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Paleoanthropologists have long argued—often contentiously—
about the climbing abilities of early hominins and whether a foot
adapted to terrestrial bipedalism constrained regular access to
trees. However, some modern humans climb tall trees routinely in
pursuit of honey, fruit, and game, often without the aid of tools or
support systems. Mortality and morbidity associated with faculta-
tive arboreality is expected to favor behaviors and anatomies
that facilitate safe and efficient climbing. Here we show that Twa
hunter–gatherers use extraordinary ankle dorsiflexion (>45°) dur-
ing climbing, similar to the degree observed in wild chimpanzees.
Although we did not detect a skeletal signature of dorsiflexion in
museum specimens of climbing hunter–gatherers from the Ituri for-
est, we did find that climbing by the Twa is associated with longer
fibers in the gastrocnemiusmuscle relative to those of neighboring,
nonclimbing agriculturalists. This result suggests that amore excur-
sive calf muscle facilitates climbing with a bipedally adapted ankle
and foot by positioning the climber closer to the tree, and it might
be among the mechanisms that allow hunter–gatherers to access
the canopy safely. Given thatwe did notfind a skeletal correlate for
this observedbehavior, our results imply that derived aspects of the
hominin ankle associated with bipedalism remain compatible with
vertical climbing and arboreal resource acquisition. Our findings
challenge the persistent arboreal–terrestrial dichotomy that has in-
formed behavioral reconstructions of fossil hominins and highlight
the value of usingmodern humans asmodels for inferring the limits
of hominin arboreality.
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Paleoanthropologists have long argued—often contentiously—
over the climbing abilities of early hominins and whether a foot

adapted to terrestrial bipedalism constrained regular access to
trees (1). Central to this debate is Australopithecus afarensis, which
possessed a hindlimb adapted to terrestrial bipedalism, including
a rigid ankle (2, 3) and an arched, nongrasping midfoot (refs. 4 and
5; but see refs. 6–8). Such traits represent amajor shift from an ape-
like foot, but there is disagreement over the behavioral implica-
tions of this shift. Some researchers interpret the ankle and foot of
Au. afarensis as being functionally incompatible with climbing and
thus definitive markers of terrestriality (2, 9), whereas others have
argued that the hindlimb is compatible with significant arboreality
(6, 7, 10). There is also disagreement over the forelimb of Au.
afarensis. A suite of traits—including long and curved fingers (6,
11), a cranially oriented glenoid fossa (6), and greater muscularity
relative tomodern humans (12)—is considered by some to indicate
significant arboreality (6, 7, 10), whereas others regard these traits
as primitive retentions with marginal adaptive significance (13) or
call attention to derived (modern human-like) features of the
forelimb (14, 15). Nevertheless, the long-term retention of ple-
siomorphic forelimb traits associated with arboreality suggests
a functional role for such traits and could imply stabilizing selection
on climbing abilities (1, 16).
A common assumption in the debate over the locomotor rep-

ertoire of Au. afarensis is that a bipedally adapted ankle and foot
would fully compromise performance variables in an arboreal
milieu, rendering individuals incompetent in trees (2, 3, 9, 13). This
assumption has received critical attention (7, 10, 17, 18), but it has
not been subject to empirical tests.Most relevant kinematic studies
have focused on captive and wild apes (e.g., refs. 3 and 19), yet

some consider the locomotion of modern apes to be of marginal
relevance to the reconstruction of early hominin locomotor be-
havior (20, 21). Nevertheless, form–function inferences for homi-
nins demand consideration of the locomotor diversity of both
extant apes andmodern humans. In comparisonwith chimpanzees,
the diversity of modern human locomotion has received little at-
tention (22, 23). For example, modern humans who climb trees
routinely remain unstudied, despite their relevance for inferring
potential anatomical constraints on hominin arboreality.
Many hunting and gathering populations climb trees, primarily

to collect honey. African pygmy populations are particularly reliant
on honey (24, 25); for instance, theMbuti of the central Ituri Forest
(Democratic Republic of Congo) consume 0.83 kg of honeycomb
per person per day during the 3-mo honey season (26) or “honey
holiday” (27). To meet this demand for honey, men climb trees
regularly (Fig. 1). In the northern Ituri Forest, Efe men devote
33.8%of their foraging time to honey acquisition and climb as high
as 51.8 m (mean = 19.1 m; SD = 9.7 m, n = 34) (28). Such foraging
behaviors are a testament to the high caloric and nutritive value of
honey and the accompanying brood (29, 30), as well as the social
prestige associated with provisioning a favored resource (26).
However, the energetic cost of vertical climbing is high (31), and
foraging at great heights is inherently dangerous (Fig. 1). The
chance of death for modern humans from falling is 100%, 77.8%,
56.2%, and 44.4% from heights of >19.2, 19.2, 15.6, and 12 m,
respectively (32), suggesting that tree climbing could be a sub-
stantial cause of mortality for rainforest hunter–gatherers. Indeed,
accidental falls from trees account for 6.6% of deaths among Aka
men in the Central African Republic (33).
Hunting and gathering populations in Southeast Asia also

climb trees and exploit honey extensively. For example, in
Taman Negara (Malaysia), a Batek camp acquired 260.3 kg of
honey in 93 d (34). Batekmen are reported to climb 50-m heights
daily, often at night, but fatalities appear to be rare (35). Data
from the Agta (northeast Luzon, Philippines) show that falls from
trees accounted for 4 of 238 deaths (1.7%) among adult men (> 17 y
of age) between 1962 and 2010 (36).
Safe and efficient climbing is therefore expected to carry sub-

stantial fitness advantages for hunter–gatherers. To enhance safety
during climbing, hunter–gatherers sometimes use material culture,
such as harnesses and pegs, particularly when resource-bearing trees
are too thick to climb directly (34) (Fig. S1 A–C). However, un-
assisted climbing involving (i) ankle and metatarsophalangeal dor-
siflexion, (ii) extreme hip abduction coupled with ankle inversion,
and (iii) hallucal grasping (Fig. 1 andFig. S1D–F) also occurs during
honey and fruit collection (e.g., refs. 34 and 37), as well as during the
active pursuit (38, 39) and ambush of prey in trees (28, 40).
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The adaptive significance of unassisted vertical climbing is il-
lustrated by the fitness benefits of extracting high-value resources
from dangerous heights without reliance on material culture.
Because climbing appears to be associated with foods that are
central to the diets of tropical rainforest hunter–gatherers (e.g.,
refs. 26, 28, and 35), and even some savanna woodland pop-
ulations (41), it is possible that natural selection has favored
postcranial anatomies that facilitate safe climbing. The in-
terpretation of chimpanzee postcranial traits as safety adapta-
tions (42) was premised in part on the observations that tree falls
accounted for 4% of mortality over a 2-y span at Gombe, Tan-
zania (43), and that 30.8% of Gombe chimpanzees suffered
postcranial fractures consistent with falls from trees (44). Some
modern human foragers have climbing-related mortality rates
(up to 6.6%) exceeding those of chimpanzees (33).
A mobile tibiotalar (ankle) joint is advantageous for vertical

climbing because it enables the climber to reduce the distance be-
tween his center of mass and the tree. Accordingly, chimpanzees use
highdegreesofdorsiflexionand inversionat the tibiotalar joint during
climbing (3). The extent to which modern human hunter–gatherers
use similar techniques during climbing is unexplored. Anecdotal
reports of hunter–gatherers (34, 35, 45, 46) indicate that modern
humans can climb small-diameter trees by applying the plantar sur-
face of the foot directly to the trunk and “walking” upward with the
arms and legs advancing alternately (Fig. 1A). This climbing tech-
nique, termed changwod in Malaysia (45), resembles that of chim-
panzees (3) and has been proposed as a candidate climbing style for
Au. afarensis (10). Theoretical considerations predict that a high de-
gree of dorsiflexion and inversion of the ankle will bring the climber’s
center of mass closer to the tree (47), thus mitigating energetic ex-
penditure and the safety risks associated with vertical ascent.

Here, we report a comparative analysis of vertical climbing
behavior and its anatomical correlates between hunter–gatherers
(Twa) and nonclimbing agriculturalists (Bakiga). The Twa* are
a population of former hunter–gatherers living near Bwindi Im-
penetrable National Park (BINP) in Uganda (49). Twa males have
an average height of 153 cm (50, 51). This adult stature exemplifies
the pygmy phenotype, which is strongly associated with rainforest
habitats (24). The Bakiga are an agricultural population (52) that
has coexisted with the Twa for at least five centuries (53).
To test the assumption that modern humans cannot achieve

dorsiflexion at the ankle joint during tree climbing similar to that
observed in chimpanzees (3), we recorded the tree-climbing be-
havior of experiencedTwa honey-gatherers and usedmovie stills to
measure maximum dorsiflexion at the ankle joint.

Results and Discussion
Twa hunter–gatherers exhibited extreme dorsiflexion during
climbing [40.73 ± 5.14° (mean ± SD)]. These values are compa-
rable to those reported for wild chimpanzees (Fig. 2), although the
mean difference was marginally lower (Welch two-sample t test,
t8.78 = 2.25, P = 0.052) and fell within the range of expected ankle
failure under loading, as measured experimentally in cadavers of
industrialized humans (54) (Fig. 2).

Fig. 1. Hunter–gatherers climb trees and acquire arboreal resources using a variety of techniques. (A) An Mbuti man climbs in the pursuit of honey and uses
smoldering leaves to subdue stinging bees. The plantar surface of the foot is applied to the tree trunk. Dorsiflexion of his right ankle occurs as his left foot
pushes off the tree (photograph by Rebecca Blackwell; reproduced with permission). (B) Vertical climbing is risky and often requires extraordinary bridging
abilities in the understory and canopy (photograph by Bruno Zanzottera; reproduced with permission). (C) In Malaysia, the Batek use small-diameter lianas to
access resources in the canopy (photograph by Kirk Endicott; reproduced with permission).

*The Batwa ethnonym has a complicated history (48), and widespread use of the term has
confused cultural and genetic differences between populations. A recent trend is to
distinguish the Batwa of Burundi, eastern Democratic Republic of Congo, Rwanda,
and southwestern Uganda as lacustrine (48) or Great Lakes Batwa (49). Here we follow
ethnographic convention by omitting the Bantu prefix Ba- when referring to the Twa of
southwestern Uganda.
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The morphologies of the distal tibia of tree-climbing hunter–
gatherers may permit or reflect extreme ankle dorsiflexion, as in
chimpanzees (3). However, the size-standardized mediolateral
widths of the anterior distal tibiae of six pygmy males from habit-
ually climbing populations in the Ituri Forest (28) did not differ
from those of other human populations (Fig. S2). It is possible that
these particular individuals were not habitual climbers, but this
result suggests that anatomical mechanisms other than bony mor-
phology can reflect and/or permit extreme ankle dorsiflexion. In-
deed, the ankle joint is a complex of bone, ligaments, and muscles,
all of which collectively constrain dorsiflexion. For example, the
inverse relationship betweenmuscle fiber length and stiffness in the
gastrocnemius muscle-tendon unit (58) raises the possibility that
increased fiber length decreases joint stiffness and could facilitate
hindlimb force production during extreme dorsiflexion.
To explore this possibility, we used ultrasonography (Fig. 3) to

compare the gastrocnemius muscles of the Twa and the Bakiga,
who seldom climb trees. The normalized muscle fibers of Twa
men were significantly longer than those of Bakiga men (Welch
two-sample t test, lateral head: t14.6 = −2.44, P = 0.03; medial
head: t13.0 = −3.30, P < 0.01; Fig. 4A), whereas the fiber lengths
of nonclimbing women were comparable (lateral head: nTwa =
26, nBakiga = 17; t40.5 = −0.79, P = 0.43; medial head: nTwa = 25,
nBakiga = 17; t36.0 = 0.06, P = 0.95).
We also compared the gastrocnemius fiber lengths of men

in two Philippine populations, Agta hunter–gatherers (40) and
Manobo agriculturalists (59). The Agta express the pygmy (ne-
grito) phenotype (24), and men climb trees regularly to collect
honey, especially in June, July, and August (60). The Manobo
are an indigenous population of agriculturalists (59). The Agta
had significantly longer normalized fiber lengths (Welch two-
sample t test, lateral head: t29.5=−4.71, P< 0.0001; medial head:
t32.1 = −5.63, P < 0.0001; Fig. 4B).

These results suggest that habitual climbing by Twa and Agta
men is related to the muscle architecture associated with ankle
dorsiflexion. The plasticity of soft tissues appears to play a role in
increasing ankle mobility, thereby permitting hindlimb force
production, whether passive or active, with the ankle highly flexed.
Thus, ankle dorsiflexion during vertical climbing is not limited to
the extant great apes and could be among the primary mechanisms
allowing hunter–gatherers to access arboreal resources. The ex-
traordinary climbing abilities of hunter–gatherers demonstrate
that significant amounts of arboreal behaviors, particularly vertical
climbing, are possible without an abducted hallux and flexible
midfoot. These considerations do not necessarily imply Au. afar-
ensis was a habitual climber, but they do suggest that arboreal
capabilities in this species would not have been compromised to
the extent assumed by many paleoanthropologists.
This study has implications for inferring both behavior (10) and

adaptive change (13) from the hominin fossil record. Although it is
possible that early hominins climbed in a fashion kinematically
distinct from any modern primate, the unassisted vertical climbing
styles ofmodern humans (Fig. 1 and Fig. S1) could be realized with
the totalmorphological pattern evinced byAu. afarensis (e.g., styles
described in refs. 7, 10, 17, 18, and 61). The humerofemoral indices
of African pygmies are high among modern humans but are well
below that ofAu. afarensis (62). Such body proportions, in addition
to small body size (31), are regarded as theoretically favorable for
safety and efficiency during vertical climbing (61, 63). It is im-
portant to stress that pygmy stature and body proportions—in
addition to the behavioral ecology of rainforest hunter–gatherers
more generally—are likely highly derived (24, 64) and should not
be assumed to be homologous with those of early hominins. In-
deed, the universal importance of vertical climbing to the for-
aging ecology of rainforest hunter–gatherers lends support to the
hypothesis that locomotion (65), including climbing (24, 66),
within dense habitats has driven the convergent evolution of the
pygmy phenotype.
Stabilizing selection for arboreal adaptations in Au. afarensis is

supported by the long-term conservatism of the postcranial skel-
eton (1, 6, 16) across a range of wooded and open habitats (67).

Fig. 2. Maximum ankle dorsiflexion during walking and climbing. For in-
dustrialized human populations, maximum dorsiflexion during walking
ranges from 15.0° to 20.0° (55–57), and gross injury or microfilament dam-
age occurs at a mean angle of 44.0° (hashed line) ± 10.9° (SD; red shaded
region) (54). For Twa men (n = 7 individuals; filled circles), maximum dorsi-
flexion ranged from 34.4 to 47.0° during vertical climbing (photograph by
George H. Perry, reproduced with permission). The average maximum dor-
siflexion of wild chimpanzees (photograph by Jeremy DeSilva; reproduced
from ref. 3) occurred at a mean angle of 45.5° (filled square) ± 7.1° (SD;
whiskers) (3).

Fig. 3. Depiction of anatomical measurements in this study. (A) Anatomical
landmarks indicated on left lower leg of Twa male, in lateral view (HF, head
of fibula; TC, tendocalcaneal complex). (B) Depiction of musculature in lat-
eral view. The lateral head of the gastrocnemius muscle (GM; red shade)
originates from the lateral condyle of the femur and inserts at the TC. (C)
Ultrasound image of the GM and soleus muscle (SO), separated by the deep
aponeurosis. Arrows indicate individual fibers of GM.
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This pattern suggests the existence of strong ecological incentives
for climbing by Au. afarensis within the context of a broad-spec-
trum foraging ecology. Possibilities include foraging, resting and
sleeping, or escape, all of which are linked with climbing and use of
trees by savanna-living primates (10, 11, 68). As observed among
hunter–gatherers (Fig. S1), Au. afarensis might be expected to
climb on tree trunks and near the central core of trees, rather than
within a fine-branch niche (18).
Such ecological considerations based on the study of nonhuman

primate andmodern human behavior can lend crucial insights into
the locomotor ecology of hominins. In particular, stable isotopes
could be instructive for assessing the importance of arboreal
resources, such as fruit, leaves, and honey, in the diet of hominins.
These resources are predicted to be 13C-depleted (low δ13C val-
ues), and both Ardipithecus ramidus and Australopithecus sediba
evince low δ13C values, indicating the exploitation of C3 plants in
a woodland or closed-forest habitat (69, 70). These findings are
consistent with clear anatomical signatures for arboreality in these
species (21, 71), yet a nonnegligible C4 signature in the enamel of
Ar. ramidus and grass/sedge phytoliths in the dental calculus of
Au. sediba indicate some terrestrial foraging (69). Similar consid-
erations might apply to Au. afarensis. Evidence of a diet based on
C4 biomass would be a strong indicator of a terrestrial diet. Con-
versely, a mixed C3–C4 diet would be consistent with the con-
sumption of either terrestrial or arboreal C3 resources and would
thus be uninformative with respect to the locomotor ecology of
Au. afarensis.
Divergent interpretations of the postcranial skeleton have long

hindered consensus about the role of arboreality inAu. afarensis (1,
16). Skeletal signatures of vertical climbing in modern humans
could provide a crucial comparative context for functional inter-
pretations of Au. afarensis morphology, particularly with respect
to traits that differentiate Au. afarensis from chimpanzees while
uniting this species with nonclimbing modern humans. Such traits
have provided compelling evidence for limited arboreality in Au.
afarensis (3), yet they were not examined in habitually climbing
modern humans, among whom genetically determined or plastic
skeletal traits linked with climbing could be expressed. The exis-
tence of such traits would suggest that Au. afarensis climbed less
than modern climbing humans, but we found no evidence of an-
teriorly expanded distal tibiae in a small sample of African rain-
forest hunter–gatherers (Fig. S2). Assuming these individuals were
habitual climbers, this result could be due to the relatively slow
speed and lower frequency at which humans climb compared with
extant apes. Nevertheless, climbing-related changes in muscle,

tendon, and skeletal architecture of the foot, knee, or hip could be
particularly pronounced in climbing populations such as the Efe,
who spend 8% of time away from camp climbing or perched in
trees (64). Climbing begins at a young age in hunter–gatherers
(refs. 34, 38, and 39; Fig. S1D) and may be reflected in ontoge-
netically plastic traits, such as phalangeal curvature, which respond
to habitual climbing during early life (ref. 72; but see ref. 21).
Although debate will undoubtedly persist regarding the gait

mechanics and functional role of plesiomorphic characters in Au.
afarensis (1, 73), this study shows that the foot and ankle of Au.
afarensis are not incompatible with climbing behavior—at least
as it is performed by some modern hunter–gatherers. The diverse
locomotor repertoire evinced by facultatively arboreal modern
humans cautions against using even the most derived (modern
human-like) traits in Au. afarensis as unequivocal evidence of
negligible arboreality.

Materials and Methods
Study Sites and Subjects. Southwest Uganda. Research on the Twa and Bakiga
was conducted in the BINP and surrounding settlements: Bikuto (0°54.45’S;
29°38.78’E), Buhoma (0°58.17’S; 29°36.99’E), Byumba (0°55.52’S; 29°41.61’E),
Kebiremu (0°50.82’S; 29°38.51’E), Kitariro (0°52.97’S; 29°43.23’E), Mpungu
(0°59.32’S; 29°41.60’E), and Rurangara (0°55.89’S; 29°39.86’E). Both the Twa
and Bakiga are commonly unshod, although the use of footwear is variable.
Permission to conduct research in BINP was approved by Uganda National
Council for Science and Technology Permit HS617 and Uganda Wildlife
Authority Permit UWA/FOD/RES/50.
Northeast Luzon, Philippines. Research on the Agta was conducted in two set-
tlements, Dibungko (17°03.968’N; 122°26.626’E) and Kanaipang (16°57.646’N;
122°27.910’E), in the province of Isabela. Permission to conduct research was
approved byNational Commission on Indigenous Peoples and theDepartment
of Environment and Natural Resources Permit 03-2010.
Northern Mindanao, Philippines. Research on the Manobo was conducted in
Pangaylen (09°15.967’N; 125°34.750’E), a permanent settlement, or barangay,
in the province of Surigao del Norte. Permission to conduct research was ap-
proved by the National Commission on Indigenous Peoples.

Climbing and Dorsiflexion. Consenting Twa men (n = 46) climbed a 6.5-cm
diameter liana to a height of 6.8 m twice in succession. A majority of men
ascended the rigid liana by positioning their feet on a nearby tree. The
present analysis is focused on seven men, all experienced honey-gatherers,
who instead used the liana as their primary substrate and climbed in the
changwod style (45). A similar style of climbing is depicted in Movie S1.

Standardized video of each climber was captured with a Sony HDR-SR12
digital cameramounted on a tripod.We isolatedmovie stills that depicted the
right ankle in lateral view at the point of left-foot push-off (i.e., when the
right foot supported the weight of the climber). Following DeSilva (3), ankle
dorsiflexion was estimated with the angle tool in ImageJ (74) as the angle

Fig. 4. Muscle architecture measurements in African (Twa and Bakiga) and Philippine populations (Agta and Manobo). (A) Boxplot of fiber length, nor-
malized for muscle length, of the lateral (LG) and medial (MG) gastrocnemius muscles of Bakiga men (n = 9) and Twa men (n = 29), shown on left. (B) Boxplot
of fiber length comparing Manobo men (nManobo-LG = 18, nManobo-MG = 16) and Agta (nAgta-LG = 23, nAgta-MG = 24) men.
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between two straight lines: one running from the knee to the heel (ap-
proximately bisecting the tibia) and another from the heel to the meta-
tarsophalangeal joint of the fifth metatarsal (Fig. S3). By convention,
dorsiflexion was calculated by subtracting the measured angle from 90°. To
avoid angular errors associated with height, movie stills were only analyzed
if the subject was <5 m above the ground. Maximum dorsiflexion refers to
the greatest measured angle for an individual.

Distal Tibia Skeletal Measurements. Measurements with digital calipers were
taken on six male specimens housed at the University of Geneva. The speci-
mens were labeled “Ituri pygmées” and are thus likely to have belonged to
populations of Mbuti or Efe, among whom climbing is frequent (28, 64, 65).
The age of individuals ranged from 17 to 60 y. It is unknown whether or how
frequently these individuals climbed during life. Six measurements were taken
on the anterior aspect of the left tibial articular surface to assess dorsiflexion
capability. Methods closely followed DeSilva (3) to ensure direct comparability
between studies. Repeated measurements were taken 4 d apart and were
found to be within 5% of each other. The following measurements were
taken: maximum mediolateral length of the anterior aspect of the articular
surface (MLAA), the maximum mediolateral length of the posterior aspect
of the articular surface, the maximum mediolateral length at the midpoint
of the articular surface, the maximum anteroposterior width of the most
medial aspect of the articular surface, the maximum anteroposterior width
of the most lateral aspect of the articular surface, and the maximum ante-
roposterior width at the midpoint of the articular surface. The geometric
mean was calculated by raising the product of the six measurements to
the 1/6 power. The measure of interest (MLAA) was divided by the geometric

mean, following the size adjustment protocol established by Darroch and
Mosimann (75).

Gastrocnemius Muscle Architecture. The head of the fibula and the proximal
end of the tendocalcaneal complexwere determined bymanual palpation and
ultrasonography, respectively (MicroMaxx ultrasound system outfittedwith an
L52e transducer; SonoSite). Corresponding surface marks (white body paint)
were applied and photographed (Fig. 3A). Next, ImageJ was used to estimate
the length of the gastrocnemius muscle (Fig. 3B). To measure fiber lengths,
sonographic images of each head of the gastrocnemius muscle were recorded
in the sagittal plane at muscle midlength as subjects stood upright in a neu-
tral anatomical position. Fiber length was measured in ImageJ by tracing
a line across a visible fiber bundle between the superficial and deep apo-
neuroses (Fig. 3C). This research was approved by the Committee on the
Protection of Human Subjects of Dartmouth College (approval 22410) and the
Research and Ethics Committee of Makerere University (approval 2009-137).
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