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Approximate Bayesian computation has become an essential tool
for the analysis of complex stochastic models when the likelihood
function is numerically unavailable. However, the well-established
statistical method of empirical likelihood provides another route
to such settings that bypasses simulations from the model and the
choices of the approximate Bayesian computation parameters
(summary statistics, distance, tolerance), while being convergent
in the number of observations. Furthermore, bypassing model sim-
ulations may lead to significant time savings in complex models,
for instance those found in population genetics. The Bayesian com-
putation with empirical likelihood algorithm we develop in this
paper also provides an evaluation of its own performance through
an associated effective sample size. The method is illustrated using
several examples, including estimation of standard distributions,
time series, and population genetics models.

autoregressive models | Bayesian statistics | likelihood-free methods |
coalescent model

Bayesian statistical inference cannot easily operate when the
likelihood function associated with the data is not entirely

known, or cannot be computed in a manageable time, as is the
case in most population genetic models (1–3). The fundamental
reason for this difficulty with population genetics is that the sta-
tistical model associated with coalescent data needs to integrate
over trees of high complexity. Similar computational issues with
the likelihood function often occur in hidden Markov and other
dynamic models (4). In those settings, traditional approximation
tools based on stochastic simulation (5) are unavailable or un-
reliable. Indeed, the complexity of the latent structure defining
the likelihood makes simulation of such structures too unstable
to be trusted. Such settings call for alternative and often cruder
approximations. The approximate Bayesian computation (ABC)
methodology (1, 6) is a popular solution that bypasses the com-
putation of the likelihood function (surveys in refs. 7 and 8); ref. 9
validates a conditional version of ABC that applies to hierarchical
Bayes models in a wide generality.
The fast and polytomous development of the ABC algorithm

is indicated by the rising literature in the domain, at both the
methodological and the application levels. For instance, a whole
new area of population genetic modeling (8, 10) has been ex-
plored thanks to the availability of such methods. However,
practitioners and theoreticians both show a reluctance in
adopting ABC, with some doubt about the validity of the method
(11–13). We propose in this paper to supplement the ABC ap-
proach with a generic and convergent likelihood approximation
called the empirical likelihood that validates this Bayesian
computational technique as a convergent inferential method
when the number of observations grows to infinity. The empirical
likelihood perspective, introduced by ref. 14, is a robust statis-
tical approach that does not require the specification of the
likelihood function. However, although it does not appear to
have been used before in the settings that now rely on ABC, this
data analysis method also is a broadly (albeit not universally)
applicable and often fast approach, the approximation of which
differs from the one found in ABC algorithms, even though both
are rooted in nonparametric statistics. Therefore, this method-
ology can be used both as a solution per se and as a benchmark

against which to test the ABC output in many cases. This paper
presents the Bayesian computation via empirical likelihood
(BCel) algorithm and illustrates its performances on selected
representative examples, comparing the outcome with the true
posterior density whenever available, and with an ABC approx-
imation (15) otherwise.

Statistical Methods
ABC Algorithm. The primary purpose of the ABC algorithm is to approximate
simulation from the centerpiece of Bayesian inference, the posterior distri-
bution πðθjyÞ∝ πðθÞfðyjθÞ, when it cannot be numerically computed but
when the distributions corresponding to both the prior π and the likelihood
f can be simulated by manageable computer devices. The original (6) ABC
algorithm is as follows: given a sample y of observations from the sample
space, a sample of parameters ðθ1; . . . ; θMÞ is produced by

Algorithm 1: ABC sampler.
for i = 1 to M do
repeat
Generate θ′ from the prior distribution π(·)
Generate z from the likelihood fð · jθ′Þ
until ρfηðzÞ; ηðyÞg≤ e

set θi = θ′,
end for
The parameters of the ABC algorithm are the summary statistic η, the

distance ρf· ; ·g, and the tolerance level e> 0. The basic justification of the
ABC approximation is that, when using a sufficient statistic η, the distribu-
tion of the θi ’s in the output of the algorithm converges to the genuine
posterior distribution when e goes to zero (16).

In practice, however, the statistic η is nonsufficient and at best the ap-
proximation then converges to the genuine posterior πðθjηðyÞÞwhen « goes to
zero. This loss of information seems to be a necessary price to pay for the
access to computable quantities. Furthermore, as argued below, it can be
evaluated against the empirical likelihood approximation when the latter is
available. Indeed, this approach does not require an information reduction
through the choice of a tolerance zone or of a nonsufficient summary statistic.

Empirical Likelihood. Owen (14) developed empirical likelihood techniques
as a robust alternative to classical likelihood approaches. He demonstrated
that, for some categories of statistical models, this approach inherited the
convergence properties of standard likelihood at a much lower cost in as-
sumptions about the model (as detailed in SI Text). Whereas ABC algorithms
do require a fully defined and often complex (hence debatable) statistical
model, we argue that one should take advantage of the approximation
device provided by the empirical likelihood to overcome most of the calibra-
tion difficulties encountered by ABC, at least as a convenient benchmark
against which to test ABC solutions.

Assume that the dataset y is composed of n independent replicates
y= ðy1; . . . ;ynÞ of some random vector Y with density f. Rather than defining
the likelihood from the density f as usual, the empirical likelihood method
starts by defining parameters of interest θ as functionals of f, for instance as
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moments of f, and it then profiles a nonparametric likelihood. More pre-
cisely, given a set of constraints of the form

EF ½hðY ; θÞ�= 0; [1]

where the dimension of h sets the number of constraints unequivocally
defining θ, the empirical likelihood is defined as

LelðθjyÞ= max
p

∏
n

i=1
pi [2]

for p in the set fp∈ ½0; 1�n;Ppi = 1;
P

ipihðyi ; θÞ = 0;g. For instance, in the
one-dimensional case when θ=Ef ½Y �, the empirical likelihood in θ is the
maximum of the product p1⋯pn under the constraint p1y1 +⋯+pnyn = θ.
(Solving 2 is done using the R package “emplik” developed by ref. 17 and
based on the Newton–Lagrange algorithm.) When the data are not in-
dependent and identically distributed (iid), an underlying iid structure may
sometimes be exploited, as illustrated in Dynamic Model. However, this is
not always the case, meaning that the empirical likelihood method remains
out of reach in some complex cases when ABC can still be implemented.
Furthermore, as pointed out in SI Text by a quote from Owen (18), the
validation of the approach depends on a choice of the set of constraints that
ensures convergence.

Whereas the convergence of the empirical likelihood is well-established
(SI Text and ref. 18), the Bayesian use of empirical likelihoods has been little
examined in the past, apart from a Monte Carlo study in ref. 19, and a
probabilistic one in ref. 20.

BCel. The most natural use of the empirical likelihood approximation is to act
as if this representation was an exact likelihood, as in ref. 19. Incorporating
this perspective into a basic sampler leads to the following algorithm:

Algorithm 2: Basic BCel sampler.
for i = 1 to M do
Generate θi from the prior distribution π(·)
Set the weight ωi = Lelðθi jyÞ
end for
The output of BCel is a sample of size M of parameters with associated

weights, which operate as an importance sampling output (5). Thus, the
performance of the algorithm can be evaluated through the effective
sample size (ESS):

ESS= 1
�XM

i=1

(
ωi

�XM
j=1

ωj

)2

;

which approximates the size of an iid sample with the same variance as the
original sample. As shown in ref. 21, this quantity is always between 1
(corresponding to a very poor outcome) and M (corresponding to an iid
perfect outcome).

Any algorithm that samples from a posterior distribution (e.g., Markov
chain Monte Carlo, population Monte Carlo, sequential Monte Carlo algo-
rithms, ref. 5) may instead use the empirical likelihood as a proxy to the
exact likelihood. For instance, to speed up the computation in the pop-
ulation genetics model introduced below, we resorted to the adaptive
multiple importance sampling (AMIS, ref. 22), which is easy to parallelize on
a multicore computer. Although the original target distribution is πðθÞLðθjyÞ
and the AMIS algorithm uses several (multivariate) Student’s t distributions
denoted t3ð· jm;ΣÞ (i.e., with three degrees of freedom, centered at mean m,
and with covariance matrix Σ) as an importance sampling distribution, the
algorithm can be adapted to the empirical likelihood in a straightforward-
manner:

Algorithm 3: BCel–AMIS sampler.
for i = 1 to M do
Generate θ1;i from the prior distribution q1ð · Þ
Set ω1;i = Lelðθ1;i jyÞ
end for
for t = 2 to TM do
Compute weighted mean mt and weighted variance matrix Σt of the
θs;i (1≤ s≤ t − 1, 1≤ i≤M).
Denote qtð · Þ the density of t3ð · jmt ;ΣtÞ.
for i = 1 to M do
Generate θt;i from qtð · Þ.
Set ωt;i = πðθt;iÞLelðθt;i jyÞ=

Pt−1
s=1qsðθt;iÞ

end for
for r = 1 to t − 1 do

for i = 1 to M do
Update the weight of θr;i as
ωr;i = πðθt;iÞLelðθr;i jyÞ=

Pt−1
s=1qsðθr;iÞ

end for
end for
end for
The output is thus a weighted sample θt;i of size MTM .
In contrast with ABC, BCel algorithms do not usually require simulations

from the sampling model, given that 2 provides a converging and non-
parametric approximation of the likelihood function. This feature thus
induces very significative improvements in computing time when the pro-
duction of pseudodatasets is time-consuming, because solving 1 is usually
immediate. This is for instance the case in population genetics and Time Gains
in Population Genetic Models provides an illustration of a huge improvement
in comparison with ABC in two experiments described below. However, the
improvement in speed may vanish in cases when producing an iid structure
connected with the constraint 1 requires simulations from the sampling
model, as illustrated by a counterexample for point processes in SI Text, BCel,
and ABC, then breaking even in terms of computing time. Even though the
computing time required by BCel is customarily negligible compared with ABC
(or does not induce any extra time as in the point process counterexample),
we further caution against opposing both approaches solely based on com-
puting times, because they differ in the approximations they provide to
a genuine Bayesian analysis and thus should be used in conjunction.

Using empirical likelihoods means there is no calibration of the many tuning
parameters of ABC algorithms; most significantly, the likelihood ratio acts as
a natural distance and importanceweights produce an implicit and self-defined
quantile on the original sample simulated from the prior. Notwithstanding
these appealing qualities, BCel still requires calibration, in particular in the
choices of the parametrization of the sampling distribution and of the cor-
responding constraints 1 defining the empirical likelihood. Some examples are
discussed below. The BCel – AMIS sampler also implies computing values of the
prior density, up to a constant, which may be a hindrance in peculiar cases.

Composite Likelihood in Population Genetics. ABC was introduced by pop-
ulation geneticists (2, 6, 10) interested in statistical inference about the
evolutionary history of species, as no likelihood-based approach existed
apart from very rudimentary and hence unrealistic situations. This approach
has been used in a number of biological studies (23–25), most of them in-
cluding model choice. It is therefore crucial to obtain insights into the val-
idity of such studies, particularly when they have economic, biological, or
ecological consequences (e.g., ref. 26). This can be achieved in part by run-
ning a comparison using BCel. Furthermore, given the major gain in com-
puting time due to the absence of replications of the data, BCel can be
applied to more complex biological models.

The main caveat when using the empirical likelihood in such settings is
selecting a constraint 1 on the parameter of interest: In phylogeography,
parameters like divergence dates, effective population sizes, mutation rates,
etc., cannot be expressed as moments of the sampling distribution at a given
locus. In particular, the data are not iid. However, when considering micro-
satellite loci with the stepwise mutation model (27) and evolutionary scenarios
composed of divergence, we can derive the pairwise composite scores whose
zero is the pairwise maximum likelihood estimator (MLE). Composite likelihoods
have been proved consistent for estimating recombination rates, introducing an
approximation of the dependency structure between nearby loci (28–31). (Also,
ref. 32 gives composite likelihoods used in a likelihood-free setting.)

More specifically, we are approximating the intralocus likelihood by
a product over all pairs of genes in the sample at a given locus. Assuming that
yki denotes the allele of the ith gene in the sample at the kth locus, and that
ϕ is the vector of parameters, then the so-called pairwise likelihood of the
data at the kth locus, namely yk , is defined by

ℓ2
�
yk

��ϕ�= ∏
i<j

ℓ2
�
yki ; y

k
j

��ϕ�

and the corresponding pairwise score function is∇ϕlogℓ2ðyk jϕÞ. Pairwise score
equations

Ef
�
∇ϕlogℓ2ðY jϕÞ�= 0

provide a constraint 1 in every way comparable to the score equations that
give the maximum likelihood estimator and which is quite powerful for
empirical likelihood derivations (ref. 18), pp 48–50). Hence the empirical
likelihood of the full dataset y= ðy1; . . . ; yKÞ given ϕ is computed with 2
under the (multidimensional) constraint that
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XK
k=1

pk∇ϕlogℓ2ðyk jϕÞ= 0:

When the effective population size is identical over all populations of
the demographic scenario, the time axis may be scaled so that coalescence
of two genes in Kingman’s genealogy occurs with rate kðk− 1Þ=2 if there
are k lineages. In this modified scale, mutations at a given locus arise with
rate θ=2 along the gene genealogy. Our mutation model is the simple
stepwise mutation model of ref. 27; i.e., the number of repeats of the
mutated gene increases or decreases by 1 unit with equal probability.
Given two microsatellite allelic states x1 and x2, their pairwise likelihood
ℓ2ðx1; x2jϕÞ depends only on the difference of the states x1 − x2. If both
genes belong to individuals that lie in the same deme, then (SI Text and
ref. 33)

ℓ2ðx1; x2jϕÞ= ρðθÞjx2−x1j=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 2θ

p
;

where ρðθÞ = θ=ð1+ θ+
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 2θ

p Þ. If the two genes belong to individuals from
demes having diverged at time τ, then (33)

ℓ2ðx1; x2jϕÞ= e−τθffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 2θ

p
X+∞

k=−∞

ρðθÞjkjIjx1−x2 j−kðτθÞ;

where IδðzÞ denotes the δth-order modified Bessel function of the first kind
evaluated at z. Computing the pairwise scores, i.e., partial derivatives of
logℓ2ðx1; x2jϕÞ from those equations, is straightforward by virtue of re-
currence properties of the Bessel functions. Algorithm BCel is therefore di-
rectly available in this setting, and furthermore at a cost much lower than
the one associated with ABC algorithms (Table S1).

Results
Normal Distribution. Starting with the benchmark of a normal
distribution with known variance (equal to 1), we can check that
the empirical likelihood allows for a proper recovery of the true
posterior distribution on the mean. Fig. S1 shows that a con-
straint 1 based on the mean works well, as do the two constraints
on mean and second central moment, E½ðX − θÞ2�= 0 (Fig. S2).
On the other hand, using the first three central moments in the
empirical likelihood may degrade the fit (three cases in Fig. S3).
Whereas this poor fit is not signaled by the ESS (which is often
larger than in Figs. S1 and S2, because of the growing discon-
nection between the approximation and the true likelihood and
hence a more uniform range of the weights), a parallel run of the
method with different collections of constraints does detect the
discrepancy. This illustrates the variability of the empirical like-
lihood approximation, as well as its sensitivity to the choice of

defining constraints. Although a drawback of the method, this
variability can be tested and evaluated by comparing outcomes,
due to often limited computing costs. This toy experiment also
supports the generic recommendation (18) to keep the number
of constraints and parameters equal.
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Fig. 1. True (black) and fitted (brown) cdf functions with a pointwise 95% credible (shaded gray) region centered on the fitted cumulative distribution
function for a dataset of n= 100 observations from the g-and-k distribution, based on M= 103 simulations of BCel.
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Fig. 2. (Upper) Comparison of ABC evaluations of posterior expectations,
with true values given in dashed lines. (Lower) Posterior variances of the
parameters ðα0; α1Þ of the ARCH (1) model with 100 observations. The first
two columns correspond to two choices of summary statistics for the ABC
algorithm (least-squares estimates and mean of the log yt ’s plus autocorre-
lations of order 2 and 3, respectively). The last two columns correspond to
two sets of constraints for the BCel alternative (first three moments and
second moment plus autocorrelation of order 1 plus correlation with pre-
vious observation for the reconstituted et ’s). All experiments are based on
the same reference table of 104 simulations, with the tolerance e chosen as
the 1% quantile of the distances.
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Quantile Distributions. Quantile distributions are defined by a
closed-form quantile function F−1ðp; θÞ, and generally have no
closed form for the density function. They are of great interest
because of their flexibility and the ease with which they can be
simulated by a simple inversion of the uniform distribution. A
range of methods, including ABC approaches (10), has been
proposed for estimation (SI Text). We focus here on the four-
parameter g-and-k distribution, defined by its quantile function,
denoted Qðr;A;B; g; kÞ and equal to

A+B
	
1+ c

1− expð−gzðrÞÞ
1+ expð−gzðrÞÞ


�
1+ zðrÞ2

�k
zðrÞ;

where zðrÞ is the rth standard normal quantile; the parameters
A;B; g, and k represent location, scale, skewness, and kurtosis,
respectively, and c measures the overall asymmetry (34, 35). We
evaluated the BCel algorithm for estimating this distribution
using two values of θ= ðA;B; g; kÞ, two sets of priors, and various
combinations of n, M, and p, where p is the number of percen-
tiles used as constraints (details in SI Text).
Fig. 1 illustrates the true and fitted curves and a 95% credible

region for the case with n= 100;M = 5000, and p= 3. The corre-
sponding posterior means (SDs) for the parameters A;B; g; andk
were 3.08(0.14), 1.12(0.23), 1.79(0.25), and 0.41(0.12), respec-
tively. The choice of sample size and number of constraints did
not substantively affect the accuracy of parameter estimates, but
the precision was noticeably improved for the larger sample size
(Figs. S4–S6).
The accuracy and precision of the estimates were broadly

comparable with the results obtained by ref. 36 for the same dis-
tribution. Based on the whole experiment, the parameters A and B
were well estimated in all cases, whereas the estimates of g and k
were poorer for smaller values of n and M. For small n the esti-
mates were more subject to the vagaries of sampling variation,
whereas for smallM they were subject to the influence of a smaller
number of very large importance weights. However, given the
speed of BCel compared with competing ABC algorithms, it is
feasible to use even larger values of M than considered in this
experiment, because there is no requirement to simulate new
datasets at each iteration. Moreover, this experiment is based on
the very basic case of sampling from the prior; the results would
be further improved by using an analog of BCel–AMIS or alter-
native approaches similar to those proposed by ref. 37 for ABC.

Dynamic Models. In dynamic models, the difficulty with empirical
likelihood stems from the dependence in the data ðytÞ1≤t≤T .
However, these models can be represented as transforms of
unobserved iid sequences ðetÞ1≤t≤T . The recovery of a converging

empirical likelihood representation thus requires the re-
constitution of the et’s as transforms of the data y and of the
parameter θ. Independence between the et’s is then at least as
important as moment conditions. (This implies equivalent com-
puting times for ABC and BCel.)
For instance, consider a simple dynamic model, namely the

autoregressive conditionally heteroskedastic 1 [Arch(1)] model:

yt = σtet; et ∼Nð0; 1Þ; σ2t = α0 + α1y2t−1;

with a uniform prior over the simplex, i.e., α0; α1 ≥ 0, α0 + α1 ≤ 1.
Whereas this model can be handled by other means, because the
likelihood function is available we will compare here the be-
havior of ABC and BCel algorithms.
First, a natural empirical likelihood representation is based on

the reconstituted et’s, defined as yt=σt when the σt’s are derived
recursively. Fig. 2 shows the result of estimating both parameters
α0 and α1 when Algorithm ABC uses as summary statistics either
the least-square estimates of the parameters [derived from the
series ðy2t Þ], which we label “optimal ABC” in connection with
ref. 38, or the mean of the series logðy2t Þ supplemented by the
first two autocorrelations of the series ðy2t Þ. The constraints in
the empirical likelihood are either based on the first three
moments of the reconstituted et’s or on the variance of those et’s
complemented by both the correlations between the yt−1’s and
the et’s and between the et−1’s and the et’s. As seen from this
experiment, BCel does as well as the optimal ABC for the esti-
mation of the parameters, but further brings a reduction in the
variability of those estimates, thanks to the importance weights.
A much more complex dynamic model is the generalized

ARCH (GARCH)ð1; 1Þ model of ref. 39 that can be formalized
as the observation of yt ∼Nð0; σ2t Þ when
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Fig. 3. Comparison of evaluations of posterior expectations, with true values in dashed lines, of the parameters ðα0; α1; β1Þ of the GARCH (1) model with 250
observations. The first row corresponds to an optimal ABC algorithm (using the MLE as summary statistic and with the tolerance e chosen as the 5% quantile
of the distances), the second row corresponds to the BCel algorithm based on the constraints derived in ref. 40, and the third row corresponds to the MLE
derived by the R procedure GARCH initialized at the true parameter value.

Fig. 4. Evolutionary scenarios of the two experiments in population genetics.
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σ2t = α0 + α1y2t−1 + β1σ
2
t−1 [3]

under the constraints α0; α1; β1 > 0 and α1 + β1 < 1, that is, yt = σtet.
Given the constraints on the parameters, a natural priority is to
choose an exponential distribution on α0, for instance an expo-
nential Expð1Þ distribution, and a Dirichlet D3ð1; 1; 1Þ on ðα1; β1;
1− α1 − β1Þ. An ABC approach requires the choice of summary
statistics, which are necessarily nonsufficient because the model
is a state-space model. Following ref. 38, we use the MLE as
summary statistics, relying on the R function garch for its deri-
vation despite its lack of stability. Because ref. 40 derived natural
score constraints for the empirical likelihood associated with
this model, we used their constraints to build our BCel algo-
rithm. Fig. 3 provides a comparison of both approaches with the

MLE. It shows in particular that the ABC algorithm is unable
to produce acceptable inference in this case, even in the most
favorable case when it is initialized at a satisfactory maximum
likelihood estimate (as shown by the bottom row). The BCel al-
gorithm is performing better, even though it fails to catch the
correct range of β1.
Another type of non-iid model relying on the superposition of an

unknown number of gamma point processes and processed in ref.
41 through a (non-Bayesian) alternative to ABC is discussed in
SI Text as an additional illustration of the possibilities of the em-
pirical likelihood perspective for complex models, offering a free
benchmark for evaluating the ABC outcome. Fig. S7 shows a
clear improvement brought by BCel over the corresponding
ABC outcome.

Population Genetics. We compare our proposal with the reliable
ABC-based estimates given by ref. 3.We set up two toy experiments
that are designed to defeat ABC, using pseudoobserved data. The
two evolutionary scenarios are given in Fig. 4. In all experiments, we
only consider microsatellite loci and assume that the effective
population size is identical over all populations of the scenario.
In the first experiment, we consider two populations which

diverged at time τ in the past (Fig. 4, Left). Our pseudoobserved
datasets are made of 30 diploid individuals per population gen-
otyped at 100 independent loci. We compare the marginal pos-
terior distributions of the unknown parameters θ and τ computed
with the ABC method [using the Do It Yourself ABC (DIYABC)
software of ref. 42] and with the BCel–AMIS sampler. In this case,
results are improved when the θ component of the composite
scores, namely ∂θ log ℓ2ðDjϕÞ, is restricted to the sum over all
pairs of genes lying in the same population. Otherwise, as can be
checked via a quick simulation experiment, BCel systematically
underestimates θ. Fig. 5 shows the typical discrepancy between
both results: ABC and BCel agree on the mutation rate θ, but the
BCel estimation of τ is more accurate (Table 1).
In the second experiment, we consider three populations (Fig.

4, Right): the last two populations diverged at time τ1 and their
common ancestral population diverged from the first population
at time τ2. The sample comprises 30 diploid individuals per popu-
lation genotyped at 100 independent loci. In contrast with the first
experiment, all components of the composite scores are computed
here by summing over all pairs of genes whatever the population to
which they belong. The results given in Table 1 show that ABC and
BCel mainly agree on both parameters θ and τ1, but BCel is
slightly more accurate than ABC on τ2.
Table S1 gives a comparison of the computing times for both

algorithms, showing thedifferenceofmagnitudesbetween them.This
is due to the simulation of the simulated datasets for ABC:Although
this difference should not be overinterpreted, it signals a potential
for self-assessment and testing that is missing for ABC methods.
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Fig. 5. Comparison of the original ABC (Curve) with the histogram of the
simulation from the BCel–AMIS sampler in the case of the population ge-
netics model given in scenario A, based on uniform priors on
ðlog10ðθÞ; log10ðτÞÞ on ð−1; 1:5Þ× ð−1; 1Þ and 104 particles.

Table 1. Comparison of the original ABC and ABCel on 100 Monte Carlo replicates

Root-mean-square error
of posterior mean

Median absolute
deviation of posterior

median

Coverage of the
credible interval

with probability 0.8

Experiment ABC ABCel ABC ABCel ABC ABCel

First experiment
θ 0.0971 0.0949 0.071 0.059 0.68 0.81
τ 0.315 0.117 0.272 0.077 1.0 0.80

Second experiment
θ 0.0593 0.0794 0.0484 0.0528 0.79 0.76
τ1 0.472 0.483 0.320 0.280 0.88 0.76
τ2 29.6 4.76 4.13 3.36 0.89 0.79

We use two point estimates of the parameters (i) posterior mean and (ii) posterior median, and measured the error between the
estimation and the “true” value used to generate the observation with (i) the root-mean-square error in the case of the posterior
mean and (ii) the median absolute deviation in the case of the posterior median. We also compare credible intervals (with probability
0.8) through the proportion of Monte Carlo replicates in which the true value falls into this interval.
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Discussion
Compared with ABC methods, the (often) significant time savings
provided by BCel due to the lack of pseudosample simulation may
open wider ranges for processing models involving complex like-
lihoods. For instance, in population genetics, ABC is severely
hindered by the time spent simulating a dataset when modeling
isolation by distance in a continuously distributed population, or
when studying a large set of SNP markers even on quite simple
evolution scenarios. Moreover, when the dataset is composed of
large sets of markers, the summary statistics proposed in ABC (in
DIYABC, these are averages of some quantitative statistics over
all loci) ignores some (statistical) information, whereas BCel
manages to recover most of it, more specifically to estimate di-
vergence on large datasets. Improvements in accuracy of estima-
tion and computational efficiency are also possible in other
contexts as illustrated in the range of examples given above.
Even when BCel requires the same computing time as ABC, it

uses the outcome in a very different perspective and provides a
benchmark likelihood that helps in evaluating the pertinence of
the ABC approximation, as illustrated in the gamma point pro-
cess of SI.

We acknowledge a caveat of the empirical likelihood: it requires
a careful choice of the constraint 1. Those pivotal quantities have
to be connected to the parameter in an identifying way, which may
require complex manipulations as in the gamma process case or
may even be impossible. However, repeated experimentation is
often available, as illustrated by the normal example and the pop-
ulation genetic experiments (where we computed the composite
score on both a restricted set of pairs and all pairs of genes).
Checking for the accuracy of the approximation means that a con-
straint in BCel should be tested on simulated datasets in controlled
experiments where the true parameters are known, although much
less than in ABC runs. Then we can test coverage of credibility
intervals, andmeasure the error of various point estimates based on
the output of the scheme.
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