical mechanisms behind the locally enhanced friction? Is the
ligand kinetics strictly Markovian and describable by standard
diffusional methods, i.e., are there simple means to calculate the
appropriate diffusivity profile?

Coupling of Ligand Dynamics to Capillary Fluctuations. The water
occupancy NðtÞ within the concave pocket fluctuates between wet
and dry states, as shown in the inset to Fig. 3. The physical reason
for this bimodal behavior is capillary evaporation with a nucle-
ation barrier between wet and dry states (16, 31). For the latter we
find average occupancies N ’ 11 and 2, respectively. The mean
occupancy fluctuations in the pocket, quantified by a local com-
pressibility χ = hδN2i=hNi, with δNðtÞ=NðtÞ− hNi, is χ = 2:6,
which is 1 order of magnitude larger than compared with the
compressibility in the same absolute volume in bulk (compare
with Fig. 3 Inset), where χ0 = 0:26. If χ is taken as a hydrophobicity
scale, this points to significant hydrophobicity of the concave
pocket compared with convex solutes (6). However, more im-
portantly in our kinetic context, the occupancy fluctuations are
slower in the pocket than in bulk, as evidenced by the nor-
malized occupancy autocorrelation function (acf), CδNδNðtÞ=
hδNðtÞδNð0Þi=hδN2i (Fig. 3). From single exponential fits we find
that the decay time in the pocket is approximately τδN ’ 15 ps
and thus more than 1 order of magnitude slower than in bulk,
where we find τ0 ’ 1 ps. The time scale of ’15 ps compares
well with those obtained using a coarse-grained approach to the
coupling of ligand dynamics to capillary fluctuations (11).
Remarkably, the approaching ligand considerably modifies the

fluctuations in the pocket as shown in Fig. 4, where the rescaled
fluctuations χ=χ0 and their time scale τδN=τ0 are plotted as a
function of mean ligand position hziz0 (obtained by umbrella
sampling at position z0; Materials and Methods). For ligand loca-
tions close to the pocket in the range 2 �A< z< 4 �A, occupancy
fluctuations in the pocket are enhanced twofold. More in-
terestingly, in this region the time scale of occupancy fluctuations
in the pocket is slowed down manifold with a maximum of τδN at
hziz0 ’ 3:2 Å. Here, the occupancy fluctuations are about 8 times
slower compared with when the ligand is in the bulk and thereby 80
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Fig. 3. Normalized acf CδNδNðtÞ of occupancy fluctuations in the pocket with
the ligand far away in the bulk (red line) versus the acf of occupancy of bulk
water in the same volume (blue line). Pocket fluctuations are 1 order of
magnitude slower. (Inset) Pocket occupancy NðtÞ versus time t (red) com-
pared with the occupancy of bulk water (blue).
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times slower than bulk water fluctuations in the same volume. The
deceleration of the hydration fluctuations by the ligand very likely
has its origin in the increased height of the vapor nucleation barrier
at close ligand distances (16). Hydrodynamic deceleration has also
been found for an approaching pair of model fullerenes (35).
In turn, the ligand’s dynamics intimately couples to the local

solvent fluctuations as shown in Fig. 5, where we plot the ligand’s
normalized position acf, CδzδzðtÞ= hδzðtÞδzð0Þiz0=hδz2iz0 versus the
restraining distance z0, and δz= z− z0. Far away from the pocket at
z0 = 10 Å (that is, bulk-like), the acf decays according to a single
exponential with a decay time of about τzðz0Þ= 3:5 ps, comparable
to the decay time of bulk water fluctuations. For values smaller
than z0 ’ 5:0 Å a second exponential decay occurs, which is about
1 order ofmagnitude slower than in bulk. The slowest decay overall
is found between z0 = 3:0 and 4.0 Å (corresponding to mean hziz0
values between 2.8 and 3.8 Å). The time scale of about τzðz0Þ ’ 30
ps is comparable to that of the water occupancy fluctuations in the
pocket, clearly indicating a direct spatiotemporal coupling be-
tween ligand and water dynamics in the vicinity of the binding site.
Hence, hydration fluctuations are enhanced by the ligand, in turn
leading to a slowing down of the ligand’s positional relaxation time.

Memory Effects and Non-Markovian Behavior. The apparent short-
comings in the Markovian treatment of the system warrant
a framework that reflects non-Markovian dynamics. One rigor-
ous route to obtain the diffusivity profile is to calculate the static
one-body friction profile

~
ξðz0Þ= ~

ξðz0; t→∞Þ by integrating the
second fluctuation–dissipation theorem (37)

~
ξðz0; tÞ = β

Z t

0

dt′
�
R
�
t′
�
Rð0Þ�z0 = β

Z t

0

dt′CRR
�
t′
�
; [5]

in the limit t→∞. Here, RðtÞ is the (random) water force on the
restrained ligand only, that is, the constraining force and the
equilibrium mean force subtracted from the total force acting
on the ligand, whereas the ligand is “clamped” at z0 (38) (Mate-
rials and Methods). By definition CRRðtÞ represents the memory
function in generalized, non-Markovian Langevin approaches to
molecular reaction rates (26, 39–43), where the stochastic dy-
namics are retarded in time:

β

Z t

0

dt′CRR
�
t− t′

�
_z
�
t′
�
=−∂V ðzÞ=∂z+RðtÞ: [6]

The normalized force acf CRRðtÞ is shown in Fig. 6 for selected
values of z0. Far away from the pocket (that is, bulk) the force acf

is oscillatory on short time scales (∼ 0:1 ps) and decays quickly
(exponentially) in the picosecond range. However, for closer
approach of the ligand, a second, much slower decay on the
order of tens of picoseconds occurs, as shown in the inset of
Fig. 6. The slow decay is most prominent around z0 = 3 and 3.5
Å, where the decay time is ~τ ’ 30 ps, consistent with the observed
positional fluctuation decay (compare with Fig. 5). This time scale
of the random force fluctuations is on the same order of magni-
tude as the mfpt close to the binding pocket, as well as the char-
acteristic time for the free ligand to diffuse over its Lennard-
Jones radius ðσ=2Þ2=D0 ’ 13 ps. This is a clear violation of the
Markovian assumption (26, 37, 39).
The static friction

~
ξðzÞ (where z= hziz0 ) as defined by Eq. 5 is

shown in Fig. 2C, together with the profile ξðzÞ obtained from
the inversion of Smoluchowski’s diffusive approach, Eq. 2. Strik-
ingly, the profiles are similar in form, magnitude, and width, but
are shifted by roughly 1.5–2 Å in space from each other. Input of
the profile

~
ξðzÞ into BD simulations yields an mfpt distribution

that significantly (>50%) overestimates the MD-calculated mfpt
for large z, as shown in Fig. 2A. This can be rationalized by
considering Eq. 4, where the distance zp − z between the friction
peak at zp and the range of the attractive force z quantifies the
change in mfpt. We also used an alternative method for calcu-
lating the static friction profile

~
ξðzÞ based on the position fluc-

tuation time scale and variance under harmonic constraints (29)
which corroborates the observed spatial shift of the location of
maximum friction (SI Text and Fig. S1).
The shift between the static friction profiles ξðzÞ and

~
ξðzÞ

along the space coordinate z can be qualitatively understood
by the following arguments. Without HI and assuming a con-
stant mean force −f < 0 for z< z= 4 Å, the mfpt distribution
from Eq. 1 approximately yields an effective net reaction
velocity toward the sink of vðzÞ= ð∂τmfptðzÞ=∂zÞ−1 ’ ðβf Þ2D0=
ðzmax − zÞexp½−βf ðz− zÞ�. Evaluated at the location of maximum
friction

~
ξmax =

~
ξð ~zpÞ with ~zp ’ 3:25 Å, we find v ’ 0:036 Å/ps.

Due to the memory effect as expressed in Eq. 6, the ligand feels
the friction later, not only in time but in space as well, as it has
traveled a mean distance Δz ’ v ~τ= 1:08 Å, where we used the
decay time of the force acf τ~ ’ 30 ps. Thus, the retardation in
time in the process of the “downhill dynamics” to the pocket as a
consequence yields a retardation in space, effectively expressed by
a spatial shift of the profile

~
ξðzÞ versus ξðzÞ, compare with Fig. 2C.

These qualitative arguments may benefit from a quantitative
understanding provided in the realm of non-Markovian stochastic
approaches to molecular reactions (26, 40–43). The simple shift
between ξðzÞ and ~

ξðzÞ points out the possibility of introducing an
analytical mapping of the non-Markovian dynamics to a Mar-
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kovian description for practical applications. In fact, we find that
due to the observed separation of time scales, the force acf can be
well described by the sum of a position-independent short- and
a position-dependent exponential long-time part, viz., CRRðt; zÞ=
ξ0δðtÞ+ gðzÞexpð−t=~τÞ, where the spatial dependence is exclusively
expressed by gðzÞ. In this case of an exponential memory, time-
and position-dependent generalizations of Eq. 6 can indeed be
mapped onto Markovian descriptions by introducing an auxiliary
variable with an equivalent Fokker–Planck description (44). The
coupling of hydration fluctuations and ligand dynamics suggests
that the auxiliary variable may be related to the water occupancy
in the binding pocket, and a 2D theory could account for the non-
Markovian effects, in which translational motion and hydration
fluctuations are treated as coupled diffusion processes. Because
the solvent fluctuations show relatively sharp transitions be-
tween dry and wet (compare with Fig. 3), one could imagine an
even simpler description by two-state models, such as stochastic
gating models (45, 46), wherein fluctuations might be consid-
ered to represent closed and open states of a “solvent gate” with
a Markovian rate.

Conclusions
Theoretical and computational ligand binding rate prediction
often employs standard diffusive approaches with either no or
very approximative treatment of HI. Our study shows that cavity
hydration and ligand dynamics are inherently coupled, and the
inclusion of the resulting position-dependent friction profile in
diffusive approaches is essential for the accurate prediction
of binding rates, especially in the systems undergoing a drying
transition upon binding. However, that ligand binding kinetics
described by a single reaction coordinate is simply Markovian is
probably exceptional. Our work demonstrates that, in general,
the protein–ligand-hydration dynamics needs to be properly de-
scribed by approaches similar to Markovian stochastic gating
models with a dynamical coupling of variables (45, 46). Future
studies shall illuminate whether such a mapping of the system
investigated here onto Markovian descriptions exists.
The hydration fluctuation time scale sensitively depends on

hydrophobic confinement geometry and specific physicochemi-
cal interactions (30–34), and so will the local hydrodynamic
coupling to an approaching reaction partner. In contrast, hy-
dration fluctuations may be suppressed in polar pockets (6, 18).
Thus, solvent fluctuations may help biomolecules tune their as-
sociation kinetics and function (7), and solvent configurational
ensembles play a more important role than believed so far (2).
The observed hydrodynamic coupling and deceleration close to

hydrophobic binding sites may be of biological importance to
allow for time for conformational receptor–ligand adjustments,
such as induced fit. We hope this study will contribute to
the establishment of new perspectives for the development of
theory and computational tools for molecular recognition and
ligand binding.

Materials and Methods
Explicit-Water MD Simulations. The system simulated in this study is identical
to one investigated previously (17, 18). Briefly, it represents a spherical
ligand––a united atom methane molecule with OPLS Lennard-Jones (LJ)
parameters e =0.50 kBT and σ=3.730 Å (47), and a hemispherical pocket of ’
8 Å radius embedded in a paraffin-like wall of lateral dimensions 35 × 35 Å
(Fig. 1). The wall is composed of LJ particles (e =9.67 × 10−4kBT and σ = 4.152
Å) aligned in a hexagonal close-packed arrangement with a lattice constant
of 1.25 Å. The system comprises two identical walls, mirrored along the z
axis, with the space between them filled by 1,030 TIP4P water molecules
(48). The separation between wall surfaces, 31 Å, is tuned to reproduce bulk
water density at T = 298 K and P = 1 bar (998 g/l) at the center of the water
box. MD simulations are carried out in the NVT ensemble with a time step
of 2 fs and Nosé–Hoover thermostat (49), using the CHARMM package (50).
3D particle mesh Ewald summation is used for electrostatic interactions,
with box length along the z axis increased to 100 Å to minimize water–
water interaction through the walls, and a vanishing LJ potential at the
cutoff distance (12 Å).

The pmf calculations are carried out with the use of umbrella sampling as
detailed previously (17, 18). Briefly, a harmonic biasing potential with
a spring constant k = 3.37 kBT/Å

2 is applied in a series of windows extending
from z = −4 Å to z = 11 Å, with 0.5 Å increments, and an additional har-
monic potential with a spring constant of 168.63 kBT is used to keep the
ligand at the z axis. Each umbrella window is sampled for 2 ns preceded with
100 ps of equilibration. For each umbrella potential window the random
force RðtÞ time series are estimated based on second numerical derivative of
ligand positions, corrected by restraining and pmf forces, respectively:

RðtÞ=m
zt+Δt − 2zt + zt−Δt

Δt2
+ kðzt − z0Þ+ ∂V

∂z

����
z=zt

: [7]

Here, m is a ligand mass, zt is a ligand position at time t, Δt is a simulation
time step, z0 and k are umbrella potential center and spring constant,
respectively.

Statistics for mfpt are obtained based on a series of new, independent 452
MD runs for the system set up as above, with the exception of the removed
biasing umbrella potential acting at the z direction. Each run is started with
random initial atomic velocities. After 100 ps of equilibration, the ligand is
released at the center of the water box, zmax = 15:5 Å, and is allowed to
move freely along the z axis until it reaches zf =−4 Å, at the bottom of ei-
ther one of the antisymmetric pockets, which is equivalent to one pocket
and a reflective boundary at zmax. The time to first reach any given distance
from zmax is averaged over all runs and then transformed to τmfptðz; zf Þ––the
time to reach zf while starting from z.

A bulk self-diffusion constant for the ligand, D0, is estimated using the
same set of 452 simulations by the standard diffusion relation (Einstein
formula), 2D0 = limt→∞ ∂Æd2ðtÞæ=∂t, where Æd2ðtÞæ is a mean-squared dis-
placement of the ligand along the z axis in time t. Here, the slope of a linear
fit to Æd2ðtÞæ is considered for t up to 9.5 ps, ensuring that in none of the
simulations does the ligand reach z< 6 Å, that is, the region where diversion
from the free-diffusion regime is expected.

Implicit-Solvent BD Simulations. In the BD simulations the overdamped Lan-
gevin equation including local friction is solved (21, 51), given by

ξðzÞ _z = FpmfðzÞ+ FðRÞðzÞ− kBT
∂ ln ξðzÞ

∂z
; [8]

where ξðzÞ is the local friction profile, Fpmf =−∂V=∂z is the pocket–ligand
mean force, and FðRÞ is the random force. The latter is assumed to have zero
mean ÆFðRÞðtÞæ= 0 and obeys the fluctuation–dissipation theorem via
ÆFðRÞðtÞFðRÞÞðt′Þæ= 2ξðzÞkBTδðt − t′Þ. The last term in 8 is needed to compen-
sate for the flux from the local random force (51). The stochastic implicit
solvent simulations are performed using a strictly one-dimensional geometry
which mimics the symmetric MD setup described above. The ligand is a point
particle starting at z= 15:5 Å and is diffusing along the z direction governed
by 8 until it reaches the final target position at zf = 0 or zf = 31 Å. The mfpt
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Fig. 6. Water–ligand force acf CRRðtÞ for different clamping positions z0. Far
away from the pocket (z0 = 10 Å) and at z0 = 0 the acf decays relatively
quickly on a time scale of a few picoseconds. For values around z0 ’ 3 Å,
where pocket occupancy fluctuations are slow, the force acf decays 1 order
of magnitude slower. This behavior is magnified in the Inset.
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τðz; zf Þ it takes to diffuse from a position z to zf is computed by averaging
over 1,000 independent runs. The BD equation is numerically solved as
proposed by Ermak and McCammon (21).

Smoluchowski Approach. In the strictlyMarkovian Smoluchowski approachwe
assume that the stochastic evolution of the ligand kinetics is governed by the
one-dimensional Fokker–Planck equation (25, 39)

∂Pðz; tÞ
∂t

=
∂
∂z

DðzÞe−βVðzÞ ∂
∂z

Pðz; tÞeβVðzÞ; [9]

where Pðz; tÞ is the probability of finding the particle at position z at time t,
VðzÞ is the pmf, and DðzÞ is the local diffusion constant, i.e., the diffusivity
profile along z. Assuming a steady-state situation, a reflective boundary at
zmax = 15:5 Å, and adsorbing boundary conditions at zf , the analytical solu-

tion for the mfpt distribution is given by Eq. 1; e.g., ref. 25. The latter can be
easily integrated numerically for given arbitrary DðzÞ and VðzÞ. We make the
assumption that the Einstein relation holds, i.e., the fluctuation–dissipation
equality DðzÞ= kBT=ξðzÞ. With that assumption, the Langevin approach (Eq.
8) and the Smoluchowski approach (Eq. 9) are equivalent (51).
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