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Abstract

Neuroblastoma is a highly heterogeneous tumor accounting for 15 % of all pediatric cancer deaths.
Clinical behavior ranges from the spontaneous regression of localized, asymptomatic tumors, as
well as metastasized tumors in infants, to rapid progression and resistance to therapy. Genomic
amplification of the MYCN oncogene has been used to predict outcome in neuroblastoma for over
30 years, however, recent methodological advances including miR-NA and mRNA profiling,
comparative genomic hybridization (array-CGH), and whole-genome sequencing have enabled the
detailed analysis of the neuroblastoma genome, leading to the identification of new prognostic
markers and better patient stratification. In this review, we will describe the main genetic factors
responsible for these diverse clinical phenotypes in neuroblastoma, the chronology of their
discovery, and the impact on patient prognosis.
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Introduction

Neuroblastoma is a highly malignant pediatric cancer derived from precursor or immature
cells of the sympathetic nervous system. Despite the relatively low incident level (6-10
children per million) [1, 2], approximately 15 % of all childhood cancer deaths can be
attributed to the disease [3]. Long since recognized as a genetically complex form of cancer,
neuroblastoma displays profound genetic heterogeneity (Fig. 1). As a result, strikingly
different outcomes are observed across tumor subtypes. These range from spontaneous
regression without therapy (developing into a benign ganglioneuroma) to rapid progression
and death due to disease. It is clear therefore that in order to combat neuroblastoma, we must
understand the genetics of the disease.

The significance of MYCNamplification (MNA) in neuroblastoma pathogenesis was first
established in the early 1980’s with its association with high risk tumors and poor patient
survival [4]. Since that time, multiple recurrent genetic alterations have been associated with
neuroblastoma, including whole chromosome gains and a large number of large-scale
chromosome imbalances, such as loss of heterozygosity at chromosome arms 1p, 3p, 14q
and 11q, unbalanced gain of 1qg, 11p and 17g and numerous mutations in key genes such as
ALK, PHOX2B and PTPRD [5-9].

Numerous studies have now demonstrated that genomic and transcriptomic profiles can be
predictive clinical disease course, so that a combination of mMRNA, miRNA and arrayCGH
are now being used to better define prognostic signatures and may provide insight into the
molecular basis of clinical heterogeneity [10-16]. This progress is some-what reflected in
the International Neuroblastoma Risk Group (INRG) staging system which takes into
account both clinical characteristics and tumor biology to identify clinical risk groups with
statistically different event-free survival rates [17]. Independently prognostic baseline
characteristics included in this system are patient age, disease stage, histology, grade of
differentiation, DNA index, MYCN amplification status, and the presence of copy number
aberrations at chromosome arm 11q.

In this review, we will discuss the key genetic factors contributing to neuroblastoma as
identified over the past 30 years, and the significance of such in relation to improved
understanding of neuroblastoma predisposition in both familial and sporadic cases.

Chromosomal aberrations

DNA ploidy

The key to elucidating the means by which chromosomal aberrations reduce overall survival
is to identify oncogenes and tumor suppressor genes located in the regions of alteration.
Here, we take a look at some of the most frequent aberrations found in neuroblastoma
tumors and the key protein-coding genes located at cancer-associated genomic regions
(CAGRs) or in fragile sites.

Generally, tumors from patients with low stage disease are hyperdiploid or near-triploid and
have few, if any, structural aberrations [18]. This genetic subtype of tumor is frequent in
patients of less than 1 year of age, where tumors are localized and have good prognosis [19].
Although ploidy can be predictive of outcome in infants, the prognostic significance of
ploidy is lost for patients older than 1-2 years [20], probably because chromosomal
aberrations in diploid tumors have contributed to the deregulation of cancer-related
pathways.
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Many neuroblastoma tumors display DNA diploid status and bear partial gains, losses,
amplifications or other structural chromosome aberrations. Recurrent structural
chromosomal alterations commonly associated with advanced stage of disease and poor
outcome in neuroblastoma include MYCN amplification, deletion of chromosome arms 1p,
3p, 4p and 11q, and gain of chromosome arm 17q (for review see [21]). In addition, a recent
INRG report on non-MYCN amplified tumors determined that it is not single genetic
markers, but the overall segmental genomic profile of tumors that adds information to
patient prognosis [22].

Amplification of MYCN oncogene

Amplification of the MYCN gene, mapping to 2p24.1 (Fig. 2), is present in approximately
20 % of neuroblastoma tumors and since its discovery in the early 1980’s remains one of the
most important genetic abnormalities associated with advance stages of disease and a highly
malignant phenotype [4, 23]. Numerous studies focusing on identifying the signalling
pathways influenced by MYCN have established that high level enhances the expression of
numerous genes involved in cell proliferation, and also represses expression of
differentiation- and apoptosis-related genes either in a direct or indirect fashion [24-26].
Targets directly induced by MYCN include the high mobility group A (HMGA1I) [27], the
minichromosome maintenance complex component 7 (MCM?) [28], the Mdm2-p53 binding
protein homolog (MDM2) [29], p53 [30], and the multidrug resistance-associated protein
MRPI [31].

Perhaps most significantly, the overall impact of MYCN was revealed in an early study by
Weiss et al. [32] confirming over-expression of MY CN alone was sufficient to initiate
neuroblastoma formation in mice. Despite this, MY CN status cannot predict all cases of
poor survival in neuroblastoma, and 80 % of neuroblastomas do not display MYCN
amplification. Several studies have reported over-expression of MYCN in the absence of
amplification [33, 34]. A recent study revealed a functional 157-gene signature in
neuroblastoma consisting of relevant genes that are regulated by MYCN and predictive of
outcome. Interestingly, a sub-group of the tumors displaying this signature and poor
outcome did not have MYCN amplification or high MYCN mRNA levels, but high nuclear
MYCN protein levels [35]. This suggests that the aggressive phenotype of MYCN might not
only be associated with MYCN copy numbers, but with other signals that regulate MYCN
expression, such as are RNA binding proteins (RBP) and microRNAs, which we will discuss
in more detail later.

Chromosome 1p deletions

Loss of heterozygosity (LOH) of the short arm of chromosome 1p is found in 20-35 % of
neuroblastoma tumors [36, 37]. This aberration is frequently associated with amplification
of MYCN, is found approximately in 70 % of aggressive neuroblastomas [38], and it has
been reported that 1p LOH is independently associated with poor outcome [39].

Pinpointing candidate tumor suppressor genes in the 1p LOH genetic subtype were aided by
the identification of the shortest region of consistent heterozygous deletion (spanning 261
kb) at 1p36.3 [40-42]. One of the first genes identified was the chromodomain helicase
DNA binding domain 5 (CHD5), mapping to 1p36.31 [43]. Very low levels of CDH5 were
observed in 137 neuroblastoma primary tumors and cell lines, and that low expression of
CHDS5 was highly correlated with 1p LOH, MYCN amplification, advanced stage, and
unfavorable histology. Consistently, Fujita et al. [44] reported that tumor growth was
inhibited in mice over-expressing CHD5. In addition, their data strongly suggested that
inactivation of the second allele of CHDS5 in neuroblastoma occurs by means of epigenetic
silencing. Based on the positive correlation between 1p LOH and MYCN amplification
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found in neuroblastoma tumors, the authors suggested that CHD5 promoter methylation
could be a MYCN-mediated effect [45].

Recently, CAMTAL, a transcription factor mapping to 1p36, was also identified as a tumor
suppressor gene in neuroblastoma. Multivariate survival analysis, based on CAMTA1
mMRNA expression profiling data in a cohort of 251 neuroblastoma tumors, confirmed that
low CAMTAI was a predictor of poor clinical outcome independently of MYCN status, 1p
LOH, and age of the patient at diagnosis [46]. In a follow-up study, transcriptome analysis
using a CAMTAI-inducible cell model revealed that expression of CAMTAZ induces the
transcription of genes involved in neuronal differentiation, and inhibits genes related to cell
proliferation. In addition, subcutaneous inoculation of athymic nude mice with CAMTAI-
inducible neuroblastoma cells resulted in a significant reduction of the tumors,
demonstrating a role for CAMTAZ as a tumor suppressor in an in vivo model [47].

Zinc-finger transcription factor CASZZ, located on 1p36.22, has also been suggested to play
arole in cell differentiation. A study by Liu et al. [48] reported that low expression of
CASZI mRNA was found in 77 % of neuroblastomas of patients older than 18 months (7=
59), and significantly associated with decreased overall survival. Low CASZZ mMRNA
levels, as measured by quantitative real-time PCR, were associated with neuroblastomas
with a poor differentiated histopathology and significantly correlated with increased age
(=18 months), 1p LOH, MYCN amplification and advanced disease. Consistently,
restoration of CASZ1 in neuroblastoma cell lines induced the cell differentiation, enhanced
cell adhesion, and suppressed cell growth [48]. Subsequent studies demonstrated that
silencing of the second allele of CASZZ was mediated by the aberrant up-regulation of the
polycomb protein histone methyltransferse £2H2, which regulates differentiation in many
tissues [49].

Other strong candidate 1p tumor suppressor genes include the ubiquitination factor E4B
(UBE4B) and apoptosis-inducing, TAF9-like domain 1 (AP/TDI). The expression of
UBE4B, a gene implicated in the ubiquitin/proteasome pathway, is markedly decreased in
high-stage/poor-prognosis tumors compared to low-stage/favorable-prognosis tumors [50].
In functional studies, AP/TD1, which is also lowly expressed in neuroblastoma, reduced the
cell growth in the neuroblastoma cell lines SK-N-AS and SK-N-BE [51].

Loss of chromosome 11q

Another common structural chromosome aberration associated with aggressive clinical
behavior is 11g LOH, occurring in approximately 40-45 % of cases [52]. Although
inversely correlated with MYCN amplification [52-55], a small sub-set of tumors display
both an 11q LOH and MYCN amplification. Numerous studies suggest that MYCN
amplified and 11g LOH represent two distinct subtypes of neuroblastoma tumors, both of
which can be associated with poor clinical outcome [52, 56, 57]. As a result, in 2009,
aberrations of chromosome 11q were included in the international neuroblastoma risk group
(INRG) classification system [17].

Therefore, identifying genes on the 11g chromosome that contributes to neuroblastoma
aggressiveness is crucial to understand the pathways deregulated in these tumors. However,
in spite of the intensive effort, only a few genes have been identified to date. A study by
Caren et al. [58] reported that in tumors with 11q LOH, the frequency of segmental
aberrations was significantly higher than in MNA tumors as determined using high-density
SNP microarrays. This fact was explained in part by the loss of the H2AF.X gene, located in
the 11¢23.3 deleted region. This gene has been shown to play a role in genomic stability
modification, and enhanced susceptibility to cancer in mice [58, 59].
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17q gains

Other studies identified cell adhesion molecule 1 (CADMZI), which transcribes a cellular
adhesion protein involved in neural cell development, as a candidate tumor suppressor gene
in the 11923 deleted region. CADM1 was significantly down-regulated in tumors with 11q
LOH relative to 11q diploid tumors and significantly associated with advance stage of
disease and poor survival [60, 61]. Over-expression of CADM1I revealed a significant
inhibition of cell proliferation and colony forming ability in a panel of four different cell
lines, demonstrating that CADM! expression attenuates the malignant phenotype in cultured
cells. No evidence for inactivating mutations of CADM1, or hypermethylation of its
promoter was found, suggesting that other mechanisms such as haplosufficiency or post-
transcriptional regulators of gene expression may be involved in the modulation of CADM1
expression [60, 62].

Constitutional rearrangements of 11q have also been reported in patients with neuroblastoma
[63, 64], indicating that aberrations in 11q genes may also be involved in development of
neuroblastoma. Although 11g LOH remains strongly associated with poor outcome in
neuroblastoma, more recent work now demonstrates that both miRNA and mRNA
expression profiles are more powerful predictors of clinical outcome than 11q status alone
[14, 65].

The most common aberration found in neuroblastoma tumors is the unbalanced gain of 17q
(segment 17g21-qgter), occurring in ~70 % of tumors [66—68]. Frequently, this aberration is
caused by unbalanced translocations of segment 17g21-gter and the distal part of
chromosomes 1p or 11q [66, 69-74], though other chromosomes can also be involved in 17q
gains [75]. Numerous studies have reported that 17q gain is significantly associated with
advanced stage of disease, increased patient age, 1p LOH, 11q LOH, and MYCN
amplification [68, 71, 75-77]. However, the independence of 17q gain as a prognostic factor
is controversial. A study by Bown et al. [68] investigated the prognostic independence of
179 gain by analyzing the 17q status and clinical data for 313 tumors from six different
European institutes. Multivariate analysis including patient age, tumor stage, MYCN status,
and 1p LOH demonstrated that 17q gain was an independent prognostic factor. However,
MYCN status and patient age were not predictive of survival in this model. Contrary to this,
Buckley et al. [78] determined that 17q gain was not an independent predictor of poor
survival, as did Spitz et al. [76] who reported that when 17q gain, 11g LOH, and MYCN
status were included in a multivariate analysis, 17q gain was not a significant prognostic
factor, while MYCN and 11q LOH were. Whether an independent prognostic factor, or
merely a modifying factor, identifying the gene aberrations caused by 17q unbalance will be
crucial to fully understand neuroblastoma progression.

Other imbalances

In addition to these major genetic aberrations found in neuroblastoma, there are other
recurrent imbalances that could also be important, such as gain of chromosomes 1q, 2p, 7q,
9p, and 11p, or loss of 3p, 4p, 14q, 16p, and 19q [77]. However, the biological significance
of these aberrations and the genes contributing to neuroblastoma pathogenesis remain
elusive. Figure 2 displays a summary of the aberrations identified across the genome on 160
primary neuroblastoma tumors, as determined in a study by Buckley et al. [78].

Genetic mutations

Mutations are one of the several alterations at genome level that can provoke malignant
transformation or tumor progression, and heavily contribute to neuroblastoma clinical
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heterogeneity. Table 1 summarizes published clinical studies focused on mutations
identified in neuroblastoma.

Familial neuroblastoma

Familial neuroblastoma is a rare event, as it only accounts for 1-2 % of cases. Inheritance
seems to follow an autosomal dominant pattern with incomplete penetrance [79]. As in
sporadic neuroblastoma, the familial cases also display a significant clinical heterogeneity
ranging from tumors that spontaneously regress to tumors that rapidly metastasize [80]. This
suggests that the different outcomes could be linked to differences in additional somatically
acquired mutations. Inherited mutations in the homeodomain transcription factor, paired-like
homeobox 2B (PHOXZ2B) and the anaplastic lymphoma kinase (ALK), have been reported
to predispose to familial neuroblastoma [5-7]. PHOX2B is a homeodomain-containing
protein which plays an essential role during early development promoting neuron formation
and differentiation [81]. Missense or frame-shift mutations in the homeodomain of
PHOXZB were described in a rare subset of neuroblastomas with congenital central
hypoventilation syndrome (CCHS). However, this mutation was reported to occur in only
6.4 % of familial neuroblastomas [82]. In addition, another study screening 237 sporadic
neuroblastoma tumors revealed that mutations in PHOXZB were found only in ~2 % of the
cases [83]. This suggests that although PHOXZ2B could give selective advantages to tumor
cells, it is likely not sufficient to drive neuroblastoma pathogenesis.

Contrary to this, activating mutations of ALK are found in the majority of familial cases of
neuroblastoma, as well as in 12.4 % of high risk sporadic neuroblastomas [6]. Although the
role of ALK during normal development remains to be elucidated, it is clear that activating
mutations in ALK promote oncogenesis in neuroblastoma and in other type of cancers [7,
84]. DNA amplification and protein over-expression, as well as activating point mutations of
ALK, have been described in neuroblastomas [85]. A recent study demonstrated that ALK
(F1174L), which is the most frequent and aggressive ALK mutation, was sufficient to
promote neuroblastoma development in mice. In addition, when ALK (F1174L) and MYCN
were co-expressed, a synergic effect was displayed in tumor development. Interestingly,
these tumors had minimal chromosomal aberrations, suggesting that these two genes are
sufficient to drive neuroblastoma formation [86].

Sporadic neuroblastoma

Almost 98 % of neuroblastoma cases represent sporadically arisen tumors. Sporadic
neuroblastoma is driven by multiple, low frequency polymorphisms. Advances in genome
sequencing technologies have allowed genome-wide association studies (GWAS) resulting
in the identification of risk polymorphisms in a number of large, independent studies [87—
89]. Maris et al. [89] genotyped genomic DNA from 1,032 NB patients and 2,043 control
subjects. Association analyses of chromosome 6p22 SNPs were performed for 883 patients
where complete clinical data were available. The authors identified three repeated common
SNPs within two overlapping genes, FLJ22536 and FLJ44180, a non-coding RNA gene, at
6p22 showing genome-wide significance for association with sporadic neuroblastoma.
Homozygosity for any of these risk alleles was significantly associated with high-risk
features including metastatic disease, MYCN amplification, and lower patient survival. The
same dataset also identified 6 SNPs at 2935 located within introns 1, 3, and 4 of the
BRCA1-associated RING domain-1 (BARDI) gene [87]. Apparently, BARDI plays an
important role in the tumor suppressor function of BRCA1, a hereditary breast and ovarian
cancer susceptibility gene, and pathogenic BRCAI mutations have been shown to impede
with the heterodimerization of BRCAL and BARD1 [90]. An expansion of the original
GWAS cohort included 2,251 neuroblastoma patients and 6,097 controls [88], documented
an additional predisposition locus at 11p15, within the LIM domain only 1 (LMOYJ) gene, a
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transcriptional regulator. Duplication of the LMO1 locus was reported to occur in 12 % of
primary neuroblastoma tumors and was associated with more advanced disease as well as
two SNPs. Supplementary in vitro studies demonstrated that sSiRNA knock down of LMO1
inhibits cell growth, and L MO over-expression enhances cell proliferation, supporting the
role of LMO1 as an oncogene involved in the pathogenesis of neuroblastoma.

Another group used a whole-genome paired-end sequencing platform to identify mutated
genes associated with sporadic neuroblastoma in 87 untreated primary neuroblastomas, with
an additional validation by SNP arrays of 52 sequenced tumors [9]. The sequencing data
identified very few recurrent somatic mutations. In contrast, novel genetic defects were
identified in high-risk tumors. First, massive genomic rearrangements, known as
chromothripsis [91], were observed in 18 % of high-, but not low-stage tumors.
Chromothripsis was significantly associated with poor-survival, MYCN amplification, 1p
LOH, and affected genes involved in neuroblastoma pathogenesis. In addition, structural
aberrations in neuritogenesis genes were also found in high-stage tumors without MYCN
amplification, which could explain the aggressive behavior of this subtype of tumors.

Very recently, over-expression of the RNA binding protein LIN28B was reported to be
associated with the presence of a SNP within an intron of the L/N28B gene in
neuroblastoma [92]. L/N28B mRNA expression was significantly higher in cell lines
homozygous for the risk allele compared to heterozygous cell lines, and over-expression of
LINZ8B was significantly associated with poor survival. However, none of the 12
neuroblastoma cell lines tested was homozygous for the protective allele. In addition, cell
lines homozygous for the SNP of L/N28B had higher levels of MYCN expression. In
addition, Molenaar et al. [93] reported that high level amplifications of the 6921 region,
where LIN28B maps to, occur at low frequency in neuroblastoma tumors. Regardless of the
mechanism leading to L/N28B over-expression, Molenaar et al. demonstrated for first time
that L/NZ28B over-expression was predictive of survival independently of MYCNand ALK
status, patient age or tumor stage. Most importantly, this study demonstrated that transgenic
mice expressing Lin28b in the neural crest developed the tumors characterized for a
histology and location similar to human neuroblastomas. L/N28B has therefore emerged as a
new oncogene in neuroblastoma and a novel therapeutic target. The mechanism of action of
LINZ8B in neuroblastoma will be further discussed below.

MRNA signatures

In an effort to further improve the risk estimation of neuroblastoma patients, many groups
have identified MRNA expression patterns that allow more detailed subset classification and
prediction of outcome. By comparing gene expression patterns in Stage 4S versus Stage 4
tumors (MYCN non-amplified) using serial analysis of gene expression (SAGE), Fischer et
al. [94] found a predominance of genes involved in neuronal differentiation in 4S tumors
compared to Stage 4 tumors, despite the poorly differentiated histopathology observed in
both subtypes. They validated the expression levels of 18 genes by qPCR and used the
combined analysis of these transcripts to show that patients with a favorable gene signature
displayed significantly better EFS than those with an unfavorable gene signature.
Asgharzadeh et al. [10] also carried out a study on MYCN non-amplified tumors, and
identified a 55 genes signature capable of stratifying clinically identical high-risk tumors
into sub-groups with different outcomes.

In a retrospective SIOPEN/COG/GPOH study, Vermeulen et al. [11] identified a 59-gene
expression signature which could independently distinguish between patients with respect to
progression-free survival (PFS) and overall survival (OS) in the SIOPEN and GPOH cohort.
The signature was also tested within each SIOPEN treatment protocol and found to
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accurately identify patients with risk of progression or relapse. A 236 tumor cohort from the
Children’s Oncology Group (COG) was used as a validation set, and found that the signature
was the most significant variable for prediction. Forty-two genes in the 59-gene signature
were also found to be present in at least two out of four published NB expression studies
profiling high risk and low risk sub-groups [95-98]. The authors then used these 42 genes to
define a cross-platform signature that was validated on four independent sets [12]. An
additional study found 3 genes from the 42-gene classifier also contributed to a 6-gene
signature (MYCN, ALK, BIRC5, CCND1, NTRK1 and PHOXZB) that distinguishes
between four molecular subgroups of neuroblastoma [99]. In addition to the delineation of
the established sub-groups of Type 1 (low risk, high NTRKI), Type 2A (intermediate risk,
11g-) and Type 2B (high risk, MNA), the authors identified a novel fourth sub-group using
this 6-gene signature, consisting of high-stage 11g- tumors displaying low MYCNand ALK
expression. The identification of this fourth sub-group is in concordance with the findings of
Fischer et al. and Buckley et al. [78, 100] that 11g— tumors can be subdivided into two
groups with distinguishing gene and miRNA expression profiles, predictive of outcome.

Non-coding RNA

MiRNAs

MicroRNAs (miRNAs) are evolutionarily conserved, endogenous, small non-coding RNA
molecules, approximately 22 nucleotides in length. They function as post-transcriptional
gene regulators through targeting regions of partial sequence complementarity mainly at the
3’UTR (untranslated region) of the target mMRNA resulting in the degradation of the mRNA
or inhibition of protein translation [101]. This partial complementarity allows miRNASs to
regulate multiple mRNA sequences. At the same time, a single mRNA can be regulated by
multiple different miRNAs, resulting in a sophisticated gene regulatory network. MiRNAs
are known to regulate oncogenes, tumor suppressor genes, genes involved in cell cycle
control, cell migration, apoptosis, and angiogenesis. Subsequently, altered miRNA profiles
are found in several human diseases, as well as in many forms of cancer [102-105]. In fact,
select miRNA signatures can classify multiple cancers more accurately than data from
~16,000 mRNAs [106].

In 2007, Chen and Stallings [15] determined that many miRNAs were differentially
expressed in different genomic subtypes of neuroblastoma, and that those miRNA profiles
were correlated with prognosis, differentiation, and apoptosis. A continuation of this work
was published in 2009 when an extended tumor cohort was analyzed for expression of 450
miRNA loci [16]. This study highlighted that over-expression of the MYCN transcription
factor as well as large-scale chromosomal imbalances had contributed to the widespread
dysregulation of miRNA expression in neuroblastoma tumors. Importantly, a miRNA
expression signature predictive of clinical outcome was identified, emphasizing the potential
for miRNA-mediated diagnostics and therapeutics. Consistent with these results, Schulte et
al. [107] reported that seven miRNAs (miR-92, miR-106a, miR-let7b, miR-17-5p, miR-93,
miR-99 and miR-221) were up-regulated byMY CNin neuroblastoma, and demonstrated that
miR-221 was directly induced by MYCN in vitro.

Emerging functional studies have established that miRNAs regulate important genes
involved in neuroblastoma disease. For example, over-expression of the miR-17-5p-92
cluster promotes tumorigenesis by regulating the pro-apoptotic gene B/M, the cell cycle
regulator p21, transcription factor 7GF-g, and the tumor suppressor Dickkopf[108-110].
Other miRNAs can act as tumor suppressor miRNAs, such as let-7 and miR-101 which
directly regulate MYCN expression [93, 111], or have an anti-tumorigenic effect, such as
the pro-apoptotic miR-34a [112-114], the anti-invasive miR-335 [115], novel tumor
suppressor miR-542-5p [116], and several differentiation-related microRNA (miR-125b,
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miR-10a and miR-10b [117-119]). Other miRNAs have been shown to be related to drug
sensitivity in neuroblastoma, such as miR-204 [120]. The list of specific miRNAs validated
as contributors to neuroblastoma pathogenesis (Table 2) is ever expanding, but, what are the
mechanisms underlying their deregulation in neuroblastoma?

Alteration of miRNA expression: mechanisms involved

Altered expression of miRNAs can be caused by multiple mechanisms, including
aberrations in DNA copy number, altered transcriptional activators/repressors, aberrant
DNA methylation, or defects of the proteins involved in the miRNA biogenesis machinery
and in the post-transcriptional regulation of miRNA expression. The elucidation of the
mechanisms involved in miRNA deregulation is required not only to better understand the
role miRNAs play in the development of the disease but also may help us to identify new
therapeutic targets.

Copy number gains and losses—As already mentioned, alterations in miRNA
expression can be altered by DNA gains and losses. However, in addition to simple dosage
effects, imbalance of miRNAs leads to altered expression of their target genes resulting in
significant dysregulation throughout the genome. The finding that miRNAs are frequently
located at fragile sites and genomic regions involved in cancer further implicates their
involvement with malignant diseases [121].

Integrated analysis of miRNA expression profiling together with oligonucleotide array CGH
revealed that many of the recurrent large-scale chromosomal imbalances in neuroblastoma
tumors, including loss of 1p, 3p, 11q and 14q, along with gain of 1q and 17q, have a major
impact upon miRNA expression [16]. This same study identified a 15-miRNA signature
predictive of survival in neuroblastoma. In a subsequent study it was demonstrated that 11q
LOH tumors could be split into distinct subtypes using a miRNA signature that differed
significantly in clinical outcome and the overall frequency of large-scale genomic
imbalances, with the poor survival group having more imbalances [78]. However, this study
also found cases where miRNA expression was inversely related to the genomic imbalance,
i.e., miRNASs were under-expressed in spite of mapping to a region of DNA copy number
gain. This strongly suggests that alternative mechanisms can in some instances counteract
the effects of DNA dosage.

In neuroblastoma, 1p LOH is frequently associated with MYCN amplification and poor
outcome [38, 39]. One of the first tumor suppressor mMiRNAs identified as mapping to the
shortest region of overlap was miR-34a, mapping to chromosome 1p36. Initial studies
demonstrated that miR-34a could induce apoptosis in neuroblastoma cells [112], a function
explained somewhat by the fact that miR-34a is directly activated by p53 [122] and soon
after, MYCN was also identified as a direct target of miR-34a [123]. MiR-34a functions as a
tumor suppressor miRNA by inducing apoptosis of neuroblastoma cells [112, 123, 124]. The
multi-gene targeting nature of miR-34a is well documented, with target transcripts including
MYCN, BCLZ2, SIRT1, NOTCHI, JAG1, CCND1, CDK®6, and E2F3[112, 114, 123, 125-
128]. It is no surprise than that the potential of miR-34a to act as a novel therapeutic in
neuroblastoma was further explored. Targeted delivery of a miR-34a encapsulated anti-
GD(2)-nanoparticles was accomplished in a neuroblastoma mouse model and confirmed
miR-34a as an effective inhibitor of neuroblastoma tumor growth in vivo [113, 129].

Activators and repressors of microRNA transcription—MYCN and C-MYC The
MYCN transcription factor exerts regulatory control over the activation or repression of a
large group of oncogenic and tumor suppressor miR-NAs in neuroblastoma [16, 130].

Activation or repression of miRNAs is thought to occur by direct binding of MYCN to the
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proximal region of miRNAs loci. Amplification of the MYCN oncogene was shown to
contribute to the widespread miRNA deregulation in neuroblastoma tumors, with miRNA
profiles correlating with clinical outcome [16, 130]. These two independent studies reported
that in the majority of cases, miRNAs were being down-regulated in MNA tumors. This
posed the questions: is MYCN directly regulating these miRNAs, or is it the result of a
secondary event? and What role do these differentially expressed miRNAs play in
neuroblastoma cells?

MYCN binding to a large number of promoters and CpG islands was identified in
neuroblastoma cell lines [131]. Chip—chip analysis of MYCN binding sites in neuroblastoma
cell lines expressing both high and low levels of MYCN protein was performed in order to
characterize the binding behavior of MYCN in these states. The analysis revealed that
MYCN preferentially binds to non-canonical E-box sequence of CATGTG and to additional
motifs when it is over-expressed; indicating that MYCN binding becomes less specific when
highly abundant. However, to date the promoter regions of few miRNASs have been
identified [132], and validation of this mechanism will not be possible until the exact
promoter region of each miRNA is determined. Recently, the repression of a panel of
miRNAs by MYCN binding was confirmed by CHIP-sequencing analysis in neuroblastoma
cell lines. Of these miRNAs, miR-591 had tumor suppressive effects in an orthotopic
neuroblastoma xenograft, while miR-558 revealed an oncogenic phenotype. This study
reveals that MYCN can regulate the expression of both oncogenic and tumor suppressor
miRNAs [133].

As our knowledge builds, we have also become aware that miRNAs can play both pro-
oncogenic and tumor suppressor functions depending on the environmental context. An
interesting example is the miR-17-5p-93 polycistronic cluster. This cluster located in
chromosome 13 (13g31.3 loci) encodes 7 mature miRNAs (miR-17-5p, miR-17-3p,
miR-18a, miR-19a, miR-19b, miR-20a and miR-92) that play different roles in the cell. Of
particular interest is miR-17-5p, which has been shown to have a pro-oncogenic function in
several types of cancer [134-138], while also being reported to act as a tumor suppressor by
targeting the oncogene E2F1 [139]. Fontana et al. [108] established that this cluster was
highly expressed in neuroblastoma cells over-expressing MYCN or having MYCN
amplification, and verified MYCN binds directly to the 5" and 3" of the 17-5p cluster,
promoting expression of these miRNAs. MiR-17-5p was found to enhance tumorigenesis by
binding to the 3" UTR of p21 and BIM, resulting in increased proliferation and inhibited
apoptosis, respectively. A study by Mestdagh et al. [109] in 2010 examined global protein
response to up-regulation of miR-17-92 and found that the 7GF-g pathway is also
suppressed in neuroblastoma upon miR-17-92 activation. Impaired TGF-b signaling
subsequently contributes to poor prognosis in neuroblastoma patients. More recently, the
tumor suppressor Dickkopf-3 (DKK3) was also validated as a direct target of miR-92a and
miR-19b, both members of the miR-17-92 cluster [110].

According to the results of Bray et al. [16] and Mestagh et al. [130], most of the
differentially expressed miRNAs between MYCN amplified or MYCN single copy tumors
were down-regulated. However, relatively few of the under-expressed miRNAs (7= 4)
appear to be directly regulated by binding of MYCN based on unbiased ChIP sequencing
studies [133], indicating that many of these miRNAs are indirectly repressed.

p53—p53 is a tumor suppressor protein that plays a major role in the protection of genomic
stability and prevention of tumor development by directly activating several genes,
including miRNAs, which promote DNA repair, cell cycle arrest, and apoptosis. Direct
binding of p53 is responsible for the activation of the miR-34 family of miRNAs [140]
which, as already explained, functions as a tumor suppressor miRNA in neuroblastoma. In
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addition to the miR-34 family, p53 also directly regulates the transcriptional expression of
other miRNAs through direct binding to their promoter, such as miR-145, miR-107,
miR-192, and miR-215 [141]. Although the role of these miRNAs in neuroblastoma remains
to be elucidated, other studies suggest that these miRNAs act as tumor suppressors in other
forms of cancer [142-144].

Inactivating mutations or deletions in the p53 gene are found in >50 % of adult human
cancers [145]. However, in neuroblastoma, this gene is seldom mutated, occurring in <2 %
of cases at diagnosis, and ~15 % at relapse [146]. Nevertheless, inactivation of p53 can
occur by an alternative mechanism in neuroblastoma tumors, for example, MDMZ has been
reported to act as a negative regulator of p53 expression [147]. Although MYCN can
promote the expression of p53 [30], over-expression of MDM2, occurring in 29 % of
neuroblastomas, can counteract its effects, resulting in p53 inactivation and the aberrant
expression of the p53-regulated genes [146, 148]. Taken together, this evidence suggests
that inactivation of p53 in neuroblastoma can cause the deregulation of both protein-coding
genes and miRNAS, resulting in the deregulation neuroblastoma related-pathways.

DNA methylation—DNA methylation consist in the addition of a methyl group 5 of the
cytosine within the dinucleotide CpG. Gene silencing can occur by aberrant
hypermethylation of CpG islands, which are dense clusters of CPG dinucleotides often
present in gene promoters. Neuroblastoma genome displays distinct patterns of DNA
methylation which can be associated with different risk groups [149]. One of the first genes
reported to be differentially methylated in neuroblastoma tumors was the tumor suppressor
RASSFIA, located at 3p21.3 [150]. Inactivation of RASSF1A was observed to occur in 55
% of a cohort of 67 neuroblastomas, suggesting that silencing of this tumor suppressor gene
could contribute to neuroblastoma disease [150]. Another example of a commonly
methylated and inactivated gene in neuroblastoma is CASP8. The CASP8 gene plays an
important role in the tumor necrosis factor-related apoptosis pathway [151]. An
investigation of a cohort of 70 neuroblastoma tumor samples displayed 56 %
hypermethylation which was correlated to poor outcome in neuroblastoma [152]. In another
study, involving clustering of a limited number of hypermethylated genes, CASP8 was
found to be methylated in 77 % of the neuroblastoma cell lines investigated, further
supporting the importance of the methylation status of this gene in vitro [153]. To date, more
than 75 genes have been described as methylated in neuroblastoma tumors (for review see
[154]), and more importantly, the methylation status of several genes has been shown to be
associated with patient survival or neuroblastoma risk factors, such as MYCN amplification,
patient age, and tumor stage [149, 151, 152, 155-157].

In neuroblastoma, all-trans retinoic acid (ATRA) treatment induces some neuroblastoma cell
lines to differentiate, leading to profound changes in mRNA and miRNA expression [119].
In a study by Das et al. [158], DNA methylation changes were compared in SKNBE ATRA-
treated versus untreated cells using methylated DNA immunoprecipitation applied to
microarrays. The authors identified a total of 402 gene promoters de-methylated following
ATRA treatment, while only 88 genes became hypermethylated. The demethylation events
were explained in part by the down-regulation of the methyl-transferases DNTMT1 and
DNTMT3 along with the upregulation of endogenous miRNAs targeting them, such as
miR-152 and miR-26a/b. The question is: are miRNAs epigenetically regulated?

Similar to protein coding genes, miRNAs are susceptible to epigenetic regulation. A recent
study, compiling the methylation data available from several different neoplasms revealed
that in comparison to protein coding genes, miRNAs displayed a higher magnitude of
methylation, with about 11.6 % of all known miRNAs being methylated [159]. However,
very few studies in this area have been reported in relation to neuroblastoma disease.
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Recently, Das et al. [160] attempted to explore DNA methylation as a possible mechanism
for the dysregulation of miRNA expression in neuroblastoma. In depth analysis of DNA
methylation patterns in conjunction with miRNA and mRNA expression profiles in
neuroblastoma, clinical samples allowed to identify a large set of epigenetically regulated
miRNAs with significantly enriched target sites in the 3"-UTRs of genes over-expressed in
unfavorable tumor subtypes. Notably, a high proportion of both the methylated miRNAs (42
%) and their associated MRNA targets (56 % of the highly redundantly targeted mMRNAS)
was highly associated with poor clinical outcome when under and over-expressed in tumors,
respectively. The potential epigenetically regulated miRNAs included well-characterized
tumor suppressor miRNAS in neuroblastoma such as some of the let-7 miRNAs, miR-29c,
miR-101, miR-335, and miR-184. Importantly, many of the genes targeted by this panel of
miRNAs are known to play oncogenic roles in neuroblastoma, such as AK72, LINZ28B, and
CDKG®, suggesting that epigenetic silencing of miRNAs could contribute to the over-
expression of oncogenes in neuroblastoma.

RNA binding proteins: LIN28B—A number of proteins that regulate miRNA processing
have been described as key elements in defining the characteristic expression patterns of
miRNAs in different cells or during disease. RNA binding proteins (RBP) can bind to
primary or precursor miRNAS to regulate their expression. It has been determined that 14 %
of all human pri-miRNAs have terminal loops that are conserved throughout evolution,
which may act as docks for RBPs regulating miRNA biogenesis [161]. Here, we focus on
the RBP L/N28B, which has recently demonstrated to induce neuroblastoma development,
and might represent a promising therapeutic target [93].

The RNA binding protein Lin28 was initially discovered in Caenorhabditis elegans as an
important regulator of developmental timing. The mammalian homologs Lin28and Lin28B
are highly expressed in embryonic cells, and are responsible for maintaining the
undifferentiated state of the cells [162]. LinZ8 s a target of the let-7 family of miRNAs
[163, 164], and as the cells start to differentiate, the let-7 levels are increased to down-
regulate Lin28 expression [165, 166].

Recently, it was discovered that Lin28 blocks let-7 miRNA maturation by blocking let-7
processing at the level of DROSHA or DICER during miRNA biogenesis [167, 168].
Binding of LIN28B to the terminal loop of pre-let-7 induces the uridylation of let-7
precursor by recruiting the terminal uridylyl transferase (TUTases) to the pre-let-7 through a
tetranucleotide sequence motif (GGAG), resulting in the addition of an oligouridine tail to
the pre-let-7 [169-171]. Oligouridylation results in DICER blockage and degradation of the
pre-miRNA by an unidentified nuclease. Lin28 can also repress DICER processing of the
pri-let-7. Similarly, Lin28 recognizes the terminal loop of the pri-let-7 which inhibits
DICER cleavage in vitro [164]. In addition to their role as negative regulators of the let-7
members, they are pluripotent stem cell factors, which together with three additional factors
(Oct4, SOX2 and Nanog) are sufficient to reprogram somatic fibroblasts to become
pluripotent stem cells [172]. The importance of LIN28 and LIN28B as regulators of the let-7
members emerged with studies demonstrating the up-regulation of LIN28 and LIN28B in
several forms of cancer, including hepatocarcinoma, ovarian cancer, Wilm’s tumor, and
chronic myeloid leukemia [173]. Over-expression of L/N28and L/N28B has also been
associated with cellular transformation and enhanced metastasis [173-175].

Very recently, two independent studies related LIN28B over-expression to neuroblastoma
pathogenesis [92, 93]. Diskin et al. reported that SNPs in the L/NZ28B gene had contributed
to the over-expression of L/N28B in neuroblastoma tumors. The mechanism by which
LINZ8B exerts its oncogenic roles was explained in the study by Molenaar et al. Consistent
with the role of LIN28B being a negative regulator of let-7 expression, silencing of L/N28B
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in neuroblastoma cells was shown to cause the up-regulation of the let-7 members. Over-
expression of L/N28B led to increased MYCN protein levels, which was explained by the
fact that the let-7a was a direct post-transcriptional regulator of MYCN expression. Most
importantly, this study demonstrated that M YCN was a down-stream target of LIN28 and
silencing of L/N28B resulted in decreased cell viability and an increase in markers of cell
differentiation. Transgenic mice expressing Lin28b in the neural crest developed the tumors
characterized for the low expression of let-7, high MYCN levels, and a histology and
location similar to human neuroblastomas. With these studies, L/N28B has emerged as a
new oncogene in neuroblastoma and a novel therapeutic target.

Long non-coding RNAs

Compared with the extensive information available regarding miRNA, there is very little
known about the expression or role of long non-coding RNAs (IncRNAS) in NB. This
emerging area of research concerns RNAs of length >200 nt, which lack protein-coding
features such as open-reading frames, are not translated into proteins and exert their
functional role as RNA transcripts.

One sub-group of IncRNAs whose expression has been investigated to some extent in
neuroblastoma is the transcribed ultra-conserved region (T-UCR), transcripts from DNA
segments that are at least 200 bp in length and 100 % conserved between human, rat and
mouse genomes. Four hundred and eighty-one such genomic regions have been identified
[176]. Calin et al. [177] carried out the first analysis of T-UCRs in cancer, demonstrating
that approximately 9 % of the 962 possible T-UCRs (sense ? antisense) were aberrantly
transcribed in either carcinomas or leukemias relative to normal tissue. The authors further
demonstrated the oncogenic potential of T-UC.73A by siRNA-mediated down-regulation,
resulting in significantly increased apoptosis in a colorectal cancer cell line. Two
neuroblastoma studies have demonstrated that analysis of UCR expression signatures can be
applied to the evaluation of neuroblastoma tumors [178, 179]. Differential UCR expression
profiles are associated with outcome in short-term versus long-term survivors with high-risk,
stage 4 neuroblastoma [179]. In addition, Mestdagh et al. [178] found an expression
signature of up-regulated T-UCRs in MNA compared to non-MNA tumors.

Genetic aberrations such as chromosomal gains and losses can contribute to the over- or
under-expression, respectively, of transcripts encoded in these regions. A predominant
unfavorable prognostic factor in neuroblastoma is the gain of chromosome arm 17q [3, 68].
The 2.3 kb RNA ncRAN (non-coding RNA expressed in aggressive neuroblastoma) is one
such transcript mapped to 17q, whose over-expression is present in neuroblastomas with
partial gain of 17q, but interestingly not present in those with whole chromosome 17 gain
[180]. The oncogenic potential of this transcript was shown by siRNA knockdown of
ncRAN in SH-SY5Y neuroblastoma cells, and ectopic over-expression in NIH3T3 mouse
fibroblast cells, resulting in significantly inhibited cell growth and an increase in anchorage-
dependent cell growth, respectively [180].

Differentially expressed in neuroblastoma (DEIN) is a non-coding transcript (mapping to
4933-34) whose expression shows no significant association with the common
neuroblastoma aberrations of MYCN amplification, 1p/3p/11q deletion or 179 gain.
However, it is highly expressed in stage 4S tumors compared with localized stage 1, 3, and 4
tumors and expression is significantly associated with event-free survival, although not an
independent prognostic marker [181].

The lack of information regarding the identification of new IncRNAs and their putative
functions is due in part to the fact that they do not exhibit the same level of conservation as
protein-coding genes. Consequently, it is not possible to assign possible function through
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sequence similarity, as can be done with some protein-coding genes. In addition,
determining that a transcript does not code for a protein is a complex process. Moreover,
studies indicate that certain transcripts can function at both RNA and protein level [182,
183]. However, with the evidence amassed so far, and the identification of functional roles
for certain INCRNAs in the regulation of processes such as DNA methylation or apoptosis
[177, 184, 185], it is clear that these RNAs can play important roles in both normal and
pathological physiology and represent a challenging new area of research in both normal
development and disease.

Conclusions

Since the early 1980’s, we have progressed significantly in our ability to diagnose, stratify,
and treat neuroblastoma patients. Risk classification continues to be optimized, and clearly
future approaches will need to integrate profiling of mMRNA and microRNA expression,
epigenetic modifications, and whole genome copy number variations with the current INRG
system. This will require advances in technology which will allow us to screen patients in a
time-effective, cost efficient manner. In parallel, novel therapeutics are being developed to
target key regulators of the neuroblastoma genome and more refined treatment regimens are
being designed based on our increasing knowledge of the pathogenesis of the disease. This
progress is due greatly to our increased understanding of the fundamental genetic alterations
associated with tumor behavior and patient outcomes.
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Chronology of neuroblastoma genetics
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Fig. 2.

DNA copy number alterations from 160 primary neuroblastoma tumors across the genome.
Regions of hemizygous loss (red bar) and hemizygous gains (green bar) are plotted for each
autosome with the observed frequency (%) of each aberration detected in the tumor series
plotted on the Yaxis. The frequency of MYCN and ALK amplifications is also plotted
(blue). Figure taken from [78]
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