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Diffuse large B-cell lymphoma (DLBCL) is the most common form
of lymphoma in adults. The disease exhibits a striking heteroge-
neity in gene expression profiles and clinical outcomes, but its
genetic causes remain to be fully defined. Through whole genome
and exome sequencing, we characterized the genetic diversity of
DLBCL. In all, we sequenced 73 DLBCL primary tumors (34 with
matched normal DNA). Separately, we sequenced the exomes of
21 DLBCL cell lines. We identified 322 DLBCL cancer genes that
were recurrently mutated in primary DLBCLs. We identified recur-
rent mutations implicating a number of known and not previously
identified genes and pathways in DLBCL including those related to
chromatin modification (ARID1A and MEF2B), NF-κB (CARD11 and
TNFAIP3), PI3 kinase (PIK3CD, PIK3R1, and MTOR), B-cell lineage
(IRF8, POU2F2, and GNA13), and WNT signaling (WIF1). We also
experimentally validated a mutation in PIK3CD, a gene not pre-
viously implicated in lymphomas. The patterns of mutation dem-
onstrated a classic long tail distribution with substantial variation
of mutated genes from patient to patient and also between pub-
lished studies. Thus, our study reveals the tremendous genetic
heterogeneity that underlies lymphomas and highlights the need
for personalized medicine approaches to treating these patients.
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Diffuse large B-cell lymphoma (DLBCL) is the most common
form of lymphoma in adults (1). Although nearly half the

patients can be cured with standard regimens, the majority of
relapsed patients succumb. Thus, there is an urgent need to
identify the genetic underpinnings of the disease and to identify
novel treatment strategies. Gene expression profiling (2, 3) has
uncovered distinct molecular signatures for DLBCL subtypes that
have unique biology and prognoses. High-throughput sequencing
has provided rich opportunities for the comprehensive identifi-
cation of the genetic causes of cancer (4–6). Whereas exhaustive
portraits of individual cancer genomes are emerging, the degree
to which these genomes represent the disease is unclear.
We generated a detailed analysis of a DLBCL genome by se-

quencing a primary human tumor and paired normal tissue
(Dataset S1). We further characterized the genetic diversity of
DLBCL by sequencing the exomes of 73 DLBCL primary tumors
(34 with matched normal DNA) and 21 DLBCL cell lines for
comparative purposes. This in-depth sequencing identified 322
DLBCL cancer genes that were recurrently mutated in DLBCLs.
We also experimentally validated the effects of genetic alteration
of PIK3CD, an oncogene that we identified in DLBCL. Our work
provides one of the largest genetic portraits yet of human
DLBCLs and offers insights into the molecular heterogeneity of
the disease, especially in the context of other recently published
studies in DLBCL (7, 8).

Results
Sequencing of a Lymphoma Genome Uncovers the Spectrum of
Somatic Variation in DLBCL. Lymphoma biopsy tissue and unaf-
fected bone marrow were obtained from the same patient. Using
the Illumina platform, we generated at total of 171 Gb of 100 bp
paired-end sequences from the tumor and matched normal ge-
nomes corresponding to an average per-base sequencing cover-
age of 37-fold and 20-fold, respectively.
We identified 23,214 somatic sequence alterations occurring

throughout the lymphoma genome, summarized in Fig. 1 A and B
and SI Appendix, Table S1.
Transitions accounted for about 60% of these events (Fig. 1C),

similar to patterns observed in a number of other malignancies
(9–11) and suggest that the majority of these DLBCL mutations
arise from stochastic endogenous processes rather than envi-
ronmental exposures, for example, in the context of tobacco
exposure and lung cancer (6).
Known oncogenes (12) found to be somatically mutated in this

DLBCL patient included ARID1A, SETD2, CARD11, and
PIK3R1. Of these genes, only CARD11 (13) has been previously
experimentally identified as an oncogene in DLBCL. We also
identified structural genetic alterations using approaches de-
scribed previously (14, 15). In all, we identified seven deletions
and three amplifications. Known oncogenes that were implicated
by these copy number alterations include PTEN (chromosome
10) and CDKN2A (chromosome 9).

Exome Sequencing Defines the Spectrum of Coding Region Mutations
in DLBCL. To identify recurrently mutated genes in DLBCLs, we
obtained a total of 73 cases of primary human samples. We di-
vided the primary human cases into a discovery set (n = 34) and
a prevalence set (n = 39). For each of the discovery set cases of
primary DLBCLs, we also sequenced paired normal tissue. In
addition, we sequenced the exomes of 21 DLBCL cell lines that
are widely used to model the disease.
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We performed whole-exome sequencing for all of these
DLBCL and paired normal cases using the Agilent solution–
based system of exon capture, which targets the NCBI Consensus
CDS database (CCDS) (16). We generated more than 500 Gb of
mappable sequence data and generated sequence data for 94%
(median) of the targeted bases in each sample. Our average exome
coverage was 47-fold (median, 42.5-fold) per targeted base (Fig.
2A). In all, we identified 121,589 distinct variants in these cases.

Validation of Genetic Variant Identification. To verify our methods
for exome capture and bioinformatics analyses, we performed
exome sequencing on a single Hapmap sample (NA12762) that
was previously published (17). We found more than 99% con-
cordance with the published data. We also used three different
approaches for further validation.
First, we performed high-throughput, multiplex PCR in

microdroplets (Raindance Technologies; ref 18) and sequencing
to more than 100-fold coverage for 179 genes (SI Appendix,
Table S5) in eight cases. More than 99% of the variants were
identical (Fig. 2B; SI Appendix, Table S6). The 100-fold coverage
did not result in a substantial increase in variant discovery,
confirming our estimates that our coverage of the exome was
adequate for the identification of variants in most instances.
Second, we genotyped 43 of these cases using an Illumina SNP

array comprising more than 733,000 probes. We found excellent
concordance (94.2%) between the microarray calls and the
exome sequencing analysis in that sample (Fig. 2B and Dataset
S2). Finally, we performed PCR amplification and Sanger se-
quencing for 25 variants corresponding to 24 genes in 50 cases.
Again, we found excellent concordance (93.5%) of the exome
capture calls with the calls generated by conventional Sanger
sequencing (SI Appendix, Fig. S2). Taken together, these results
indicate that our methods for exome-enrichment, sequencing,
and bioinformatic analysis produce robust results.

We empirically explored the power of our study to identify
novel genetic variants by plotting the expected number of new
variants that would be discovered from each additional case of
DLBCL (SI Appendix). We found a progressively smaller number
of unique variants by sequencing each additional sample (Fig.
2C). By n = 25, the number of additional variants contributed by
each additional sample fell to less than 1% of the total (Fig. 2C).
These values corresponded well with a regression model for
exponential increase (R2 = 0.8768, P < 10−6).
However, the vast majority of these variants depicted in Fig.

2C were common variants and present in our normal controls.
The number of rare variants (<1% frequency in the general
population) discovered per additional sample remained rela-
tively constant and increased linearly with each additional case
(Fig. 2D). Similarly, the number of somatic variants identified
in our discovery set (i.e., variants absent from the corre-
sponding paired normal tissue) also increased linearly with the
addition of each individual pair of tumor-normal sets (Fig. 2E).
The number of individual genes implicated by sequencing
additional samples showed a similar linear increase as a func-
tion of the number of cases. Because cancer arises predomi-
nantly from such somatically acquired rare variants, these
findings have implications for the number of samples needed
to comprehensively characterize a heterogeneous disease like
DLBCL, as discussed below.

Patterns of Exome Variation and Identification of DLBCL Cancer
Genes. We began analysis by aligning the sequencing reads to
the genome and determining the distribution of our mutations:
53.8% of the variants were missense, and nonsense, frameshift,
and synonymous variants comprised 1.1%, 2.4%, and 42.7% of
the total number of variants, respectively (Fig. 2F). These overall
patterns of genetic variation in the DLBCL exomes are quite
similar to what we would expect in the variation of normal exomes
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(16). We eliminated common genetic variants that occurred in our
set of normal controls identified from dbSNP (19), the 1,000
genomes project (17), and 256 recently published exomes from
otherwise healthy individuals (20–22).
Our methods for identifying candidate DLBCL cancer genes

are detailed in the SI Appendix. We developed a statistical model
for comparing the characteristics of the somatically mutated
genes in our discovery set of 34 tumor-normal pairs to previously
validated cancer genes. We modeled several variables including
frequency of nonsynonymous variation in the gene, frequency of
somatic mutation, gene size, rate of nonsynonymous variation in
healthy controls, and the predicted effect of the genetic alter-
ation on the encoded protein. DLBCL cancer genes were iden-
tified as those that had a score distribution most similar to those
of the previously validated cancer genes (P < 10−6).
We identified 322 candidateDLBCL cancer genes as recurrently

somatically mutated in DLBCL (Dataset S3). The majority of the
52 known cancer-related genes and the remaining 270 genes have
not been previously identified as having a role in lymphomas.
Among these 322 DLBCL cancer genes, we identified a total of
1,418 variants in these cases (Fig. 2G; Dataset S4). There was a
higher proportion of each category of nonsynonymous mutations
including missense (66.4%), nonsense (2.4%), and frameshift
(2.5%), and fewer synonymous mutations (28.7%) in these genes
compared with the patterns observed in the entire exome.
Once again, we observed a predominance of transitions (P <

10−6, χ2 test; Fig. 2H). Overall, the sizes of the insertions and
deletions in these DLBCLs preserved reading frames, with peaks
observed at insertion/deletion sizes of three, six, nine, and so on
(Fig. 2I). However, in the 322 DLBCL cancer genes, we noted
a significant depletion of indel sizes that were multiples of three
(Fig. 2J; P < 0.01, χ2 test).

Identification of Protein Coding Sequence Variation in DLBCL. The
mutational patterns of these 322 DLBCL cancer genes in the 73
primary lymphomas, as well as 21 cell lines, are depicted in Fig.
3A. The median number of DLBCL cancer gene alterations per
patient was 16 (mean, 17).
Fig. 3B shows the frequency of the DLBCL cancer genes, which

followed a classic long tail distribution. Our data identify a num-
ber of known cancer-related genes in DLBCL that have been
previously reported and include TP53 (23), MYD88 (24), PIM1
(25), CARD11 (13), and BCL6 (25). Our data also implicate
a number of cancer-related genes that were not previously linked
to DLBCL, including PIK3R1, ARID1A, MTOR, and IDH1.
These data indicate that the spectrum of mutations and genes
involved in lymphomas, and potentially other cancers, may be
much larger than has been previously appreciated.

Gene Expression–Based Subgroups of DLBCL Demonstrate Distinct
Mutation Patterns. To better understand potential subgroup-
related differences in observed patterns of DLBCL mutations, we
performed gene expression profiling using Affymetrix microarrays
to distinguish activated B cell-like DLBCLs (n = 29) and germinal
center B cell-like DLBCLs (n = 35). We found 12 genes (Fig. 3C)
with a frequency of at least 10% in each subgroup that were
differentially mutated between the two groups (P < 0.05, Fisher’s
exact test). Genes that were more frequently mutated in ABC
DLBCLs included MYD88, KLHL14, CD79B, and SIGLEC10,
whereas GNA13, BCL2, and EZH2 were more frequently
mutated in GCB DLBCL. Of these, we also found GNA13 and
EZH2 to be recurrently mutated in Burkitt lymphoma (26),
another tumor derived from germinal center B cells.
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Fig. 2. Exome sequencing in DLBCLs. (A) Bar graph depicts
the coverage achieved in each of the cases. The black line
indicates our targeted level of 30-fold coverage. (B) Bar
graph depicts the overlap between the variants identified
by exome sequencing and multiplex PCR followed by deep
sequencing (Raindance) in 179 genes in eight cases, as well
as exome sequencing and SNP arrays in 43 cases. (C) Plot
indicates the average number of additional sequence var-
iants detected in the exomes as a function of adding each
additional case. (D) Plot indicates the cumulative estimated
number of rare exome variants discovered as a function of
sample size. (E) Plot indicates the cumulative estimated
number of somatically acquired exome variants discovered
as a function of sample size (n = 1 through n = 34). (F) Pie
chart indicates the relative distribution of missense, non-
sense, frameshift, and synonymous base alterations in the
entire dataset. (G) Pie chart indicates the relative distribu-
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base alterations in the 322 DLBCL cancer genes. (H) Histo-
gram shows the relative distribution of different mutation
classes in the 322 DLBCL cancer genes. The difference be-
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Functional Categorization of Recurrently Mutated Genes in DLBCL.
Twelve gene ontologies accounted for more than half of the
DLBCL cancer genes (n = 203; Fig. 3D). Biological processes
comprising signal transduction (e.g., PIK3CD, PDGFRA) and
chromatin modification (e.g., MLL3, SETD2) were most com-
monly implicated as DLBCL cancer genes (SI Appendix, Fig. S3).
A number of these biological processes have been directly im-
plicated as hallmarks and enabling characteristics of cancer (27).
Thus, a number of these DLBCL cancer genes have directly dis-
cernible roles that impact the growth and development of tumors.
The role of signal transduction pathways in tumors is of par-

ticular interest because they may be therapeutic targets for small
molecule inhibitors. Signaling pathways (28) including JAK-
STAT, ubiquitin, WNT, NF-KB, Notch, and PI3 kinase signaling
were recurrently mutated in DLBCLs, although mutations in
each signaling pathway occurred in only a minority of these
cases. Many of these pathways have not been conclusively im-
plicated in lymphomas and might be potential therapeutic targets
in DLBCL subsets defined by mutations in them, a notion that
we further explored experimentally.

Determination of Genes Enriched with AICDA-Related Mutations. We
further examined the potential role of AICDA (AID) in the ac-
quisition of these somatic mutations in our DLBCL cases. For the
322 DLBCL cancer genes, we determined the number of ac-
quired mutations where the reference sequence was “C,” and of
those, the fraction that fell into WRCY motifs (and the reverse
complement), which are associated with AICDA activity (29).
We performed a Fisher’s exact test to determine the signifi-

cance of enrichment for mutations in the WRCY motifs com-
pared with the background rate.We found significant enrichment
(P < 0.05) of WRCY motifs in PIM1, BTG1, and CD79B, sug-
gesting that AICDA is a significant contributor to the somatic
alterations in these genes.
Gene alterations in PIM1, BTG1, and CD79A have not been

described in most solid tumors, suggesting AICDA-related alter-
ations are a lymphoma-specific mechanism, similar to their de-
scribed role in B-cell biology.

PIK3CD Is Identified as an Oncogene, and PI3 Kinase Inhibition Is a
Potential Therapeutic Approach in DLBCL. Deregulation of the PI3
kinase pathway is a common feature of many cancers (30). We ob-
served three separate cases withmutations in thePIK3CD gene, which
is not thought to be an oncogene. A single point mutation T → G
(Fig. 4A), confirmed by Sanger sequencing (Fig. 4B), was identi-
fied in the catalytic domain of the PIK3CD gene, which altered the
encoded amino acid from one with an uncharged side chain (as-
paragine) to one with a positively charged side chain (lysine).
We found mutations in two additional known oncogenes in the

PI3 kinase pathway, PIK3R1 and MTOR, pointing to deregulation
of the PI3 kinase pathway as an important oncogenic mecha-
nism in DLBCLs. Other key members of the pathway with
known oncogenic roles, including PTEN, FOXO3, and GSK3,
were not mutated in our cases. Similar to patterns observed
previously in PIK3CA (30), the mutations in PIK3CD, PIK3R1,
and MTOR appear to spread across multiple locations of the
gene (Fig. 4C) rather than clustering in a single hotspot.
We modeled the PIK3CD protein structure based on that of its

paralog PIK3CG, which has been determined through crystallog-
raphy (31). The identified mutation lies in the catalytic domain in
the predicted structure of the protein (Fig. 4D). We overexpressed
the WT and the mutant PIK3CD constructs in the FL5.12 lym-
phoma cell line that is well characterized for its IL3-dependent PI3
kinase signaling (32). In these cells, withdrawal of IL3 is associated
with a measurable decrease in PI3 kinase signaling and decreased
phophorylated AKT, which is directly downstream of PI3 kinase
and provides proliferative signals. In cells expressing the WT form
of PIK3CD, we found that withdrawal of IL3 was associated with
a measurable decrease in phosphorylated AKT S473 (Fig. 4E).
There was no measurable decrease in the phosphorylated AKT in
cells expressing the mutant form of PIK3CD, suggesting that the
mutation had an activating effect (Fig. 4E). These observations
were confirmed in three experimental replicates, all of which
showed that IL3 withdrawal was associated with significant down-
regulation in phosphorylated AKT in cells expressingWT PIK3CD
(P = 0.04), but not in cells expressing mutant PIK3CD (P = 0.44;
Fig. 4F). ELISA experiments also demonstrated similar patterns of
PI3 kinase activation in cells expressing mutant PIK3CD (SI Ap-
pendix, Fig. S8).
Among PIK3CD, PIK3R1, and MTOR, only MTOR was found

to be mutated in multiple cell lines (in addition to patient cases).
We investigated the effects of a small molecule inhibitor of PI3
kinase, BKM120 (Novartis), on the viability of 21 DLBCL cell
lines (Fig. 4G). The three cell lines with MTOR mutations had,
on average, a fivefold higher sensitivity to PI3 kinase inhibition
than those 18 cell lines that did not harbor these mutations
(P = 0.005, Wilcoxon rank test). These results strongly suggest
that the presence of mutations in MTOR is associated with
sensitivity to PI3 kinase inhibition.

Comparison with Other Genetic Studies Reveals the Striking Genetic
Heterogeneity of DLBCL. Shortly after the completion of our study
in June 2011, and during revisions, three separate studies ex-
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ploring the genetics of DLBCL using similar methodologies and
deep sequencing were published (7, 8, 33). Multiple studies ap-
plying these methodologies in the same cancer type have gen-
erally been lacking thus far, and these publications provided
an unusual opportunity for testing the overlapping mutations
identified by the different studies.
We constructed Venn diagrams depicting the overlap between

genes identified in the three studies and our study as shown in
Fig. 5. We initially assumed that our study comprising 73 primary
DLBCL cases would be sufficient to identify the vast majority of
recurrent genetic alterations in the disease. Surprisingly, we
noted relatively modest overlaps of roughly 10–20% among the
four different studies. Even genes that overlapped between dif-
ferent studies often varied. Similar patterns were observed when
we simply compared the overlap between all somatically mutated
genes in these studies. The overlap of more frequently mutated
genes was still incomplete; when we limited the analysis to those
17 genes that were mutated in more than 10% of the cases
reported by Lohr et al. (33), the overlap between the different
studies including ours approached 70% (SI Appendix, Fig. S6).
Even in that scenario, different studies had overlap with different
genes. The remaining 30% of the genes mutated in at least 10%
of the cases in that study were not detected by any of the
remaining three studies. The overlap is still lower for genes with
fewer mutation events. These observations suggest that there is
considerable genetic heterogeneity in the disease that contrib-
utes the observed patterns of disparate mutations.
Although genes that do not overlap among studies might

signify some false positives, our analysis indicates that a number
of validated oncogenes and tumor suppressor genes were
identified in just one study. Examples include NOTCH1 (34),
CD74 (34), BCL10, IRF4, MALT1, TET2 (7), BCR, ETV6
(33), PIK3R1, MTOR, KIT, PDGFRA, and ARID1A (our
study). The number of identified cancer genes appeared to in-
crease linearly as a function of the size of the study, further
indicating that the differences between the individual studies

arise from the inherent genetic heterogeneity of the DLBCL
tumors, an effect that we also observed in other cancers (SI
Appendix, Fig. S7).

Discussion
Through whole-genome sequencing and whole-exome sequenc-
ing, we identified the spectrum of sequence variation that occurs
in DLBCL. Our data suggest that the majority of genetic variants
in DLBCL are stochastically acquired. In all, we identified a total
of 322 candidate DLBCL cancer genes that have recurrent so-
matic mutations in patients with DLBCL. We identified a role
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for a number of known and previously unknown oncogenes.
Many of these genes, including ARID1A, KIT, and IDH1, have
not been previously implicated in DLBCL by any previous study.
A central observation of our study is the striking genetic het-

erogeneity that underlies a relatively common cancer. As we
demonstrated, there is a relatively low overlap between four dif-
ferent studies that explore the genetics of DLBCL. Although dif-
ferences in methodology, the diversity of patient populations, and
number of patients might contribute to this low overlap, our data
indicate that the major driver of the low overlap is the inherent
genetic heterogeneity of the disease. Consistent with this observed
heterogeneity, we demonstrate that the number of rare variants
and somatic mutations increases linearly with the increased
number of cases, suggesting that continued sequencing of tumors
will implicate new variants and new cancer-related genes.
Gene expression profiling has previously revealed aspects of the

heterogeneity of the disease, particularly with regard to cell of or-
igin of DLBCLs (2). Our data indicate that recurrent mutations in
12 genes were clearly enriched between ABC DLBCLs and GCB
DLBCLs. Thus, the two DLBCL subgroups share the mutational
patterns of many more genes, suggesting that shared mechanisms
underlie their biology. The striking genetic heterogeneity observed
in the disease as a whole is also recapitulated in these subgroups.
The recognition of recurrent mutations in the gene coding

regions in the disease is an important early step toward un-
derstanding its biology and potential therapeutic possibilities. So-
matic mutations have previously been observed in multiple genes
in the NF-κB pathway, including TNFAIP3(A20) and CARD11
(35). Both of these genes were found to have somatic cases in our
study and at least one of the recently published DLBCL studies (7,
8, 33). Histone-modifying genes, such as MLL2 andMEF2B, were
found to be frequently mutated in DLBCL (32% and 11.4%, re-
spectively) (7). Although MLL2 was not included in our exome
capture library, which was designed using build 36 of the human
genome, we also observed somatic mutations in MEF2B and
CREBBP, an acetyltransferase gene reported previously (34).
MLL3, which forms complexes with MLL2, was the most

frequently mutated gene in our cases. Our data also implicate
AICDA-related mutations as a major mechanism underlying ge-
netic mutations in the genes PIM1, BTG1, and CD79B. These
observations highlight the diverse biological mechanisms un-
derlying the observed genetic diversity.
The genetic heterogeneity of DLBCLs and other cancers

implies that no matter what recurrently altered gene or pathway
is considered, only a minority of patients are likely to be affected.
For that subgroup of patients whose tumors harbor a growing
number of recognized genetic lesions that can be targeted ther-
apeutically, the recognition of such alterations can make a crucial
difference in their treatment. A number of genetic mutations
we identified, including those in PIK3CD, KIT, and PDGFRA,
suggest therapeutic possibilities in the affected patients. Our data
suggest that such targeted therapeutic approaches in patients will
need to be combined with carefully selected assays for those ge-
netic lesions to better understand their role in response to tar-
geted therapies. Our data also have major implications for how
we model cancers and the need to ascertain whether extant
mouse and other models recapitulate the primary disease. Thus,
our study sheds light on the genetic heterogeneity of lymphomas,
as well as cancers in general, and underscores the need for in-
dividualized approaches for treating patients.

Methods
Detailed methods are provided in the SI Appendix. Whole genome se-
quencing and exome sequencing were performed on the Illumina platform.
Sequencing reads were mapped to the reference genome, and variants were
identified, collated, and annotated.
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