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Water and its influence on plants likely exerted strong adaptive
pressures in human evolution. Understanding relationships among
water, plants, and early humans is limited both by incomplete
terrestrial records of environmental change and by indirect proxy
data for water availability. Here we present a continuous record
of stable hydrogen-isotope compositions (expressed as δD values)
for lipid biomarkers preserved in lake sediments from an early
Pleistocene archaeological site in eastern Africa—Olduvai Gorge.
We convert sedimentary leaf- and algal-lipid δD values into estimates
for ancient source-water δD values by accounting for biochemical,
physiological, and environmental influences on isotopic fraction-
ation via published water–lipid enrichment factors for living plants,
algae, and recent sediments. Reconstructed precipitation and lake-
water δD values, respectively, are consistent with modern isotopic
hydrology and reveal that dramatic fluctuations in water availability
accompanied ecosystem changes. Drier conditions, indicated by less
negative δD values, occur in association with stable carbon-isotopic
evidence for open, C4-dominated grassland ecosystems. Wetter
conditions, indicated by lower δD values, are associated with ex-
panded woody cover across the ancient landscape. Estimates for
ancient precipitation amounts, based on reconstructed precipita-
tion δD values, range between approximately 250 and 700 mm·y−1

and are consistent with modern precipitation data for eastern
Africa. We conclude that freshwater availability exerted a substan-
tial influence on eastern African ecosystems and, by extension,
was central to early human proliferation during periods of rapid
climate change.

paleohydrology | plant waxes | carbon isotopes

The role of water and ecosystem change in human evolution
remains a subject of active debate (1–3), but experts widely

acknowledge that these factors likely shaped early human (hominin)
foraging strategies and diet (4) approximtely 2.0–1.8 million years
ago (Ma). According to marine records, this juncture occurred
during an interval of protracted grassland expansion across eastern
Africa (1). In contrast, coeval terrestrial records from hominin
archaeological sites such as Olduvai Gorge indicate recurrent
fluctuations between open-grassland and closed-woodland eco-
systems (5). Although such ecosystem fluctuations are commonly
interpreted in relation to aridity, grassland expansion is sensitive
to multiple factors (6), and proxy signals more closely linked to
meteoric waters could strengthen interpretations.
Here we use δD values for lipid biomarkers preserved in lake

sediments to reconstruct source-water δD values at Olduvai Gorge
during the early Pleistocene. In modern lake basins, precipitation
and lake-water δD values correlate strongly with δD values for leaf-
and algal-lipids, respectively, after accounting for isotopic fraction-
ation during lipid biosynthesis (7). Present and past source-water
δD values reflect the combined influences of vapor-source, trans-
port history, and aridity, ultimately linking local hydrologic patterns
to atmospheric and oceanic-circulation dynamics (8).

Sample Locality. Olduvai Gorge is incised into the eastern margin
of the Serengeti Plain in northern Tanzania (Fig. 1). Gorge walls

expose a thick sequence of volcaniclastic sediments and tuff ac-
cumulated in lake and lake-margin environments (9, 10). Between
approximately 2.0 and 1.8 Ma, a perennial saline-alkaline lake
(paleolake Olduvai) occupied the center of the closed basin (9–11).
Lake-margin stratigraphy suggests paleolake Olduvai responded
sensitively to local and regional precipitation patterns during this
200,000-y interval (9–12). Stable carbon-isotope compositions
(expressed as δ13C values) of leaf-lipids preserved in the lake
sediments vary by more than 15‰, suggesting that pronounced
ecosystem fluctuations accompanied lake-level fluctuations (5).
Here we measure leaf-lipid δD values in a subset of the same
lake sediment outcrop. All samples are from locality 80 (Bed I),
which accumulated near the depocenter of paleolake Olduvai (10)
and was exposed by stream incision during the late Pleistocene (9).

Precipitation Patterns in Eastern Africa. In eastern Africa, precipi-
tation patterns reflect interactions between regional highlands and
two convergent boundaries (Fig. 1). The Intertropical Convergence
Zone (ITCZ) and closely associated African rainbelt (13) mark
north–south convergence of monsoon airstreams. The Interoceanic
Confluence (IOC; also referred to as the Congo Air Boundary)
marks east–west convergence of air masses derived from the Indian
and Atlantic Oceans (14). Both the ITCZ and IOC migrate in
response to insolation-driven surface heating patterns (13), yielding
two rainy seasons. In eastern Africa, the “long rains” (March to
May) account for more than 50% of annual totals (15). Precipi-
tation during the “short rains” (October to December) is more
variable but correlates strongly with annual totals (16).
Precipitation δD values (δDrain) reflect the origins and histories

of the related air masses that produce it. In eastern Africa, δDrain
values correlate inversely with precipitation amounts due to the
influences of vapor-source, transport history, and “amount” effects
(17). Today the Indian Ocean is the primary vapor source to
eastern Africa (13); the Atlantic Ocean and continental surface-
water evaporation are important secondary sources. Transport
history and amount effects result in δDrain values that differ be-
tween the rainy seasons (18). On average, δDrain values for the
long rains are less negative (−20‰) than for the short rains
(−28‰); in central eastern Africa, the average annual δDrain
value is approximately −22‰ (19–22).

Leaf-Lipid Apparent Fractionation Factors. Plant-water δD values
reflect soil-water δD values (δDsoil) (7). Isotopic relationships
between δDsoil and δDrain values can be influenced by surface
evaporation in arid and semiarid regions (8), but plant-water δD
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values attenuate evaporative signals by accessing deep soil moisture
and increasing productivity during rainy seasons (23).
Soil water is not fractionated significantly during uptake by

plant roots, and stem-water δD values generally reflect δDsoil
values (23). In contrast, leaf-water δD values can vary markedly
from δDsoil values as a result of transpiration (24). The relative
importance of stem-water vs. leaf-water during lipid biosynthesis
remains unclear (25, 26), as does biosynthetic phenology. These
factors could account for differences in apparent fractionation
between source-waters and lipids («lipid/water = [(δDlipid + 1,000)/
(δDwater + 1,000)] − 1, expressed in permil (‰)) among living
plants when grouped according to plant functional type (PFT).
We reevaluate a global compilation of published leaf-lipid δD

values for living plants (SI Appendix) to determine representative
«lipid/water values for different PFTs relevant to this study. We
target subtropical and tropical taxa in clades most representative
of plants in eastern Africa since the early Pleistocene (27, 28).
Leaves of subtropical and tropical plants commonly contain the
leaf-lipid hentriacontane (nC31) (29, 30), and nC31 is also abun-
dant in lake sediments from Olduvai Gorge (5). Therefore, we use
published δD values for nC31 (δD31) to determine «lipid/water values
applicable to sedimentary δD31 values from Olduvai Gorge.
We define PFTs in terms of photosynthetic pathway and

growth habit: C3 woody plants, C3 herbs, and C4 graminoids.
We determine representative «lipid/water values—termed «31/model
values—from published δD31 values using modeled annual δDrain
values (δDmodel

rain ) (21, 22). Measured annual δDrain values rarely
accompany published leaf-lipid δD values but, when available,
generally coincide with δDmodel

rain values (7, 21).
Collectively, «31/model values average −124‰ («average). Among

individual PFTs the median «31/model value for C4 graminoids is
most negative (−146‰ ± 8‰, 95% confidence interval; n = 51).
The median «31/model value for C3 herbs (−124‰ ± 10‰; n = 24)
is more negative than for C3 woody plants (−109‰ ± 8‰; n = 84).

We calculate “landscape” apparent fractionation factors
(«landscape) using «31/model values and relative PFT abundances
(Fig. 2) estimated from δ13C values for nC31 (δ13C31) in lake
sediments (5). Leaf-lipids represent relative PFT abundances in
basins ranging from small lakes (31) to expansive river systems
(32), despite differences in basin morphology, transport, and burial
processes (33). We multiply each «31/model value by relative PFT
abundance (i.e., fwoody, fherb, and fgram for woody plants, herbs,
and gramminoids, respectively) to calculate «landscape values:

«landscape = fwoodyð−109‰Þ+ fherbð−124‰Þ+ fgramð−146‰Þ:

Finally, we apply «landscape values to sedimentary δD31 values
to reconstruct δDsoil values.
The relative influences of biochemical, physiological, and en-

vironmental processes on «lipid/water values are difficult to account
for in interpretations of δD31 values. For instance, our «31/model
value for C3 woody plants does not distinguish by canopy height,
despite observed differences between modern trees and shrubs
(SI Appendix). Similarly, annual δDrain values do not distinguish
seasonality. In eastern Africa, annual and rainy-season δDrain val-
ues can differ in excess of 20‰ (SI Appendix), although >85% of
annual precipitation occurs during rainy seasons (15). Thus, to the
extent that plant growth takes place in rainy seasons, annual δDrain
values can overestimate δDsoil values during lipid biosynthesis.
Although propagated uncertainty in «landscape values (SI Appen-

dix) represents a substantial portion of the variability in modern
δDrain values across central eastern Africa (approximately 60‰),
sedimentary δD31 values capture space- and time-integrated signals
that attenuate variability of individual plants or species (7, 31).
Thus, uncertainty in «landscape values largely reflects ecosystem-
scale differences in transpiration and phenology (7), which are
at least partially accounted for by «31/model values, provided living
plants are representative of their ancient counterparts. Despite
some significant shortcomings in the state of the art, «landscape
values provide a useful interpretational framework to account
for biological and physical influences on leaf-lipid δD values—a
factor often overlooked in hydrologic reconstructions.

Algal-Lipid Apparent Fractionation Factors. Aquatic photosynthetic
organisms acquire hydrogen for lipid biosynthesis from am-
bient waters (7). Therefore, algal δD values reflect lake-water
δD values—which integrate precipitation, groundwater, run-
off, and evaporation—as modified by biosynthetic fractionation.

 P
recip

itatio
n

 
(m

m
 m

onth  )
-1

300

J F M A M J J A S O N D

Month

20

60

100

120

A
ve

ra
g

e 
P

re
ci

p
it

at
io

n
 

  (
m

m
 m

on
th

  )-1

150

N

35°15 E

2°55 S

35°25 E

5 km

Modern Gorge

40°N

0°

40°S

0° 30°E 0° 30°E

0

ITCZ ITCZ

IOC

A B

C D

Fig. 1. Modern precipitation patterns in eastern Africa (66) during the (A) long
rains (March to May) and (B) the short rains (October to December), with re-
spect to average monthly precipitation in northern Tanzania (C) (Data courtesy
of http://climexp.knmi.nl). In A and B, bold horizontal lines mark the position of
the Intertropical Convergence Zone, whereas dashed lines mark the In-
teroceanic Confluence (13). Target symbols mark the location of Olduvai Gorge
(2° 48′S, 35° 06′E). In C, the bold line reflects observed average monthly rainfall
(1964–1984); gray envelops variation for average monthly precipitation. The
dashed line reflects modeled average monthly rainfall for Tanzania (67). (D)
Depositional environments surrounding paleolake Olduvai during the early
Pleistocene (9). Contracted (dashed line) and expanded (bold line) lake
margins are based on correlated stratigraphic sections (9–12).
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Biosynthetic fractionation, in turn, incorporates biological and
physical factors (7). Culture studies indicate that algal «lipid/water
values vary between species (34), but space- and time-integration
seems to minimize these effects in sediments (7).
Field studies indicate that algal «lipid/water values vary in re-

lation to salinity and must be accounted for when interpreting
algal-lipid δD values (35). The response of algal «lipid/water values
to salinity is markedly consistent at 0.9‰ ± 0.2‰ ppt−1 (7).
Heptacosane (nC17) is a general biomarker for algae (36) and is
abundant in lake sediments from Olduvai Gorge. Modern studies
establish an apparent fractionation between freshwater and nC17
equal to −172‰ (7), and we use this value to determine algal
«lipid/water values at different salinities—termed «lake values:

«lake = 0:9ðsalinityÞ− 172‰:

We construct a basic lake-water evaporation model to constrain
«lake values in the past (SI Appendix). Briefly, we estimate the
total solute load for paleolake Olduvai on the basis of strati-
graphic evidence for maximum lake area (approximately 200 km2)
(10) and lake level (approximately 5 m) (12) during the early
Pleistocene and fossil evidence for minimum salinity (approxi-
mately 20 ppt) (9). Then, we infer changes in lake level from
changes in sedimentary total organic carbon (%TOC) because
these values covary in many modern lakes in eastern Africa (37).
Next, we assume a conservative solute balance and use estimates
for paleolake volume to estimate salinities during lake contrac-
tion. Finally, we apply «lake values to sedimentary δD17 values
to reconstruct lake-water δD values (δDlake). Salinity estimates
for paleolake Olduvai range from approximately 20 to 100 ppt,
resulting in «lake values that vary by up to 88‰ from freshwater
algal «lipid/water values.
Biosynthetic processes responsible for the influence of salinity

on δD17 values are unclear (7), and not all possible mechanisms

result in linear relationships. Still, «lake values range between
−158‰ and −84‰ for paleolake Olduvai, highlighting the
importance of salinity when interpreting δDlake values from
sedimentary δD17 values.

Results
Sedimentary δ13C31 values range from −36.3‰ to −21.4‰, with
an average value of −27.8‰ (Fig. 3). Sedimentary δD31 values
range from −148% to –132‰ and correlate weakly with δ13C31
values (r2 = 0.11) and %TOC (r2 = 0.08). Reconstructed δDsoil
values show an increased isotopic range of 54‰, from −38‰
to +16‰ (Fig. 4).
Sedimentary δD17 values range from −150‰ to −30‰ (Fig. 4).

Measured values correlate strongly with δ13C31 values (r
2 = 0.83)

and %TOC (r2 = 0.86). Reconstructed δDlake values show a rel-
atively smaller the isotopic range, from +3‰ to +59‰, but still
correlate strongly with δ13C31 values (r2 = 0.88). Interestingly,
sedimentary δD17 values correlate weakly with sedimentary δD31
values (r2 = 0.11), but reconstructed δDlake values correlate
strongly with reconstructed δDsoil values (r

2 = 0.84).

Interpretations and Discussion
Precipitation in Eastern Africa. Historical precipitation patterns
serve as a framework for interpreting reconstructed hydrologic
patterns over timescales of 101 to 103 thousand years (38), although
regional tectonism and the intensification of zonal atmospheric
(Walker) circulation during the early Pleistocene could weaken this
interpretational link (1, 13). Modern δDrain values reveal a re-
gional meteoric waterline (RMWL) for eastern Africa (Fig. 5):

δDrain = 7:9δ18Orain + 11:3‰:

Today, annual δDrain values in eastern Africa range from ap-
proximately −30‰ and −10‰, whereas monthly δDrain values
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Fig. 3. Relationships between leaf- and algal-lipid δD values and ancillary proxy data for Olduvai Gorge. (A) Sedimentary δ13C31 values (5). (B) Dust fluxes into
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range from approximately −50‰ and +30‰ (19–22, 39–41). We
pair reconstructed δDsoil values with published δ18Orain values
derived from lake and soil-carbonate minerals in closely asso-
ciated lake (12) and lake-margin (41) sediments (SI Appendix).
Reconstructed δDsoil–δ18Orain values plot within the range of
modern precipitation data for eastern Africa and show strong
agreement with the RMWL (Fig. 5).
A wide range in δDsoil values (and, by inference δDrain values)

indicates pronounced changes in vapor source, transport history,
amount of precipitation, or a combination thereof. Today, changes
in vapor source account for up to 10‰ variability in δDrain values
(40). Sea-surface temperatures in vapor-source regions influence
δDrain values by approximately 1‰ °C−1 (42), accounting for up
to 5‰ variability during the early Pleistocene (43). Transport
history is difficult to constrain (44) but can account for up to
10‰ variability today. Together, changes in vapor source and
transport history can account for nearly half of the variability
(25‰) in reconstructed δDsoil values for eastern Africa. If so,
changes in the amount of precipitation account for the remaining
variability (29 of 54‰) in reconstructed δDsoil values.
The relationship between modern δDrain values and amount

of precipitation is difficult to evaluate in many tropical regions

because of sparse measurements, but available data suggest com-
parable effects at seasonal, annual, and interannual timescales
(44, 45). In eastern Africa, available rainy-season δDrain values
correlate inversely with precipitation at a slope of −0.125‰ mm−1

(SI Appendix). If modern sensitivity is representative for the past,
and changes in vapor-source and transport history were impor-
tant, then a 29‰ range in δDsoil values translate to 225 mm
precipitation range; the full 54‰ range translates to 415-mm
precipitation range.
Historical data for annual δDrain values (−22‰) (19, 39) and

mean annual precipitation (MAP) (550 mm) (9, 15) provide a
local reference point from which to project reconstructed δDsoil
values. Because rainy seasons account for approximately 85% of
MAP in northern Tanzania (15), we use an amount effect for
rainy-season months to reconstruct MAP in the past:

MAP= ðδDsoil + 22‰Þ=�−0:13‰ mm-1�+ 550 mm:

MAP estimates for the full range of δDsoil values are from
∼700–250 mm. This range is consistent with reconstructions based
on pollen spectra (∼750 mm) (46) and soil carbonates (<400
mm) (47) during wetter and drier intervals, respectively. Woody
cover strongly covaries with MAP today in eastern Africa (6):

fwoody = ð0:14ðMAPÞ− 14:2Þ=100:

We find a similar relationship between our estimates of MAP
and woody cover (5). For instance, in the modern calibration,
MAP of 700 mm yields an fwoody value of 0.84, which is consistent
with a δ13C31-derived (−36.3‰) fwoody value of 0.90 (5). These
observations suggest amount effects influenced δDrain values more
than changes in vapor-source or transport history at Olduvai
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Gorge and highlight the importance of using «landscape values to
reconstruct hydrologic patterns from leaf-lipid δD values.

Lake-Water Evaporation in Eastern Africa. Loss of lighter isotopic
species (H2

16O) during evaporation progressively enriches residual
lake waters in DH16O and H2

18O. In eastern Africa, lake-water
δD values (δDlake) and δ18O values (δ18Olake) define an isotopic
trajectory—called a local evaporation line (LEL)—with a slope
that is lower than that of the RMWL (8). LEL slopes are primarily
a function of relative humidity (h); in general, very low h values
(e.g., 0.25) result in slopes close to 4, whereas higher h values
result in slopes closer to 6 (8). Modern δDlake and δ18Olake
values yield an LEL for eastern Africa:

δDlake = 5:6δ18Olake + 1:6‰:

Modern δDlake values range from approximately −30‰ in
humid regions of eastern Africa to +80‰ or higher in extremely
arid regions (48–53).
The LEL defines source-water composition at its intersection

with the RMWL. For modern waters in eastern Africa, LEL and
RMWL intersect at a source-water δD value of −22‰ (Fig. 5),
which closely matches historical data (19–22). In closed basins,
lake waters derive primarily from precipitation (54).

Tracing Isotopic Hydrology at Olduvai Gorge. To compare modern
and ancient lake-waters, we pair reconstructed δDlake values with
published δ18Olake values that were determined from authigenic
clays (12) in associated sediments (SI Appendix). Reconstructed
δDlake–δ18Olake values show close agreement with the modern
LEL (Fig. 5). Further, reconstructed δDlake and δDsoil values
strongly correlate, suggesting lake-water compositions shifted
largely owing to changes in precipitation. Evaporation rates de-
crease at high salinity because of the decreased activity of water
in high ionic-strength solutions. As a result, potential evaporation
can exceed lake-water evaporation by up to 100-fold (54). Thus,
although reconstructed δDlake values vary only slightly more than
δDsoil values, changes in source-water and amount of precipitation
would have been accompanied by large changes in potential
evaporation. Reconstructed lake evaporation relative to mete-
oric input (E/I) based on our data suggest higher evaporation
during intervals of reduced precipitation (E/I = 2.9) than during
increased precipitation (E/I = 1.3) and are consistent with his-
torical and modeled E/I values for eastern Africa (SI Appendix).

Water Availability and Ecosystem Dynamics. Reconstructed δDrain
and δDlake values reveal strong relationships between water and
carbon-isotopic data for ecosystem type. Lower δDrain and δDlake
values, which reflect increased MAP and decreased evaporation,
respectively, correspond with increased woody cover (fwoody =
0.90). Although the organic carbon-derived indicators we use to
determine «landscape and «lake values may be codependent (55),
reconstructed values for fwoody and lake level are consistent with
independent indicators for ecosystem type and paleolake level
(Fig. 3). Much like today (6), aridity was a dominant control on
ecosystem change in eastern Africa during the Pleistocene.
Contrasting proxy records have fueled debate about the pace

and patterns of environmental change in eastern Africa during
the Pleistocene. Pollen and fossil abundance records suggest ex-
pansion of arid-adapted species beginning near 2.0 Ma and cul-
minating around 1.8 Ma (56, 57). Marine dust-flux records and
soil-carbonate δ13C values also suggest shifts toward more arid
conditions around 1.8 Ma (1), although geomorphic evidence
suggests regionally wetter conditions (1).
Lipid biomarkers from Olduvai Gorge point to rapid changes

in plants and water between approximately 2.0 and 1.8 Ma, and
we suggest this environmental variability both influenced and can
reconcile proxy records. For instance, increased seasonality can

lead to C4 graminoid expansions (58) but can also lead to unrep-
resentatively positive C4-like δ13C values in soil carbonates (59).
Similarly, rapid wet-to-dry transitions can simultaneously produce
both increased dust and elevated lake-levels (60). Over the past
several million years, modulation of marine dust-flux records from
the Arabian Sea has been tightly coupled with orbital eccentricity,
resulting in distinct intervals of exceptionally high-amplitude
variability during orbital-eccentricity maxima (1). We hypothe-
size that high-amplitude, orbital precession-paced environmental
variability, as opposed to gradual or stepwise aridification, char-
acterized eastern Africa during the early Pleistocene.

Water and Early Human Evolution. In semiarid regions, precipitation
primarily determines water availability (15). Today, water avail-
ability shapes primate behaviors through its influence on vege-
tation and resource distributions (4, 61). For example, regions
with MAP <700 mm do not support chimpanzee populations (62).
Water likely shaped behavioral adaptations in the genus Homo
(63). Our evidence for dramatic variability is consistent with water
as a strong selective pressure in human evolution (1, 2). However,
thermoregulatory and dietary constraints function at microhabitat
scales (64), and many hominin fossil sites—including Olduvai
Gorge (9)—are associated with ephemeral or saline water sources
(65). Our reconstructions of precipitation and lake-chemistry in-
dicate that, even during maximum lake expansion, lake waters
at Olduvai Gorge were likely not potable (12). Groundwater-fed
freshwater springs could have aided hominin existence and
proliferation (65).

Conclusions
This study presents a continuous record of δD values for lipid
biomarkers from lake sediments at Olduvai Gorge that were
deposited during a key juncture in human evolution, ∼2.0–1.8 Ma.
We pair sedimentary leaf-lipid δD values with corresponding
δ13C values to account for physiological and environmental influ-
ences on reconstructed precipitation δD values. We use a basic
lake-water evaporation model to account for the influence of
salinity on algal-lipid δD values and reconstructed lake-water
δD values. Sedimentary leaf- and algal-lipid δD values show a
weak relationship, but “corrected” values correlate strongly. We
compare reconstructed precipitation and lake-water δD values
with isotopic data for environmental waters in modern eastern
African to estimate ancient precipitation amounts and evapo-
rative losses, respectively. Our results indicate Olduvai Gorge
received approximately 250 mm of MAP during arid intervals
and ∼700 mm during wetter intervals. Given the magnitude and
variability in water availability revealed by our reconstructions,
we hypothesize freshwater springs were important for hominin
subsistence in highly variable environments.

Materials and Methods
Lipid Extraction and Purification. Lipid biomarkers in lake sediments were
extracted and separated according to Magill et al. (5).

Isotopic Analysis. Lipid δD values were measured by gas chromatography–
isotope ratio monitoring–mass spectrometry. Hydrogen gas of known δD
value was used as reference. Samples were coinjected with internal standards
of known δD values (nC41, androstane, and squalane). Uncertainty (1σ SD) for
nC41 was 4‰.

Age Model. Our age model is constrained using previously published 40Ar/39Ar,
magnetic stratigraphy, and tuff correlation dates (5).
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