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Introduction
Human red blood cells (RBC) survive in the 

peripheral circulation for approximately 120 days, 
while the shelf-life of RBC concentrates stored under 
refrigeration is currently limited to 42 days1. The 
clearance of RBC in vivo is the result of a series of 
progressive events which affect cell viability and lead 
to an "aberrant" senescent phenotype, resulting in 
rapid removal from the bloodstream via phagocytosis 
(for a detailed review about the hypothesised models 
of erythrocyte clearance through phagocytosis the 
interested reader is referred to Bratosin et al.)2. 
Briefly, phagocytosis is mainly triggered and mediated 
by membrane exposure of phosphatidylserine or, 
rather, by formation of hemichrome-induced band 

3 clusters that are recognised by naturally occurring 
antibodies2-4.

RBC senescence has so far been investigated 
through the isolation of RBC populations of different 
mean cell ages. Most of the investigations have been 
performed on erythrocytes separated on the basis of 
differences in cell density or volume/size5,6. Of the 
various techniques used, only a handful have found 
extensive application in basic science studies: plain 
centrifugation, angle-head centrifugation, and the 
use of several discontinuous gradients, including 
albumin and stractan, which result in variably 
efficient separation6. The use of a Percoll gradient has 
proven to be an easy and efficient way of separating 
RBC5,6. Nevertheless, it has been suggested that 

Background. It has long been known that red blood cells comprise various subpopulations, 
which can be separated through Percoll density gradients.

Materials and methods. In this study, we performed integrated flow cytometry, proteomic 
and metabolomic analyses on five distinct red blood cell subpopulations obtained by Percoll 
density gradient separation of freshly drawn leucocyte-depleted erythrocyte concentrates. The 
relation of density gradient fractions to cell age was confirmed through band 4.1a/4.1b assays.

Results. We observed a decrease in size and increase in cell rugosity in older (denser) 
populations. Metabolomic analysis of fraction 5 (the oldest population) showed a decrease of 
glycolytic metabolism and of anti-oxidant defence-related mechanisms, resulting in decreased 
activation of the pentose phosphate pathway, less accumulation of NADPH and reduced 
glutathione and increased levels of oxidized glutathione. These observations strengthen 
conclusions about the role of oxidative stress in erythrocyte ageing in vivo, in analogy with 
results of recent in vitro studies. On the other hand, no substantial proteomic differences were 
observed among fractions. This result was partly explained by intrinsic technical limitations of the 
two-dimensional gel electrophoresis approach and the probable clearance from the bloodstream 
of erythrocytes with membrane protein alterations. Since this clearance effect is not present in 
vitro (in blood bank conditions), proteomic studies have shown substantial membrane lesions 
in ageing red blood cells in vitro.

Conclusion. This analysis shows that the three main red blood cell subpopulations, accounting 
for over 92% of the total RBC, are rather homogeneous soon after withdrawal. Major age-related 
alterations in vivo probably affect enzyme activities through post-translational mechanisms 
rather than through changes in the overall proteomic profile of RBC.
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density is not a good criterion to determine RBC age 
and it has been proposed that separation exploiting 
differences in RBC volumes through counterflow 
centrifugation might yield better results. However, a 
direct comparative study concluded that each of the 
separation approaches holds specific advantages over 
the other and both are characterised by one major 
drawback, that is, the poor yield (low RBC numbers) 
in every fraction. This issue has so far hampered 
untargeted strategies which, on the other hand, have 
now been enabled by the increased sensitivity and 
specificity of mass spectrometry analytical approaches 
for proteomic and metabolomic analyses7,8.

Studies have been conducted over the years 
addressing the peculiar characteristics of RBC 
sub-populations, from younger to older fractions. 
RBC ageing has been reported to correlate with 
decreased cell volume, size and mean corpuscular 
volume6,9-11, increased mean corpuscular haemoglobin 
concentration6 and glycated haemoglobin (Hb1Ac),12 
reduced 2,3-diphosphoglycerate/haemoglobin ratios13 
and cell deformability14,15 and increased osmotic 
fragility16 consequent to the loss of electrolytes and 
microvesciculation17,18. Other than phosphatidylserine 
membrane exposure2 and increased Hb1Ac levels12, 
older RBC also have higher creatine levels19.

Membrane- re la ted  a l t e ra t ions  inc lude 
phosphatidylserine exposure and decreased surface 
charge density 2, alteration of the membrane lipid content 
due to loss of sialic acid residues20, susceptibility to 
phospholipase A2

21 and microvesiculation22. An age-
dependent change in lipid asymmetry correlates with 
the cells' propensity to be cleared from the peripheral 
circulation and bind to autologous mononuclear cells 
in vitro. Indeed, it has been observed that membrane 
alterations result in increased adhesiveness to 
endothelial and reticuloendothelial cells23, changes 
in membrane cation transport24 and decreased 
enzymatic activities25, along with the accumulation 
of lipid peroxidation products26. Most of these 
phenomena closely resemble apoptosis and have led 
to the formulation of the concept of eryptosis, an 
erythrocyte-specific apoptotic phenomenon27.

While alterations of membrane shape and lipid 
parameters have been widely investigated in RBC 
populations, other biologically relevant molecules, 
such as proteins and metabolites, are still poorly 
investigated in the frame of RBC ageing. Proteomics 

and metabolomics are two increasingly widespread 
"omics" strategies which exploit recent advances in 
the fields of two-dimensional gel-electrophoresis 
(2D-GE), high performance liquid chromatography 
(HPLC), mass spectrometry and bioinformatics in 
order to assay qualitatively and quantitatively all the 
proteins and metabolite complement to the genome 
in a given cell type at the exact moment at which the 
analysis is performed. 

Although greater understanding is needed as 
of whether RBC ageing in vivo and in vitro (blood 
bank conditions) can actually be compared in order 
to translate results that have been obtained from 
application of "-omics" strategies to transfusion 
medicine issues28, we wanted to determine whether 
a correlation exists between the proteomic and 
metabolomic changes that have been observed in the 
frame of RBC ageing (in vitro)28 and the distribution 
of these alterations in age-differentiated subsets of 
erythrocytes. We, therefore, performed integrated flow 
cytometry and proteomic and metabolomic analyses of 
five distinct RBC subpopulations obtained by Percoll 
density gradient separation of freshly drawn leucocyte-
depleted erythrocyte concentrates. We observed a 
decrease in size and increase in cell rugosity in older 
(denser) populations, which was not accompanied by 
substantial proteomic changes. Metabolomic analysis 
of fraction 5 (the oldest population) showed decreased 
efficiency of anti-oxidant defence-related mechanisms, 
through reduced activation of the pentose phosphate 
pathway (PPP) and less accumulation of NADPH and 
reduced glutathione. 

This analysis showed that most RBC populations 
are rather homogeneous soon after withdrawal. As 
far as this preliminary study is concerned, there is, 
therefore, no evident necessity to perform studies 
to assess storage lesion on separated fractions, 
since a consistent percentage of all RBC belong to 
homogenous fractions as far as the proteome and 
metabolome are concerned.

Materials and methods
Blood sampling 

Whole blood (450 mL±10%) was collected from 
healthy volunteer donors into CPD anticoagulant 
(63 mL). After separation of the plasma and buffy 
coat by centrifugation, leucocyte-filtered RBC were 
suspended in 100 mL of SAGM solution. Samples 
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were collected from four RBC units withdrawn 
from four different donors (two males, two females, 
mean±SD age 48±11.5 years). 

Percoll gradient 
Density-fractionated RBC were prepared using 

Percoll (Sigma-Aldrich, St. Louis, MO, USA) 
discontinuous gradients, as previously described6,29. 
Briefly, the gradient was built up in five layers of 
2 mL containing 80% (1.096 g/mL), 71% (1.087 
g/mL), 67% (1.083 g/mL), 64% (1.080 g/mL) and 
40% (1.060g/mL) Percoll, buffered with buffer A 
(26.3 g/L bovine serum albumin, 132 mmol/L NaCl, 
4.6 mmol/L KCl, and 10 mmol/L HEPES pH 7.1). 
The RBC were then washed with buffer B (9 mmol/L 
Na2HPO4, 1.3 mmol/L NaH2PO4, 140 mmol/L NaCl, 
5.5 mmol/L glucose, and 0.8 g/L bovine serum 
albumin) and diluted with one volume of buffer A. Of 
this suspension 0.5 mL were layered on the Percoll 
gradient and separated by centrifugation at 3,000 rpm 
for 15 minutes at room temperature. Fractions were 
collected by careful pipetting and extensively rinsed 
with buffer B to remove residual Percoll.

Flow cytometry assay
The five different erythrocyte populations were 

washed twice in 5 mmol/L phosphate buffer, pH 
8.0, containing 0.9% (w/v) NaCl to remove Percoll 
and isolated by centrifuging twice at 1000 × g for 10 
minutes at 4 °C. Subsequently they were analysed by 
flow cytometry with a sample of whole erythrocytes as 
a control. The morphology of the cells was assessed by 
a FACScalibur (Becton-Dickinson, USA). Analyses 
were conducted using the Cellquest program on 
10,000 events acquired without gating. Events were 
analysed by side scatter and forward scatter.

Preparation of red blood cell membrane 
Human RBC membrane proteins were extracted 

using the conventional method described by Olivieri 
and colleagues30 with some modifications. The five 
RBC populations were washed twice in 5 mmol/L 
phosphate buffer, pH 8.0, containing 0.9% (w/v) 
NaCl to remove Percoll and isolated by centrifuging 
twice at 1,000 × g for 10 minutes at 4 °C. The RBC 
were lysed with 9 vol of cold 5 mmol/L phosphate 
buffer, pH 8.0, containing 1 mmol/L EDTA and 1 
mmol/L phenylmethanesulfonyl fluoride. Membranes 

were collected by centrifugation at 17,000 × g for 
20 minutes at 4 °C and further washed until free of 
haemoglobin. To remove non-specifically membrane-
bound cytosolic proteins, RBC membranes were 
further washed three times with 0.9% NaCl and 
collected by centrifugation at 17,000 × g for 20 
minutes at 4 °C. The protein content was estimated 
by the bicinchoninic acid method31. The resulting 
membrane protein extracts were used for the 
subsequent analytical steps.

Determination of the band 4.1a/4.1b ratio
Membrane proteins were electrophoresed on 

a sodium dodecyl (SDS) polyacrylamide gel as 
described elseswhere32. Using Coomassie blue 
staining, bands 4.1a and 4.1b were quantified 
with a GS-800 calibrated densitometer (Bio-Rad 
Laboratories, Hercules, CA, USA), and the 4.1a/4.1b 
ratio was calculated.

Two-dimensional isoelectric focusing sodium 
dodecylsulphate polyacrylamide gel electrophoresis

To remove lipids, proteins were precipitated from 
a desired volume (containing 400 µg of proteins) 
of each sample with cold (4 °C) acetone (80% v/v) 
over-night, then centrifuged at 18,000 g for 20 
minutes. The supernatant was removed and the pellet 
was air-dried and then dissolved in the focusing 
solution of 8 M urea, 2% (w/v) ASB-14, 0.5% (w/v) 
pH 3-10 carrier ampholyte (Bio-lyte; Bio-Rad) and 40 
mM Tris base with continuous stirring. Proteins were 
subsequently reduced (by 10 mM tributylphosphine 
for 1 hour) and alkylated (by 40 mM iodoacetamide 
for 1 hour). To prevent over-alkylation, an excess 
of iodoacetamide was eliminated by adding 10 
mM dithioerythritol. Isoelectric focusing (IEF) was 
performed usinga Biorad Multiphore II and Dry Strip 
Kit (Bio-Rad-Protean-IEF-Cell-System). Seventeen-
centimetre immobilised pH gradient (IPG) strips 
(Bio-Rad) pH 3-10 were rehydrated overnight with 
345 µL of rehydration solution containing 8 M urea, 
2% (w/v) ASB, 0.5% (w/v) pH 3-10 carrier ampholyte 
(Bio-lyte; Bio-Rad), 10 mM dithioerythritol 
and 100 µL of sample were loaded using the 
cup-loading method. The total product time × voltage 
applied was 80,000 V h for each strip at 20 °C. For 
the second dimension, IPG strips were incubated 
in the equilibration solution [6 M urea, 50 mM 
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Tris-HCl (pH 6.8), 30% (v/v) glycerol, 3% (w/v) 
SDS, 0.002% (w/v) bromophenol blue] for 30 minutes 
with gentle agitation. Equilibrated strips were then 
placed on SDS-polyacrylamide gels, 16×20 cm, 11% 
acrylamide, and sealed with 0.5% (w/v) agarose. 
SDS-polylacrylamide gel electrophoresis (PAGE) 
was performed using the Protean II xi Cell, large gel 
format (Bio-Rad) at a constant current (35 mA per gel) 
at 7 °C until the bromophenol blue tracking dye was 
approximately 2-3 mm from the bottom of the gel. 
Protein spots were stained with Coomassie brilliant 
blue G-250 stain33.

Image analysis
Twenty stained gels (1 technical replicate × 

4 biological replicates × 5 RBC fractions) were 
digitalised using an ImageScanner and LabScan 
software 3.01 (Bio-Rad). It was not possible to perform 
more than one replicate per fraction per individual, as 
cell recovery and membrane extraction steps reduced 
the biological material available for 2D-GE analyses. 
The 2D-GE image analysis was carried out and 
spots were detected and quantified using Progenesis 
SameSpots software v.2.0.2733.19819 (Nonlinear 
Dynamics, Newcastle, UK). Each gel was analysed for 
spot detection and background subtraction. Among-
fraction comparisons were performed by analysis of 
variance (ANOVA) in order to classify sets of proteins 
for which statistically significant differences with a 
confidence level of 0.05 were found. All statistical 
analyses were performed with the Progenesis 
SameSpots software v.2.0.2733.19819. After the 
background subtraction, spot detection and match, 
one standard gel was obtained for each group (RBC 
fractions) through normalisation of the biological 
replicates. These standard gels were then matched 
to yield information about the spots of differentially 
modulated proteins. Differentially modulated protein 
spots were considered significant at P values <0.05 and 
the change in the photodensity of protein spots among 
fractions had to be more than 2-fold. Given that it was 
impossible to perform technical replicates for each 
fraction because of the small amounts of membrane 
protein material, we performed Bonferroni's post-tests 
to exclude false positive results.

Metabolomics 
Samples containing 5×105 cells from each separated 

fraction were extracted using the protocol described 
by D'Alessandro et al.34. Briefly, for each sample, 0.5 
mL of the pooled erythrocyte stock were transferred 
into a microcentrifuge tube (Eppendorf® Germany). 
Erythrocyte samples were then centrifuged at 1,000 
g for 2 minutes at 4 °C. The centrifuged tubes were 
next placed on ice while the supernatants were 
carefully aspirated, paying attention not to remove any 
erythrocytes at the interface. The erythrocytes were 
resuspended in 0.15 mL of ice cold ultra-pure water 
(18 MΩ) to lyse cells, then the tubes were plunged 
into a water bath at 37 °C for 0.5 min. Samples were 
mixed with 0.6 mL of −20 °C methanol and then with 
0.45 mL chloroform. Subsequently, 0.15 mL of ice cold 
ultra-pure water were added to each tube and the tubes 
were transferred to a freezer and kept at −20°C for 2-8 
hours. An equivalent volume of acetonitrile was added 
to the tubes which were transferred to a refrigerator and 
stored at 4 °C for 20 minutes. Samples with precipitated 
proteins were then centrifuged at 10,000 × g for 10 
minutes at 4 °C. Finally, the samples were dried in a 
rotational vacuum concentrator (RVC 2-18 - Christ 
Gmbh; Osterode am Harz, Germany) and re-suspended 
in 200 µL of water, 5% formic acid and transferred to 
glass auto-sampler vials for liquid chromatography/
mass spectrometry (LC/MS) analysis.

Rapid resolution reversed-phase high performance 
liquid chromatography 

An Ultimate 3000 Rapid Resolution HPLC system 
(LC Packings, DIONEX, Sunnyvale, USA) was 
used to separate metabolites. The system featured 
a binary pump and vacuum degasser, well-plate 
autosampler with a six-port micro-switching valve 
and a thermostated column compartment. A Dionex 
Acclaim RSLC 120 C18 column 2.1×150 mm, 2.2 
µm was used to separate the extracted metabolites. 
Acetonitrile, formic acid and HPLC-grade water 
were purchased from Sigma Aldrich (Milan, Italy). 
The LC parameters were: injection volume, 20 µL; 
column temperature, 30 °C; and flow rate of 0.2 
mL/min. The LC solvent gradient and timetable were 
identical during the whole period of the analyses. A 
0-95% linear gradient of solvent A (0.1% formic acid 
in water) to B (0.1% formic acid in acetonitrile) was 
employed over 15 minutes followed by a solvent B 
hold of 2 minutes, returning to 100% A in 2 minutes 
and a 6-minute post-time solvent A hold.

Blood Transfus 2013; 11: 75-87  DOI 10.2450/2012.0164-11
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Electrospray ionisation mass spectrometry
Metabolites were directly eluted into a High 

Capacity ion Trap HCTplus (Bruker-Daltonik, 
Bremen, Germany). Mass spectra for metabolite-
extracted samples were acquired in positive and 
negative ion modes, as previously described34. The 
electrospray ionisation (ESI) capillary voltage was set 
at 3,000 V in (+) ion mode. The liquid nebuliser was 
set at 30 psig and the flow rate of the nitrogen drying 
gas was set at 9 L/min. The dry gas temperature was 
maintained at 300 °C. Internal reference ions were 
used to maintain mass accuracy continuously. Data 
were acquired at a rate of 5 spectra/sec with a stored 
mass range of m/z 50-1500. Data were collected 
using Bruker Esquire Control (v. 5.3 - build 11) 
data acquisition software. In the multiple reaction 
monitoring (MRM) analysis, the m/z of interest 
were isolated, fragmented and monitored (both the 
parental and fragment ions) throughout the whole 
RT range. HPLC on-line MS-eluted metabolites 
were validated by comparing transition fingerprints, 
upon fragmentation and matching against the 
standard metabolites through direct infusion with 
a syringe pump (infusion rate 4 µL/min). Standard 
curve calibrations were performed on precursor and 
fragment ion signals. Only the former were adopted 
for quantitation, as precursor ion signals guaranteed 
higher intensity and thus improved limit of detection 
(LOD) and quantitation of metabolites of interest34. 
However, transitions were monitored in independent 
runs to validate each detected metabolite.

Metabolite analysis and data elaboration
Quantitative analyses of standard compounds 

were performed on MRM data compared to standard 
metabolite runs. Each standard compound was 
weighed and dissolved in nanopure water (18 mΩ). 
Calibration curves were calculated as previously 
reported34. In brief, each standard metabolite was 
run in triplicate, at incremental dilutions until the 
LOD was reached. The LOD for each compound was 
calculated as the minimum amount injected which 
gave a detector signal response higher than three 
times the noise (S/N >3). 

Standards (≥98% chemical purity) D-fructose 
6-phosphate (F6P), D-glucose 6-phosphate (G6P), 
D-fructose 1,6 diphosphate (FDP), glyceraldehyde 
phosphate (G3P), 1,3 and 2,3 diphosphoglycerate 

(DPG), phosphoenolpyruvic acid (PEP), L-lactic 
acid (LA), NADPH, 6-phosphogluconic acid (6PG), 
ATP, NADH, glutathione (GSH), oxidized glutathione 
(GSSG), glutamine (GLTM) and glutamate (GLUT) 
were purchased from Sigma Aldrich (Milan, Italy).

Standards were stored at −25 °C, 4 °C or room 
temperature, following the manufacturer's instructions.

LC/MS data files were processed by Bruker 
DataAnalysis 4.0 (build 234) software. Results were 
plotted with GraphPad Prism 5.0 (GraphPad Software 
Inc.) as fold-change variations upon normalisation of 
the results obtained among the five fractions for each 
independent metabolite, as described by D'Alessandro 
et al.28 and Nishino et al.35.

Results and discussion
In vivo RBC ageing is an extensively investigated 

topic in biological research, as erythrocytes are 
widely available and substantially less complex 
than most other cellular biological matrices36. As 
thoroughly reviewed by Shinozuka36, researchers first 
addressed the main alterations affecting RBC as they 
age in blood vessels, including modified membrane 
sialiation, appearance of band-3 dimer neo-epitopes 
at the membrane and shape alterations (decreased 
size and surface/volume ratios). Biochemical 
studies have been performed over the last decades 
in order to shed light on the observed increases 
in mean corpuscular haemoglobin concentration 
and mean corpuscular haemoglobin in older cells, 
as well as slightly increased oxygen affinity and 
altered enzymatic activities36. However, most of the 
information collected up to now has been related to 
alterations to single parameters, while to the best of 
the authors' knowledge no untargeted "omics" study 
has been reported so far. 

In the present study, we performed flow cytometric, 
proteomic and metabolomic investigations on 
Percoll density gradient-fractionated RBC. Percoll 
density gradients allowed us to separate five distinct 
subpopulations (Figure 1) from the erythrocyte 
fraction, obtained by centrifugation and leucofiltration, 
of freshly drawn blood from healthy donor volunteers. 
It has already been reported that it is possible to obtain 
from four to nine distinct populations, depending on 
the density gradient ladder5,6,37,38. 

It is has long been known that denser populations 
correspond to older RBC6. The causes of the altered 
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hydrodynamic density of older RBC have been 
postulated to depend on membrane lipid scrambling 
resulting in shape alterations14,15 and/or altered 
haemoglobin/water ratios due to unbalanced loss 
of the latter during the life of erythrocytes39. The 
relation of fraction density to cell age was further 
confirmed by monitoring the band 4.1a/4.1b ratio via 
one-dimensional SDS-PAGE (1D-GE) (Figure 1). The 
ratio between the amounts of the band 4.1 and 4.1b 
proteins is known to increase proportionally to age40. 
This phenomenon has been reported to occur in several 
mammals and has been related to deamidation of Asn 
478 and 502 of the band 4.1b protein which results 
in altered electrophoretic mobility and thus different 
apparent molecular weight in SDS-PAGE runs41. 

Upon Percoll gradient separation, the distribution 
of RBC populations was strongly biased towards the 
youngest subpopulation (least dense, fraction 1 in 
Figure 1), which was significantly more abundant 
that the other subpopulations (cell recovery for this 
fraction was 63.29±14.31% of the total - Figure 1). 
Taken together, the three upper (least dense) bands 
accounted for >92% of the total RBC, while the 
denser/older populations represented a minority of the 
cells, especially as far as the densest/oldest and barely 

visible fraction 5 was concerned (approximately 2% 
of the total).

While it has been reported in the literature that 
Percoll separation might have some limitations 
and does not necessarily yield RBC which are also 
separated by size6, in the present study we confirmed 
through flow cytometry that there were differences 
in volumes (forward scattering - FS) and membrane 
rugosity (side scattering - SS) among the five different 
fractions (Figure 2). In particular, older cell fractions 
displayed higher rugosity (SS distributions moved 
upwards from fraction 1 to 5 - Figure 2) and lower 
cell volume (FS distributions moved leftwards to the 
vertical axis from fraction 1 to 5 - Figure 2), as we 
would have expected9-11,14,15. A decrease in cell size and 
increase in cell rugosity have, so far, been related to 
progressive dehydration39, alterations to the membrane 
shape deriving from membrane shedding through 
vesiculation17,18,22, membrane lipid scrambling4,14,15 and 
a subsequent increase in osmotic fragility as a result of 
the decreased surface/volume ratio16 that develops upon 
acquisition of a spheroechinocyte/spherocyte shape29,42.

The trends for FS to decrease and SS to increase 
(Figure 2) were particularly evident despite the 
limited number of events (10,000) recorded through 
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Figure 1 - Percoll density gradient of freshly drawn, leucocyte-filtered, RBC concentrates. 
Five distinct subpopulations are visible, which are numbered from top to bottom. 
The gradient was prepared by stacking layers of different densities, in agreement 
with Bosch et al.28: 1.096 g/mL, 1.087 g/mL, 1.083 g/mL, 1.080 g/mL and 1.060 
g/mL. Percentages of cell recovery are reported for each fractions as means+SD 
(total=100%). In the right panel, the graph reports densitometric analysis for the 
band 4.1a/4.1b ratio from the 1D-GE runs for each distinct subpopulation.
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flow cytometry. Indeed, this minor technical 
limitation, which did not hamper us from drawing 
conclusions in line with those in the literature, was 
mainly due to the poor recovery rate of cells from 
Percoll fractions. Since flow cytometry assays were 
planned only to confirm the quality of our separation, 
in agreement with published literature, we decided 
to limit the extent of this part of the experimental 

workflow while looking for a compromise which 
could guarantee the most meaningful information. 
On the other hand, the main goal of the present study 
was to exploit exactly the same samples in order 
to carry out multiple "omics" investigations, such 
as proteomics and metabolomics, the former being 
extremely demanding in terms of samples needed to 
perform the analyses.

Blood Transfus 2013; 11: 75-87  DOI 10.2450/2012.0164-11
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Figure 2 - Flow cytometry analysis representing forward scattering (FS) and side scattering (SS) on the 
x and y axis, respectively, for the total red blood cell population (upper left frame) and for 
each one of the five fractions, as labelled. Each subpopulation has been delimited into a shape 
enclosing >95% of the counted events, and then superimposed in the frame labelled Total 
(upper left corner). Fractions 2 to 5 showed greater SS in comparison to fraction 1. The core 
of events is counted with a homogeneous distribution for fraction 1 as far as FS is concerned. 
For the other fractions, FS events are mainly shifted leftwards from the main axis (dotted line).
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No proteome targeting study has been reported 
so far in the frame of RBC aging in vivo, except 
for 1D-GE-based investigations43-45, while recent 
literature has provided a consistent body of data on 
protein-targeting storage lesions in in vitro refrigerated 
models (i.e. (blood-bank conditions)28,46-48. The 
question is whether it is possible to approximate the 
120-day of life-span of RBC in vivo with the 42-day 
shelf-life in vitro, as discussed in recent years49.

In the present study, we did not observe any 
significant (P <0.05 ANOVA; fold-change variation 
> 2) differences among spots (number of spots and 
spot intensities) from 2D-GE electrophoresis of 
membrane proteins of RBC from the five fractions 
(Figure 3). However, the overall number of spots 
detected through Coomassie staining in the total 
population (136±16 spots) was always higher than 
in each subfraction (fraction 1=118±10; fraction 

Blood Transfus 2013; 11: 75-87  DOI 10.2450/2012.0164-11
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Figure 3 - Two-dimensional gel electrophoresis of freshly drawn RBC after separation into five 
distinct subpopulations through a Percoll density gradient. First dimension isoelectric 
focusing pI values linearly span between 3 and 10, while molecular weights are indicated 
on the left.
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2=109±26; fraction 3=116±12; fraction 4=111±14; 
fraction 5=125±14). Nevertheless, due to the poor 
technical reproducibility and the intrinsic limitations 
of the 2D-GE approach, we were not able to identify 
spots whose apparent amounts were modulated in a 
statistically significant fashion. While it was to be 
expected that only a few proteins (band 4.1a/4.1b; 
glycated haemoglobin) would vary significantly in 
the frame of RBC subpopulations, as emerged from 
previous 1D-GE approaches43-45, it appears technically 
difficult to unravel these finely tuned alterations in 
RBC proteins through 2D-GE approaches. One major 
technical limitation is the poor membrane protein 
recovery, which is also a function of cell fraction 
recovery, and hampers the possibility of performing 
further technical replicates, thus affecting statistical 
analyses and forcing us to run stringent post-test 
analyses in order to exclude false positive results. 
Since our inability to identify statistically significant 
results might be attributed to either biological or 
technical variability, affecting statistical outcomes, 
further studies are essential to determine whether 
differences are truly minimal or whether they are 
present but difficult to demonstrate. Taken together, 
these considerations further support the recent 
conclusion that 1D-GE still represents a reliable 
analytical approach despite the introduction of a 
large number of gel-based techniques over the last 
40 years50. 

On the other hand, RBC membrane alterations 
have been reported to be irreversible in long-term 
SAGM-stored erythrocytes under blood-bank 
conditions28. It is likely that these RBC membrane 
protein lesions also arise in older RBC populations 
in vivo, although at this very stage RBC might be 
promptly cleared from the bloodstream and, therefore, 
no longer be present, or be present in traces, in freshly 
drawn blood. In other terms, a closed system such as 
a stored RBC unit allows a model to be pushed to its 
limits, while in vivo ageing in healthy subjects results 
in a continuous turn-over hampering the observation 
of extreme phenotypes at the proteome level.

While RBC membrane proteome-targeting lesions 
are known to occur on average from day 21 onwards 
in vitro (blood bank conditions)28, RBC stored under 
refrigeration are known to suffer from early age-
related symptoms of reduced cell integrity which 
affect RBC metabolism28,35,51. 
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The rat ionale behind our simultaneous 
investigation of the RBC membrane proteome and 
metabolism stems from previous observations about 
a strong intertwining between glycolytic rate and the 
oxygen-dependent binding of glycolytic enzymes to 
the cytosolic domain of band 3, the most abundant 
integral membrane protein in RBC52,53. While we did 
not observe significant proteomic differences among 
subpopulations at the membrane level, a limited, 
albeit biologically meaningful, number of changes 
are known to occur in senescent erythrocytes45.

In the frame of in vivo ageing, RBC metabolism 
has been studied only by addressing enzyme 
activities, phosphate intermediates (ATP, 2,3-DPG) 
or creatine29,54-62. Unlike proteome-targeting studies, 
little - albeit relevant - information is available on RBC 
metabolic fluxes as cells age in in vivo conditions. It 
has been reported that the activities of the main rate-
limiting enzymes of glycolysis, including hexokinase, 
glucose 6-phosphate dehydrogenase and pyruvate 
kinase, decrease in Percoll density gradient-separated 
older RBC populations51,57. This is consistent with the 
increased alkalosis (in older RBC pH is higher by 0.2 
units on average) and decreased content of organic 
phosphate compounds, both of which positively 
influence haemoglobin affinity for oxygen and thus 
result in a theoretically reduced capacity of older 
RBC to oxygenate peripheral tissues59. With regards 
to ATP and 2,3-DPG, it has been reported that older 
cells contain approximately 76% to 79% of the 
amounts detected in younger populations29,60. In the 
present investigation, we were able to confirm the 
same trend for ATP, as the level detected in fraction 5 
corresponded to 78.1% of that in the normalised group  
(values for ATP and other metabolites are reported as 
means ± SD of fold-change variation against inter-
fraction normalised values for each tested individual 
- Figure 4). Interestingly, through direct assays of a 
handful of glycolytic metabolic intermediates such as 
G6P/F6P, FBP, G3P, PEP and LH, we found a general 
trend to a gradual decrease of the amounts of these 
metabolites in older cell subpopulations (especially 
in fractions 4 and 5) in comparison to fraction 1 
and to fractions 2 to 3 (Figure 4 - upper panel). The 
most significant of these alterations was in G6P/F6P, 
whose levels in fraction 5 were half those in fraction 
1, in agreement with reports of decreased hexokinase 
activity in older RBC populations54.
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The age-related decline in enzymatic activities 
has been shown to involve a series of enzymes 
including GSH-transferase,54 glucose 6-phosphate 
dehydrogenase  and  6 -phosphog lucona te 
dehydrogenase,55 which are related to anti-oxidant 
stress responses, through the activation of the 
PPP, production of reducing intermediates such as 
NADPH, regeneration of GSH levels from GSSG 
and reduction of oxidized anti-oxidant defence 
proteins, such as superoxide dismutases63. Only 
GSH levels have been assayed in younger and older 
RBC populations so far64, and have shown a trend to 
decrease in proportion to RBC age.

In the present study, we confirmed this trend 
(Figure 4 - lower panel), through a substantial decrease 
in GSH levels from fraction 1 to fraction 2 and from 
fraction 2 to the other fractions. Furthermore, we 
found a substantial increase in oxidized glutathione 
(GSSG) levels in fractions 4 and 5, in comparison to 
the first three fractions. As far as the PPP is concerned, 
fraction 1 displayed a significantly greater (P <0.01 
ANOVA) fold-change in G6P levels, while 6PG was 
rather homogeneous in all the tested populations 
(though still approximately 10% higher in fraction 1) 
(Figure 4 - central panel). NADPH is a reduced 
intermediate of the oxidative phase of the PPP which 
is required for reduction of GSSG to GSH and for 
restoring the activity of several anti-oxidant enzymes, 
including glutathione peroxidase. Our analyses 
showed a net decrease of NADPH from fraction 1 to 
fraction 2 and, consistently, in all the other fractions 
(Figure 4 - central panel). Finally, since GSH is a 
tripeptide of glutamate (GLUT), glycine and cysteine, 
reduced levels of GSH might be affected by the 
observed decrease in GLUT levels from fraction 1 to 
fraction 4 and 5, other than by the already mentioned 
enzyme changes55.

It is worth stressing that analogous results have 
been obtained from the analysis of in vitro ageing 
of RBC under blood bank conditions (refrigerated 
storage in CPD-SAGM-containing plastic bags at 
4 °C), in which early accumulating storage lesions 
affect metabolic fluxes of RBC through a decrease 
in glycolytic rates and an increase of the PPP from 
day 14 onwards, while reaching unsustainable levels 
of oxidation from day 28 onwards28. Furthermore, it 
is noteworthy that measurable alterations of normal 
metabolic fluxes occur prior to any evident alteration 
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Figure 4 - Time-course metabolomic analyses of leucocyte-
filtered RBC subpopulations after separation 
through a Percoll density gradient. Internal 
normalisation was performed against the average 
values for each metabolite among the five distinct 
subpopulations for all the tested individuals (results 
are plotted as means+SD). Abbreviations: F6P/
G6P=fructose/glucose 6-phosphate; FBP=fructose 
1,6 biphosphate; G3P=glyceraldehyde 
3-phosphate; PEP=phosphoenolpyruvate; 
LH=lactate; ATP=adenosine triphosphate; 
NADH=reduced nicotinamide adenine 
dinucleotide; NADPH=nicotinamide adenine 
dinucleotide phosphate; PG=6-phosphogluconate; 
GSH=reduced glutathione; GSSG=oxidized 
glutathione; GLTM=glutamine; GLUT=glutamate.

075-087_164-11.indd   84 18/12/2012   9.51.35



85

of the proteome machinery either in vitro28 or in vivo 
(present study).

Through the present metabolomic analyses we 
provide confirmatory evidence of the theory relating 
RBC ageing, both in vitro28 and in vivo (present study), 
to an exacerbation of oxidative stress and a decreased 
capacity of RBC to cope with this stress28,48,65,66. 
Anti-oxidant defences represent the central core of 
protein activities in RBC as proteins involved in these 
phenomena are direct or indirect interactors of the 
great majority of the residual proteome65.

Conclusion
In the present study, we integrated flow cytometry, 

proteomics and metabolomics to investigate the 
differences among RBC subpopulations from 
leucocyte-filtered erythrocyte concentrates obtained 
from freshly drawn blood by Percoll density gradient 
separation.

We confirmed the efficiency of the separation 
process through flow cytometry, which evidenced 
a decrease in cell size and increase in rugosity, 
probably due to the accumulation of membrane shape 
alterations, as previously reported6,9-11,14,15.

Proteomic analyses did not show any substantial 
differences among RBC fractions. The main, potential 
reasons for this are: (i) the probable clearance of those 
RBC with altered membrane protein profiles from the 
bloodstream, and/or (ii) the difference between the 
in vivo and in vitro (blood bank conditions) models 
of RBC ageing28, in which stresses to RBC tend to 
accumulate in the latter models because oxidative 
stress and reactive oxygen radical species are catalytic 
processes, thus allowing the investigations of extreme 
conditions.

We compared alterations of RBC metabolic 
fluxes in different fractions to the metabolic storage 
lesions which arise early during RBC storage under 
blood banking conditions28, concluding that oxidative 
stress seems to be the leading cause of the senescent 
phenotype of RBC also in vivo28,48,65,66.

On the other hand, the observations that the RBC 
fractions showing the greatest differences accounted 
for less than 8% of the total original RBC population 
prompted us to conclude that the great majority of 
RBC from freshly drawn blood undergoing treatment 
for blood banking in the transfusion setting can be 
considered as homogeneous. This consideration 

underpins the statement that, when planning studies to 
assess RBC storage lesions for transfusion purposes, 
it appears that fractionation of RBC into distinct 
populations is not essential, as more than 92% of 
the total population have homogeneous properties. 
Indeed, previous studies have already reported that 
only RBC from the oldest (gerocytes) and youngest 
(neocytes) subpopulations are differentially affected 
by storage conditions43,44. This prompts two main 
considerations: (i) alternative mechanisms (e.g. 
cationic dysregulation43) affect RBC survival in 
vitro and these are not necessarily the same as 
those occurring during in vivo ageing; (ii) changes 
affecting youngest RBC subpopulations are also the 
ones targeting a substantial percentage (from 65 to 
92 %) of the whole unfractionated RBC population, 
which makes it statistically likely that most of the 
observations so far reported on unfractionated RBC 
predominantly reflect molecular lesions to the most 
abundant fractions.

In the near future, besides delving into the storage 
issue in greater detail, it would be worth exploring the 
changes to these very same parameters (flow cytometry, 
proteomics, metabolomics on Percoll density gradient-
separated fractions) in scenarios in which RBC 
are partially compromised by genetic defects (e.g. 
glucose 6-phosphate dehydrogenase deficiency, beta 
thalassemia) or diseases (for example, malaria).
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