Skip to main content
. 2012 Dec 7;12:143. doi: 10.1186/1472-6947-12-143

Table 2.

Comparison of the application of different algorithms to data subsets in terms of accuracy and specificity (for sensitivity of 90%)

Algorithms
Subsets
 
CRF
TcB at 24 h
TcB and CRF at 24 h
  AUC 95% CI SPE AUC 95% CI SPE AUC 95% CI SPE
J48
0.47
(0.42-0.52)
0.09
0.79
(0.74-0.84)
0.43
0.75
(0.70-0.80)
0.33
Simple Cart
0.46
(0.41-0.51)
0.10
0.76
(0.71-0.81)
0.42
0.77
(0.72-0.82)
0.41
Naive Bayes
0.72
(0.67-0.77)
0.38
0.82
(0.77-0.87)
0.54
0.88
(0.84-0.92)
0.56
Bayes Net
0.74
(0.69-0.79)
0.42
0.73
(0.68-0.78)
0.35
0.87
(0.83-0.91)
0.60
MP
0.70
(0.65-0.75)
0.35
0.84
(0.80-0.88)
0.53
0.81
(0.76-0.86)
0.50
SMO
0.53
(0.48-0.58)
0.15
0.50
(0.45-0.55)
0.12
0.72
(0.67-0.77)
0.54
Simple Logistic 0.72 (0.67-0.77) 0.39 0.80 (0.75-0.85) 0.41 0.89 (0.85-0.93) 0.56

MP – Multilayer Perceptron; SMO – Sequential Minimal Optimization; AUC – Area under the receiving-operator characteristic curve; CI – Confidence interval; SPE – Specificity; CRF – Clinical Risk Factors; TcB – Transcutaneous bilirubin.