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In compressed sensing, one takes n<N samples of an N-dimensional
vector x0 using an n×N matrix A, obtaining undersampledmeasure-
ments y =Ax0. For random matrices with independent standard
Gaussian entries, it is known that, when x0 is k-sparse, there is
a precisely determined phase transition: for a certain region in the
(k/n,n/N)-phase diagram, convex optimization min  ||x||1 subject  to
y=Ax , x∈XN typically finds the sparsest solution, whereas outside
that region, it typically fails. It has been shown empirically that the
same property—with the same phase transition location—holds for
a wide range of non-Gaussian randommatrix ensembles. We report
extensive experiments showing that the Gaussian phase transition
also describes numerous deterministic matrices, including Spikes
and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals
Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely,
for each of these deterministic matrices in turn, for a typical k-sparse
object, we observe that convex optimization is successful over a re-
gion of the phase diagram that coincides with the region known for
Gaussian random matrices. Our experiments considered coefficients
constrained to XN for four different sets X ∈ {[0, 1], R+ , R, C}, and
the results establish our finding for each of the four associated
phase transitions.
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Compressed sensing aims to recover a sparse vector x0 ∈XN

from indirect measurements y=Ax0 ∈Xn with n<N, and
therefore, the system of equations y=Ax0 is underdetermined.
Nevertheless, it has been shown that, under conditions on the
sparsity of x0, by using a random measurement matrix A with
Gaussian i.i.d entries and a nonlinear reconstruction technique
based on convex optimization, one can, with high probability,
exactly recover x0 (1, 2). The cleanest expression of this phe-
nomenon is visible in the large n;N asymptotic regime. We
suppose that the object x0 is k-sparse—has, at most, k nonzero
entries—and consider the situation where k∼ ρn and n∼ δN. Fig.
1A depicts the phase diagram ðρ; δ; Þ∈ ð0; 1Þ2 and a curve ρ*ðδÞ
separating a success phase from a failure phase. Namely, if
ρ< ρ*ðδÞ, then with overwhelming probability for large N, convex
optimization will recover x0 exactly; however, if ρ> ρ*ðδÞ, then
with overwhelming probability for large N convex optimization
will fail. [Indeed, Fig. 1 depicts four curves ρ*ðδjXÞ of this kind
for X∈ f½0; 1�;R+;R;Cg—one for each of the different types of
assumptions that we can make about the entries of x0 ∈XN

(details below).]
How special are Gaussian matrices to the above results? It was

shown, first empirically in ref. 3 and recently, theoretically in ref.
4, that a wide range of random matrix ensembles exhibits pre-
cisely the same behavior, by which we mean the same phenom-
enon of separation into success and failure phases with the same
phase boundary. Such universality, if exhibited by deterministic
matrices, could be very important, because certain matrices,
based on fast Fourier and fast Hadamard transforms, lead to fast
and practical iterative reconstruction algorithms, even in the very
large N setting, where these results would have greatest impact.
In certain fast algorithms like FISTA (5) and AMP (6), such ma-
trices are simply applied implicitly and never need to be stored ex-
plicitly, saving space and memory accesses; the implicit operations

often can be carried out in order NlogðNÞ time rather than the
naive order N2 time typical with random dense matrices. Also,
certain deterministic systems (7) have special structures that
enable especially fast reconstruction in especially large problems.
In this paper, we show empirically that randomness of the

matrix A is not required for the above phase transition phe-
nomenon.* Namely, for a range of deterministic matrices, we
show that the same phase transition phenomenon occurs with the
same phase boundary as in the Gaussian random matrix case.
The probability statement is now not on the matrix, which is
deterministic, but instead, on the object to be recovered; namely,
we assume that the positions of the nonzeros are chosen purely
at random. Our conclusion aligns with theoretical work pointing
in the same direction by Tropp (8), Candès and Plan (9), and
especially, Donoho and Tanner (10) discussed below; however,
the phenomenon that we document is both much broader and
more precise and universal than what currently available theory
could explain or even suggest. The deterministic matrices that we
study include many associated with fast algorithms, and therefore,
our results can be of real practical significance. The section Sur-
prises also identifies two anomalies uncovered by the experiments.

Methods
For each of the deterministic matrix sequences ðAn;NÞ under study and each
choice of coefficient set X∈ f½0;1�;R+;R;Cg, we investigated the hypothesis
that the asymptotic phase transition boundary is identical to the known
boundary for Gaussian random matrices. To measure the asymptotic phase
plane at a point ðδ; ρÞ, we chose a sequence of tuples ðk;n;NÞ such that
k=n= ρ and n=N= δ, and we performed a sequence of experiments, one for
each tuple. In each experiment, we performed Monte Carlo draws of random
k-sparse objects x0 ∈XN , attempted to recover x0 ∈XN from y =An;Nx0, and
documented the ratio π̂ of successes to trials. Our raw empirical observations,
thus, consist of a list of entries of the form π̂ðkjAn;N ;XÞ associated with
carefully chosen locations ðδ; ρÞ in the phase plane. This section discusses
details of creation and subsequent analysis of these empirical observations.

Deterministic Matrices Under Study. The different matrices that we studied
are listed in Table 1. A simple example is the n× 2n Spikes and Sines matrix
(11–13), A= ½InFn�, where Fn is usual discrete Fourier transform matrix. Our
list includes numerous tight frames, obeying jjATxjj2 = cjjxjj2; several are
equiangular tight frames, with the smallest possible coherence 1=

ffiffiffi
n

p
[i.e.,

the maximal inner product between normalized columns (12)] (14–16). Not
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all of our frames are maximally incoherent; we consider a so-called Affine
Chirp frame with coherence n−1=4, which is neither tight nor equiangular.
Our experiments began as assigned coursework for a course on compressed
sensing at Stanford University; they considered the matrices labeled Spikes
and Sines (SS), Spikes and Hadamard (SH), and Grassmannian Frame (GF),
which served as simple examples of deterministic measurement matrices in
that course. After our initial experiments made the basic discovery reported
here, we extended our experiments to other matrices. The second stage of
experiments involved the deterministic matrices labeled Paley Tight Frame
(PETF), Delsarte-Goethals (DG), and Linear Chirp Frame (LC), which were
extensively studied in recent years by researchers at Princeton University,
especially Robert Calderbank and others. The Spikes and Noiselets (SN),
Affine Plane Chirps (AC), and Cyclic matrices were added in a third stage of
refinement; their selection was based on personal interests and knowledge
of the authors. We emphasize that there are no unreported failures.
Namely, we report results for all ensembles that we studied; we are not
limiting our reports to those results that seem to support our claims, while
holding back information about exceptions. The observed exceptions are
disclosed in the section Surprises below.

Generation of Pseudorandom Sparse Objects. For X=R+, R, and C, a vector
x0 ∈XN is called k-sparse if 0≤ k≤N and #fi : x0ðiÞ≠ 0g= k. For case X= ½0; 1�,
x0 ∈XN is k-sparse if #fi : x0ðiÞ∉ f1; 0gg= k; this notion was called k-simple in
the work by Donoho and Tanner (10). We abuse language in the case
X = ½0; 1� by saying that entries of x0ðiÞ not in f0; 1g are nonzeros, whereas
entries in f0; 1g are zeros.

In our experiments, pseudorandom k-sparse objects x0 ∈XN were gener-
ated as follows.

Random positions of nonzeros. The positions of the k nonzeros are cho-
sen uniformly random without replacement.

Values at nonzeros. For X ∈ fR+;R;Cg, the nonzero entries have values
i.i.d uniformly distributed in the unit amplitude set fjzj= 1g∩ X. Thus, for
X=R+, the nonzeros are all equal to one; for R, they are ± 1 with signs
chosen by i.i.d fair coin tossing, and for C, the nonzeros are uniformly
distributed on the unit circle. For X= ½0; 1�, the values not equal to zero or
one are uniformly distributed in the unit interval ð0; 1Þ.
Values at zeros. For X ∈ fR+;R;Cg, the zeros have value zero. For X= ½0; 1�,
the zeros have values chosen uniformly at random from f0; 1g.

Convex Optimization Problems. Each Monte Carlo iteration in our experiments
involves solving a convex optimization problem, in which we attempt to re-
cover a given k-sparse object from y =Ax0. Each of the four specific constraint
sets X∈ f½0; 1�;R+;R;Cg leads to a different convex program for sparse re-
covery of x0 ∈XN . For each specific choice of X, we solve

�
P1
X

�
 min

����x����1 subject  to  y =Ax; x ∈XN ;

where y ∈Rn and A∈Rn×N .
When X is one of ½0;1�, R+, or R, the corresponding ðP1

XÞ can be reduced to
a standard linear program and solved by a simplex method or an interior
point method; in case R, the problem ðP1

RÞ is sometimes called Basis Pursuit
(17). The case C is a so-called second-order cone problem (18).

Probability of Exact Recovery. For a fixed matrix A, let x0 ∈XN be a random
k-sparse object. Let y =Ax0, and therefore, notwithstanding the de-
terministic nature of A, ðy;AÞ is a random instance of ðP1

XÞ. Define

π
�
k
��A;X� = Prob

�
x0 is the unique solution of

�
P1
X

��
:

This quantity is the same for a wide range of random k-sparse x0, regardless
of details of their amplitude distributions, provided that they obey certain
exchangeability and centrosymmetry properties.

Estimating the Probability of Exact Recovery. Our procedure follows the
procedure in ref. 3. For a given matrix A, coefficient type X, and sparsity k,
we conduct an experiment with the purpose of estimating πðkjA;XÞ using M
Monte Carlo trials. In each trial, we generate a pseudorandom k-sparse
vector x0 ∈XN as described above and compute the indirect underdetermined
measurements y =Ax0. ðy;AÞ gives an instance of ðP1

XÞ, which we supply to
a solver, and obtains the result x1. We compare the result x1 with x0. If the
relative error jjx0 − x1jj2=jjx0jj2 is smaller than a numerical tolerance, we de-
clare the recovery a success; if not, we declare it a failure. (In this paper, we
used an error threshold of 0.001.) We, thus, obtain M binary measurements
Yi , indicating success or failure in reconstruction. The empirical success frac-
tion is then calculated as

π̂
�
k
��A;X� =

#fsuccessesg
#ftrialsg = M−1

XM
i=1

Yi :

These raw observations are generated by our experiments.

Asymptotic Phase Transition. Let An;N be an n×N random matrix with i.i.d
Gaussian entries, and consider a sequence of tuples ðk;n;NÞ with k=n→ ρ

and n=N→ δ. Then (1),

π
�
k
��An;N ;X

�
→

�
1 ρ< ρ*

�
δ
��X�

0 ρ> ρ*
�
δ
��X� ; [1]

where the convergence is almost sure (10, 19–22).
Now let ðAn;NÞ denote a sequence of deterministic matrices under study,

with the same shape/sparity tuples ðk;n;NÞ as in the Gaussian case just
mentioned. The hypothesis that we investigate is that expression 1 still
holds. There is precedent: the theorem below shows, for the case X= ½0; 1�,
that if each An;N is a matrix with its columns in general position in Rn, ex-
pression 1 holds.

A B

Fig. 1. The four fundamental phase transitions for compressed sensing with
Gaussianmatrices in (A) e–δ and (B) ρ–δ coordinates: R (black), C (red), R+ (blue),
and ½0; 1� (green).

Table 1. Matrices considered here and their properties

Label Name Natural δ Coherence Tight frame Equiangular Definition Refs.

SS Spikes and Sines 1=2 f1; 2g= ffiffiffi
n

p
Yes No Eq. S1 12, 13, 17

SH Spikes and Hadamard 1=2 1=
ffiffiffi
n

p
Yes No Eq. S2 17

SN Spikes and Noiselets 1=2 f1; 2g= ffiffiffi
n

p
Yes No Eq. S3 43

PETF Paley Tight Frame 1=2 1=
ffiffiffi
n

p
Yes No SI Appendix 16

GF Grassmannian Frame 1=L 1=
ffiffiffi
n

p
Yes Yes Eq. S4 14

DG Delsarte-Goethals 1=L 1=
ffiffiffi
n

p
Yes Yes Eq. S6 15, 36

LC Linear Chirp Frame 1=L 1=
ffiffiffi
n

p
Yes Yes Eq. S5 15, 44

AC Affine Plane Chirps 1=L n−1=4 No No Eq. S7 45
CYC Cyclic ∈ð0; 1Þ 1+oð1Þ;N→∞ No No Eq. 2 41, 42
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Empirical Phase Transitions. The hypothesis that ρ* marks the large N-phase
transition boundary of each deterministic matrix sequence under study is in-
vestigated as follows. The empirical phase transition point is obtained by fitting
a smooth function π̂ðk=nÞ (e.g., a probit function) to the empirical data
π̂ðkjA;XÞ and finding the empirical 50% response point ρ̂ðn;N;M;XÞ—the value
of ρ solving:

π̂ðρÞ= 1=2:

Examples are in Fig. S1. Under the hypothesis that expression 1 holds not
only for Gaussian matrices but also for our sequence of deterministic ma-
trices An;N , we have

lim
N→∞;n=N→δ

lim
M→∞

ρ̂
�
n;N;M;X

�
= a:s:ρ*

�
δ
��X�:

Consequently, in data analysis, we will compare the fitted values ρ̂ðn;N;M;XÞ
with ρ*ðδjXÞ.

Computing. We used a range of convex optimizers available in the MATLAB
environment:

CVX: A modeling system for disciplined convex programming by Grant
and Boyd (23), Grant et al. (24), and Grant and Boyd (25) supporting two
open-source interior-point solvers: SeDuMi and SDPT3.

ASP: A software package for sparse solutions by Friedlander and Saunders
(26); its main solver BPdual (27) uses an active-set method to solve the

dual of the regularized basis pursuit denoise (BPDN) problem based on
dense QR factors of the matrix of active constraints, with only the R factor
being stored and updated.

FISTA: A fast iterative soft-thresholding algorithm for solving the BPDN
problem. A MATLAB implementation of the algorithm is available from
the authors (5).

SPGL1: A solver by van den Berg and Friedlander (28, 29) for the large-
scale BPDN problem based on sampling the so-called Pareto curve; it uses
the Spectral Gradient Projection method.

Mosek: A commercial optimization toolbox that offers both interior-point
and primal simplex solvers (30).

Zulfikar Ahmed also translated our code into python and used the general
purpose solver package CVXOPT by Anderson and Vandeberghe (31). We
verified the robustness of our results across solvers. We found that SPGL1, with
the settings that we used, did not match the other solvers, giving consistently
lower phase transitions; therefore, we did not use it in the results reported
here. In practice, most of our results were obtained using CVX by participants
in the Stanford University graduate class Stat 330/CME 362.

Results
The data that we obtained in our experiments have been deposited
(32, 33); they are contained in a text file with more than 100,000
lines, each line reporting one batch of Monte Carlo experiments at
a given k; n;N, An;N , and X. Each line documents the coefficient
field X, the type of matrix ensemble, the matrix size, the sparsity
level, the number of Monte Carlo trials, and the observed success
fraction. The file also contains metadata identifying the solver and
the researcher responsible for the run. In all, more than 15 million
problem solutions were obtained in this project.
Our overall database can be partitioned into several subsets,

which address three general questions.

Broad Phase Diagram Survey. In such a survey, we systematically
sample the empirical success frequency π̂ over a 49× 49 grid
covering the full-phase diagram 0≤ ρ; δ≤ 1, including regions
where we already know that we will see either all failures or all
successes (an example is given in Fig. 2). For a matrix type de-
finable only when N = 2n (i.e., undersampling rate δ= 1=2), we
considered 49 equispaced ρ-values in ρ∈ f:02; . . . ; :98g (Fig. S1
shows an example). The GF, DG, LC, and AC frames naturally
allow N of the form N =Ln for whole-number L; in such cases,
we sampled δ= 1=2, 1=3, etc. (Eq. S2). In Figs. 2–4, the two-
phase structure is evident.

Precise Positioning of Phase Transition. To address our main hy-
pothesis regarding the agreement of phase transition boundaries,
we measure π̂ at points δ= n=N and ρ= k=n in the phase plane
ðδ; ρÞ, which we expect to be maximally informative about the

Fig. 2. Empirical (δ; ρ)-phase diagram for the cyclic ensemble. Vertical axis:
ρ= k=n. Horizontal axis: δ=n=N. Shaded attribute gives fraction of successful
reconstructions. Red, 100%; blue, 0%. Dashed line, asymptotic Gaussian
prediction ρ*ðδjRÞ. In this experiment, n= 256, δ= 0:04ð0:04Þ0:98.

A B C

Fig. 3. Partial ðδ; eÞ-phase diagram for chirping frames AC (green), LC (blue), and GF (black). Panels show different coefficient fields: (A) real (nAC = 578,
nLC = 514, nGF = 514), (B) complex (nAC = 289, nLC = 257, nGF = 257), and (C) positive (nAC = 578, nLC = 514, nGF = 514). In each panel, symbols (=, −, ., +, #)
correspond to probability range ðx − 0:1; x + 0:1Þ for x = ð0:1; 0:3; 0:5; 0:7; 0:9Þ, respectively. Symbols are shifted horizontally to minimize overstrike. For ex-
ample, all three columns on the x axis near δ= 1=2 actually refer to data located on the vertical δ= 1=2 line.
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location of the phase transition. In fact, the informative locations in
binomial response models correspond to points where the proba-
bility of response is nearly 50%; hence, we sample heavily for
ρ= k=n≈ ρ*ðδjXÞ. Figs. S1–S3 show examples comparing the fitted
phase transition with the Gaussian theoretical ones. In brief, the
results are broadly consistent in all cases with the Gaussian theory,
with deviations following a familiar and expected pattern.

Finite-N Scaling. The Gaussian theory is asymptotic as ðN→∞Þ
(19–21, 34), and in general, even with Gaussian random matrices,
the large N theory cannot be expected to match empirical data to
within the usual naive SEs (21). Instead, one observes, at finite
problem sizes, a finite transition zone of width ≈ c1=N1=2 and a
small displacement of the empirical phase transition away from
the asymptotic Gaussian phase transition of size ≈ c2=N. Analysis
techniques used in ref. 21 motivated Figs. S1 and S2. Visual in-
spection shows that, as N increases, the data become increasingly
consistent with the Gaussian N→∞ prediction. In brief, the
results are consistent with a transition zone width that tends to
zero and a transition offset that also tends to zero as N increases.

Discussion
Rigorous Analysis Justifying Our Approach. In one of four coefficient
situations that we study—the case where coefficients in x0 are real
and bounded: X= ½0; 1�—Donoho and Tanner (10) have proven
that, for every reasonable matrix, the same probability distribution
holds in finite samples. In consequence, the Gaussian theory,
which describes one specific random matrix ensemble, actually
describes all reasonable deterministic matrices.

Theorem (10). Suppose that A is a fixed matrix with its N columns in
general position† in Rn. Then

π
�
k
��An×N ;

	
0; 1


�
= 1− 2−ðN−k−1Þ XN−n−1

ℓ=0

�
N − k− 1

ℓ

�

=PN−n;N−k; say:

This probability is independent of the matrix A for A ranging
through an open dense set in the space of n×N matrices. In
addition to motivating our conclusion, it gives a valuable check
on our analysis techniques, because it provides the exact expression

Eπ̂
�
k
��An×N ;

	
0; 1


�
= PN−n;N−k;

and the exact distribution of S=M · π̂ as binomial S∼ binðM;
PN−n;N−kÞ.
It also motivates our analysis technique. From the binomial

form of PN−k;N−n, one can see that

π
�
k
��An×N ;

	
0; 1


�
=
�
≥1=2 k≤ 2n−N + 1
≤1=2 k≥ 2n−N + 1 ;

and therefore, for any sequence of matrices ðAn×NÞ all in general
position, our experimental method will recover the correct phase
transition:

lim
n=N→δ

lim
M→∞

ρ̂ðn;N;M; ½0; 1�Þ= a:sð2− 1=δÞ+ = ρ*ðδ; ½0; 1�Þ:

The theorem also motivates the finite-N scaling analysis. Using
the exact binomial law S∼ binðM;PN−n;N−kÞ, we conclude that,
for large N, the 97.5% success point k97:5 satisfies k97:5 ≈
ρ*ðδ; ½0; 1�Þn− z97:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN − nÞp

, whereas the 2.5% success point
k2:5 satisfies k2:5 ≈ ρ*ðδj½0; 1�Þn+ z97:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN − nÞp

, where zp denotes
the pth percentile of the standard normal (z97:5 ≈ 2). Hence, one
sees that the transition zone between complete failure and com-
plete success has a width roughly 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN − nÞp

, thereby justifying
our fitting power laws in n to the observed transition width.
Finally, the universality of the phase transition ρ*ðδj½0; 1�Þ=

ð2−1=δÞ+ across all deterministic matrices with columns in gen-
eral position motivates the thrust of this whole project.

Asymptotic Analysis. Tropp (8) and Candès and Plan (9) obtained
initial theoretical results on the problem of a single large matrix.
They consider a sequence of matrices An;N and for each fixed
problem size ðn;NÞ, a random kn-sparse x0, which they try to re-
cover from measurements y=Ax0. Their methods apply to all of the
matrix families that we have considered here, because our matrices
all have low coherence. They give conditions on the aspect ratio
n=N, the coherence of A=An;N , and kn, such that, with high
probability, ℓ1 minimization will correctly recover x0. Their results
are ultimately qualitative in that, for a wide variety of matrices, they
predict that there will be a success phase for small kn=n. However,
their results are unable to shed light on the size or shape of the
success region. In contrast, we show here that the region is as-
ymptotically the same for certain deterministic matrices as the re-
gion for random Gaussian measurement matrices. Separately,
Howard et al. (35) and Calderbank et al. (36) pointed to the analogy
between compressed sensing and random coding in information
theory and observed that average-case reconstruction performance
of a deterministic sensing matrix can be expected to be very good,
even for some matrices with poor worst-case performance.

Restricted Isometry Properties of Deterministic Matrices. In recent
work, several authors have constructed deterministic matrices

A B C

Fig. 4. Partial ðδ; ρÞ-phase diagram for DG frames. Panels show different coefficient fields: (A) positive (n= 256), (B) real (n= 256), and (C) complex (n= 128). In
each panel, symbols (=, −, ., +, #)/colors (violet, red, yellow, green, blue) correspond to probability range ðx − 0:1; x + 0:1Þ for x = ð0:1; 0:3; 0:5; 0:7;0:9Þ, respectively.

†A collection of vectors in Rn is said to be in general position if no subcollection of, at
most, n vectors is linearly dependent.
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obeying the so-called restricted isometry property (RIP) of
Candès and Tao (2). Such matrices, if they could be built for
sufficiently high k (relative to n;N) would guarantee sparse re-
covery in a particularly strong sense: every k-sparse x0 would be
recoverable. This statement would be a deterministic and not
a probabilistic one. Bourgain et al. (37) are the current record
holders in deterministic RIP constructions; they have constructed
matrices obeying RIP for k slightly§ larger than

ffiffiffi
n

p
(37). This

result is still far too weak to imply anything close to the empiri-
cally observed phase transitions or the known strong neighborli-
ness phase transition for the case of Gaussian matrices.
Calderbank et al. (36) introduced a notion of statistical RIP

(StRIP) and constructed a number of deterministic matrices with
StRIP. Such matrices guarantee sparse recovery in the same
sense as used in this paper (i.e., according to statistical state-
ments across random k-sparse objects with random positions for
the nonzeros). However, to our knowledge, existing arguments
are not able to derive precise phase transitions from StRIP; they
only show that there is some region with high success but do not
delineate precisely the regions of success and failure.
Table 1 lists several deterministic matrices obeying StRIP.

Indeed, Calderbank et al. (36) used group theory to provide
sufficient conditions for a sensing matrix to satisfy StRIP. Sub-
sequently, Jafarpour (15) showed that the coherence property
introduced in ref. 38 in conjunction with the tightness of the frame
honors the requirements given in ref. 36 and therefore, provides
sufficient conditions for StRIP. Combining these arguments, the
matrices in Table 1 labeled SS, SH, SN, PETF, GF, DG, and LC
obey StRIP for sufficiently large problem sizes. Refs. 15, 38, and
39 have additional discussion on the conditioning and null-space
structure of these matrices. We show here that, for all these
ensembles, the success region is empirically consistent with the
theoretical region for random Gaussian matrices.

Other Ensembles. We studied several matrix ensembles not
mentioned so far. For example, we used the same simulation
framework and software to study random Gaussian matrices,
partial Fourier matrices, and partial Hadamard matrices; our
results are in line with earlier reports of Donoho and Tanner (3).
We also considered several variations of the SS example based
on Discrete Cosine Transforms (DCTs) of types I, II, III, and IV
and the discrete Hartley transform. Finally, because of their
importance to the theory of convex polytopes, we also considered
the cyclic matrices when X=R+. All of the deterministic matri-
ces that we considered yielded experimental data consistent with
asymptotic agreement of the empirical phase transition and the
theoretical phase transition in the Gaussian case—with excep-
tions noted immediately below.

Surprises. We were surprised by two anomalies.
Positive coefficients, solver for signed coefficients. We can apply the
signed solver [i.e., the solver for ðP1

RÞ] even when the coefficients

are nonnegative. For several of the matrices that we considered,
the phase transition that will be observed is the one that is uni-
versal for signed coefficients ρ*ðδjRÞ. However, in several cases,
we observed instead a phase transition at ρ*ðδjR+Þ, although the
problem solved did not assume nonnegative structure. Table 2
presents a list of matrices with this positive adaptivity property.
We learned from this phenomenon that, to observe universal
signed behavior in the signed case, for some matrices A, it was
necessary to make sure that the object x0 did not always obey
x0 ≥ 0. For some other matrices, the signed solver gave the same
phase transition regardless of whether the nonzeros contained
both positive and negative values or only positive values. For
conditions under which the sign pattern does not affect re-
construction, see ref. 40.
Cyclic matrix, positive coefficients. Assuming n is even and
j= 1; 2;⋯;N, the cyclic matrix is defined as (41, 42) (Eq. 2)

Aij =

8>><
>>:

cos
�
πði+ 1Þð j− 1Þ

N

�
i= 1; 3;⋯; n− 1

sin
�
πið j− 1Þ

N

�
i= 2; 4;⋯; n:

[2]

As discussed in ref. 42, in the case of nonnegative coefficients
X=R+ and assuming k≤ n=2 nonzeros in x0, there is a unique
solution to ðP1

R+
Þ: x0. Consequently, the phase transition associ-

ated with this matrix must obey ρ*≥ 1=2 for every δ. Empirically,
we do not observe ρ̂≥ 1=2; we, instead, observe ρ̂≈ ρ*ðδjR+Þ
exactly as with other matrices! (See Fig. 1.)
In short, although the theory of cyclic polytopes seemingly

forbids it, our observations are consistent with large-N univer-
sality of the Gaussian-based formula. Remember that we are
considering the behavior of numerical algorithms and that the
cyclic matrix contains many very poorly conditioned subsets of
k-columns. Possibly, numerical ill-conditioning is responsible for
the failure of the predictions from polytope theory.

Limits to Universality.We emphasize that, although the prediction
from Gaussian theory applies to many matrices, we do not expect
it to apply to all matrices, the theorem quoted from ref. 10 not-
withstanding.

Conclusions
For an important collection of large deterministic matrices,
the behavior of convex optimization in recovering random
k-sparse objects is accurately predicted by the theoretical
expressions that are known for the case of Gaussian random
matrices. Evidence is presented for objects with coefficients over
each of the sets f½0; 1�N ;RN

+ ;R
N ;CNg when the convex optimi-

zation problem is appropriately matched and the positions and
signs of the nonzeros are randomly assigned.
Standard presentations of compressed sensing based on

RIP suggest to practitioners that good deterministic matrices
for compressed sensing are as yet unavailable, and possibly will

Table 2. Evidence for the positive adaptivity property

Label Name δ ρ*ð1=2jRÞ ρ̂ðR;RÞ ρ̂ðR;R+Þ ρ̂ðR+;R+Þ ρð1=2jR+Þ
SS Spikes and Sines 1=2 0.386 0.3914 0.5621 0.5624 0.558
SH Spikes and Hadamard 1=2 0.386 0.3942 0.5716 0.5687 0.558
SN Spikes and Noiselets 1=2 0.386 0.3677 0.5531 0.5605 0.558
LC Linear Chirp Frame 1=2 0.386 0.3865 0.5614 0.5576 0.558
AC Affine Plane Chirps 1=2 0.386 0.3866 0.5609 0.5582 0.558

Note that ρ̂*ðX1;X2Þ means the phase transition observed when the solver assumes x ∈XN
1 , whereas the object

actually obeys x0 ∈XN
2 . Thus, the notation ρ̂*ðR;R+Þ means the empirical phase transition that we observed when

we ran the solver for signed objects, but in fact, the object was nonnegative. Data were taken at N=256 and 25
Monte Carlo repetitions at each grid point. SEs of estimated phase transition yield 2 SE error bars of width ∼ 0.01
(compare with Fig. S2).

§I.e., k∼nα , with 1=2< α<<1.
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be available only after much additional research. We use instead
the notion of phase transition, which measures, in a straightfor-
ward way, the probability of exact reconstruction. We show here
that reconstruction of sparse objects by convex optimization
works well for certain deterministic measurement matrices—in
fact, just as well as for true random matrices. In particular, our
demonstration covers several explicit deterministic matrices for
which fast transforms are known.
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