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Abstract Tumor cell migration is essential for invasion

and dissemination from primary solid tumors and for the

establishment of lethal secondary metastases at distant

organs. In vivo and in vitro models enabled identification

of different factors in the tumor microenvironment that

regulate tumor progression and metastasis. However, the

mechanisms by which tumor cells integrate these chemical

and mechanical signals from multiple sources to navigate

the complex microenvironment remain poorly understood.

In this review, we discuss the factors that influence tumor

cell migration with a focus on the migration of transformed

carcinoma cells. We provide an overview of the experi-

mental and computational methods that allow the

investigation of tumor cell migration, and we highlight the

benefits and shortcomings of the various assays. We

emphasize that the chemical and mechanical stimulus

paradigms are not independent and that crosstalk between

them motivates the development of new assays capable of

applying multiple, simultaneous stimuli and imaging the

cellular migratory response in real-time. These next-gen-

eration assays will more closely mimic the in vivo

microenvironment to provide new insights into tumor

progression, inform techniques to control tumor cell

migration, and render cancer more treatable.
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Abbreviations

CAF Cancer-associated fibroblast

ECM Extracellular matrix

EGF Epidermal growth factor

EMT Epithelial to mesenchymal transition

FAK Focal adhesion kinase

IF Interstitial flow

IFP Interstitial fluid pressure

LEGI Local excitation, global inhibition

LIMK1 LIM domain kinase 1

LOX Lysyl oxidase

MMP Matrix metalloproteinase

ROCK Rho-associated kinase

RPTK Receptor protein kinase

Introduction

The metastatic cascade is a complex, multistage process

involving modulation of cell phenotype, cell migration, and

dynamic homeotypic and heterotypic cell–cell interactions

[1]. There are various proposed models for carcinoma

progression and the formation of metastases (reviewed in

[2]), and tumors likely employ multiple mechanisms in

vivo. Metastatic carcinoma progression follows the general

pattern of primary tumor growth, tumor cell invasion,

intravasation, circulation, extravasation, and growth of the
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secondary tumor. However, the heterogeneous tumor

microenvironment [3], plasticity of invasion [4], and

hypoxia-induced genomic instability [5] are among many

factors that contribute to tumor heterogeneity, and there is

debate as to the source and onset of the metastatic phe-

notype [6, 7]. Most cancer-related deaths result from the

formation of metastases [8], which are difficult to detect

and can remain dormant for years after treatment of the

primary tumor [9, 10]. The formation of these metastases

by disseminated tumor cells is preceded by and requires

tumor cell invasion at the primary tumor site, a ubiquitous

step in early tumor progression that represents a viable

target for therapy [11].

Disseminating carcinoma cells navigate through the

tumor microenvironment, across the basement membrane

and into the surrounding stroma. Migration is a highly

orchestrated process in which cells are guided both by

internal and external signals. Mechanical signals, sensed by

integrins [12] and other adhesion receptors [13], and

chemical signals, sensed by chemokine and growth factor

receptors [14], influence the migration of tumor cells.

Hence, understanding the mechanisms that guide cell

migration in response to various stimuli in the tumor and

stromal microenvironments is key to developing therapies

that prevent tumor cell migration and render cancer more

treatable.

Because it is difficult to isolate the effects of an indi-

vidual stimulus on cell migration in vivo, in vitro models

have emerged as powerful tools for investigating tumor cell

migration. These reductionist in vitro assays isolate a

subset of stimuli that can be examined in detail to enhance

our overall understanding of the important chemical and

mechanical signals that guide tumor cell migration. A key

assumption in many reductionist experiments is that

chemical and mechanical stimuli act in parallel. However,

the migrating cell acts as a signal integrator, sensing

simultaneous stimuli, activating intracellular pathways, and

responding through organized processes that culminate in

the extension of protrusions and subsequent migration.

Furthermore, tumor cells invade stromal tissue through a

variety of mechanisms, and the process of migration is

dynamic and a function of tissue substrate [4]. As we look

to develop the next generation of assays for tumor cell

migration, it is important to consider the crosstalk between

Fig. 1 A host of biochemical

and biophysical factors

influence the migration of tumor

cells. Mechanical signals

include stiffness of the

extracellular matrix (ECM), the

pore size of the ECM, solid

stress, fiber alignment, and

fibroblast-generated matrix

tension and microtracks.

Fibroblasts are activated to

assume the cancer-associated

fibroblast (CAF) phenotype, and

these cells secrete altered matrix

components and generate

tension. Chemical signals

include autocrine gradients,

MMPs, oxygen tension, and

paracrine signals from the

vasculature, lymphatics, and

stromal cells (e.g.,

macrophages)
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chemical and mechanical stimuli, and the role it plays in

guiding the migration of tumor cells.

We start by summarizing the experimental and compu-

tational approaches that have been developed to study tumor

cell migration, and we highlight their benefits and short-

comings. We then discuss the results of these studies and

introduce the various stimuli that guide tumor cell migration.

We focus on single migrating tumor cells, and we broadly

divide the stimuli into mechanical and chemical cues. We

conclude by highlighting recent data demonstrating that

chemical and mechanical stimuli are not independent and the

crosstalk among them strongly influences cell migration. In

conjunction with computational models, assays that allow the

application of several, simultaneous stimuli will provide

insight into tumor cell migration in vivo and help in the

development of new methods to control and limit cell

migration, improving the efficacy of cancer therapy.

Experimental methods to study tumor cell migration

The tumor microenvironment is comprised of a dynamic

network of extracellular matrix (ECM) proteins [15] bathed

in interstitial fluid and a host of associated cells including

fibroblasts, bone marrow-derived cells, endothelial cells,

and infiltrating immune cells (reviewed in [16]). These

stromal cells remodel the ECM and provide mechanical

and chemical signals to the tumor cells. The many

components and the dynamic nature of the tumor micro-

environment (Fig. 1) contribute to its complexity, but

investigation of the effect of individual stimuli on migra-

tion requires an environment in which the mechanical and

chemical properties can be tuned precisely with reproduc-

ibility. The requirement for such control has led to the

development of in vitro assays that mimic aspects of the in

vivo tissue. In vitro studies are well suited for dissecting

the signaling pathways that govern cell migration in

response to a particular factor of interest, while in vivo

studies can be utilized to investigate the relevance of these

signaling pathways in the intrinsic tumor microenviron-

ment during different steps of the metastatic cascade.

Different experimental methods to assay tumor cell

migration in vitro are presented schematically in Fig. 2 and

summarized in Table 1 with their key advantages/limita-

tions, parameters that can be manipulated, and practical

information for implementation.

Fig. 2 Experimental methods for investigating factors that influence

tumor cell migration. In vitro tumor cell migration assays (reviewed in

Table 1). Micropipette assay [21]: a pipette is placed in the vicinity of

the cell and a chemoattractant solution is injected into the culture

medium establishing a growth-factor gradient. Boyden [17] (or Trans-

well) chamber : cells are seeded in suspension in the top chamber and

migrate through the porous filter (black rectangles) in response to a

chemokine gradient, which is established by the different culture

medium concentrations in the top and bottom chambers. Micropattern-

ing [29]: cells are seeded on patterns of different geometry, size and

surface coatings and their migration characteristics are monitored.

Durotaxis [40]: cells are seeded on a substrate of variable stiffness and

respond by changing traction forces, cell spread area, and migration

direction. Wound healing [26]: a ‘‘wound’’ is formed on a confluent

tumor monolayer, and the wound closure dynamics are monitored. 3D

ECM [39]: cells are seeded inside the 3D ECM and migrate depending

on the ECM architecture (stiffness, pore size, and ligand concentration);

ECM fibers are outlined with black curved lines. Microfluidics [28, 32,

147, 206]: cytokine gradients can be established in a 3D matrix by

flowing different chemokine concentration (Chigh - Clow) solutions in

the left and right microchannels; Interstitial flow can be established by

adjusting the hydrostatic pressure (Phigh - Plow) in the left and right

microchannels; streamlines are indicated with dark magenta lines.

Micropipette, Boyden chamber and microfluidics assays enable control

of biochemical gradients. Durotaxis, 3D ECM and microfluidics assays

enable control of biophysical forces (ECM stiffness and interstitial

flow). Wound healing and micropatterning assay enable control of

intercellular distances, whereas only micropatterning assays enable

control of substrate topography. Growth-factor gradients are indicated

by the purple triangles. ECM stiffness gradients are indicated by the

dark brown triangle. Blue arrows indicate direction of tumor cell

migration, and pressure gradients are indicated by the shades of green

Tumor cell migration 1337
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Traditional in vitro assays

Single cell migration in response to soluble biochemical

factors has been traditionally assayed using Boyden

chambers [17], or modifications of the original design (e.g.,

Zigmond [18] and Dunn [19] chambers). Boyden cham-

bers, also known as Transwell systems, incorporate a stiff,

porous membrane between two cell culture chambers.

Soluble factor gradients can be established across the

membrane, and the number of tumor cells that migrate

through the membrane, from one chamber to the other, is

used as a metric for migration (Fig. 2). To improve upon

the traditional Transwell assay design, a hydrogel, often

Matrigel or collagen type I, can be placed on top of the

membrane to study invasion through a 3D matrix [17]. An

alternative method to investigate cell migration in response

to localized chemokine gradients is the micropipette assay

[20, 21], where a micromanipulator-controlled micropi-

pette is used to dispense predefined chemokine solutions in

close proximity to cells on a 2D substrate. However, che-

mokine gradients generated by micropipette are transient

and difficult to quantify.

Collective cell migration can be assayed by using a cell

scraper [22] or a micropipette [23] to generate a ‘‘wound,’’

or an area without cells in a cellular monolayer. Cell

motility is assayed by monitoring the time required for the

wound area to be covered by the collectively migrating

cells. Alternatively, cell damage can be avoided by posi-

tioning a barrier to migration, allowing cells to migrate in

the area covered by the barrier upon its removal [24]. These

assays are known as ‘‘wound healing assays’’ and are typ-

ically limited to two-dimensional substrates with uniform

stimulation conditions, although stimulus gradients can be

created through modified assays involving microfabrication

Table 1 Comparison of in vitro experimental approaches to study tumor cell migration

Assay Key advantages/
disadvantages

Applications Important parameters
that can be controlled

Implementation guidelines References

Transwell system or
Boyden chamber

?High throughput

?Easy to use

-Live imaging

-Gradient control

-Cell population

Single and collective cell
migration

Co-culture of 2 cell types

Pore filter and protein coating
characteristics,

Chemoattractant to stimulate
chemotaxis

No special equipment
(commercially available, e.g.,
Corning, BD Biosciences)

[17]

Would healing ?High throughput

?Live imaging

-2D substrate

-Gradient control requires
modifications

Collective cell migration Wound area

Substrate coating

No special equipment
(commercially available, e.g.,
Essen BioScience)

[26]

Durotaxis assay ?Live imaging

-2D substrate

ECM control ECM coating

ECM stiffness

Polyacrylamide substrates (Bio-
Rad)

[40]

Micropipette ?Local stimulation

?Live imaging

-2D substrate

-Low throughput

-Temporal gradient decay

Chemotaxis

Axon guidance

Injection parameters

Substrate coating

Special equipment
(micromanipulator, e.g.,
Narishige)

[21]

3D ECM ?Cell-ECM signaling

-Confocal imaging

-Gradient control requires
modifications

EMT

Tumor spheroid

Proteolytic migration

ECM concentration (pore size,
stiffness, ligand density)

ECM layer thickness

Commercially available matrices
(e.g., BD Biosciences)

[39]

Micropatterned ?Cell–cell signaling

?Easy to use

?Live imaging

-Low cell numbers

-Gradient control requires
modifications

ECM topography

Cell–cell interactions

Pattern dimensions

Pattern coating

Microstencil, custom designs
require wafer master
(Stanford Microfluidic
Foundry) and nanoimprint
lithography (Scivax)

[29]

Microfluidic ?Fluid flow

?Gradients

?Cell–cell signaling

?Live imaging

-Complex to use

-Low cell number

-Biochemical assays

Microenvironment

Temporal control of input
signals

Flow-rate

Gradients

Custom designs require wafer
master (Stanford Microfluidic
Foundry)

Special equipment (syringe
pumps: e.g., Harvard
Apparatus; plasma cleaner:
e.g., Harrick Plasma)

Commercial microchannels
(Ibidi, Millipore)

[28, 32,
147, 206]
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[25]. An important advantage of these assays is the ability to

perform live cell imaging and conduct multiple parallel

assays, enabling high throughput data generation [26].

Microfluidic in vitro assays

The limitations of conventional assays to precisely control

microenvironmental stimuli have led to the development of

novel migration assays using microfabrication technology

and 3D ECM matrices. In particular, the ability to accu-

rately position fluid streams in microfluidic channels has

enabled the development of microfluidic wound-healing

assays [27], and multi-channel systems that allow the

seeding of multiple cell types in 2D or 3D [28]. Other

approaches utilize microcontact printing methods to create

patterned substrate-bound gradients [29]. These novel

assays enable the creation of user-defined microenviron-

ments, where the magnitude, direction, and temporal

characteristics of biochemical and biophysical stimuli can

be precisely controlled.

Recent advances in microfluidic technology have made

it possible to create novel assays that allow precise control

of the cellular microenvironment [30]. Microfluidic assays

can also be readily adapted for live cell imaging to reveal

tumor cell migration dynamics, in response to critical

factors in the tumor microenvironment, such as chemokine

gradients [31], interstitial flow [32], electrical fields [33],

and paracrine and juxtacrine interactions with other cell

types [34, 35]. Cell seeding in microfluidic platforms is

performed by loading cells suspended in fluid or hydrogel

solution, and cell motility is monitored after establishment

of chemokine gradient or flow conditions. Microfluidic

platforms enable the accurate control of these microenvi-

ronmental factors, allowing the establishment of well-

defined combinatorial conditions to dissect the interplay of

mechanical and chemical signals. Small sample volumes

and low cell numbers in microfluidic assays pose chal-

lenges for traditional biochemical assays, and often data

analysis in microfluidic migration assays is performed

using live cell imaging and immunofluorescence staining

for proteins of interest.

Macroscale models

Mesenchymal cells in their intrinsic environment interact

with a 3D ECM, characterized by physical parameters,

including pore size and stiffness [36], and chemical

parameters, including adhesion site density and bound

ligand concentration. The development of novel biomate-

rials has enabled the creation of 3D environments that

provide control of both the chemical and physical param-

eters of the ECM to study the effects of these factors on

cell migration [37]. Hydrogel matrices, such as collagen

type I, Matrigel and synthetic matrices have been used to

investigate how ECM physical properties (e.g., stiffness

[38] and tumor cell proteolytic activity [39]) influence

tumor cell invasion. In these assays, tumor cells are uni-

formly seeded inside a homogeneous 3D ECM and their

migration characteristics are monitored in real-time or after

a given time period [39]. These are termed ‘‘macroscale

migration assays’’ because of the inability to control bio-

chemical and biophysical factors at the single cell level

compared to microfluidic- or micropatterned-based assays.

Elegant methods have also been developed to investigate

the effects of stiffness gradients (durotaxis) on cell

migration [40].

Micropatterned models

Integration of microfabrication technology with ECM

patterning has enabled the creation of 1D, 2D, or 3D

micropatterned substrates to selectively define the topog-

raphy for culturing single or multiple cell types under well-

defined cell positioning [41]. Micropatterned substrates can

be fabricated using different techniques, such as micro-

stencil stamping [42] or optical patterning [43]. Cell

seeding in micropatterned assays is achieved in a similar

way as microfluidic platforms, where cells are positioned in

different areas of the device by pipetting cell suspensions.

Interestingly, advanced micropatterning methods have also

been developed that allow for active control of the sub-

strates and impose tunable constraints on cell migration

[44]. Doyle et al. [43] developed an assay to investigate

tumor cell migration along 1D paths, and Irimia et al. [45]

studied the effect of physical geometrical constraints on

tumor cell migration persistence. These technologies can

recreate a more physiologically relevant tumor microen-

vironment, including multiple cell types [46], mimicking

tumor cell migration along fibers in the tumor stroma and

invasion in 3D [47]. Although these micropatterned assays

offer scalability and the capability to culture large cell

numbers, they do not typically include fluid flow, and

hence the application of chemical gradients and localized

mechanical (e.g., fluid shear stress) stimuli to cell sub-

populations is generally not possible.

Tumor cell migration assays in vivo

Intravital imaging of live animals at sufficient resolution to

identify individual tumor cells has allowed monitoring

tumor cell migration in the native tumor microenvironment

in vivo [48, 49]. In these studies, human tumor cells are

transplanted into different model organisms such as mouse

[50], zebrafish [51], and chicken embryo [52], or alterna-

tively genetically engineered mouse tumor models

incorporating constitutively expressed fluorophores [53, 54]
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are employed. Intravital studies using multiphoton

microscopy enable deep imaging (*mm) into the tissue

and also allow for second harmonic imaging to visualize

ECM fibers [53]. Wyckoff et al. [55] have developed an in

vivo chemotaxis migration assay to be used in combination

with monitoring tumor cell motility, which allows for the

collection of the tumor cells as they migrate inside a

cytokine-filled needle.

Computational modeling of tumors

Computational methods have been developed to augment

experiments and gain deeper insight into tumor develop-

ment. Cancer progression has been modeled with a variety

of approaches (Fig. 3), ranging in length scale from

microscopic and discrete models that consider individual

cells, to macroscopic models that treat the tumor mass as a

continuum (reviewed in [56]). Such computational models

provide insight into biological processes and guide

experimental development. For example, Baxter and Jain

[57] demonstrated that interstitial flow velocity varies

significantly for constant interstitial fluid pressure when the

ratio of transvascular to interstitial resistance is varied.

Interstitial fluid pressure can be measured experimentally,

while flow velocity is more difficult to assay. However,

flow is a strong regulator of drug delivery, so these com-

putational models provide insight into the barriers to drug

delivery and inform more effective cancer treatment [58].

Although these models have provided valuable insight into

solid tumor progression, the treatment of a tumor as a

continuum does not allow explicit consideration of single

cell behavior or the effectors that regulate the behavior of

individual tumor cells.

To improve on continuum models, Jeon et al. [59]

developed a hybrid discrete-continuum model that imple-

mented a continuum sub-model for chemical transport

within the tumor and a discrete sub-model for individual

cell behavior such as cell adhesion strength (Fig. 3d).

Because the hybrid model explicitly considers cell–cell

Fig. 3 Computational methods provide insight into tumor progres-

sion. a Cell signaling models capture the dynamics of protein

activation and are useful in identifying key signaling molecules and

events, such as the role of EGF concentration on ERK-1/2

phosphorylation. Colored lines represent different concentrations of

EGF (red, blue, and green are 50, 0.5, and 0.125 ng/ml EGF,

respectively). Symbols in panel 3 represent experimental data,

demonstrating that the model well-captures the dynamics of EGF-

induced ERK-1/2 phosphorylation (SHC-P is phosphorylated SHC,

ERK-PP is phosphorylated ERK. Adapted with permission from

[64]). b The subcellular element model recapitulates cell-level

phenomena by discretizing the cell into a series of nodes and defining

mechanical potentials that govern the interaction of the nodes. The

panels demonstrate elongation of a cell under 1 nN of tensile force;

the filaments indicate interactions between nodes, which lie at the

intersection of the filaments (adapted with permission from [63]). c A

multi-scale agent-based model captures the dynamics of tumor

intravasation. The subset of models that contributed to the overall

multi-scale model was comprised of a simplified set of differential

equations for intracellular adhesion signaling, a modified Hertz model

for intercellular adhesion mechanics, and the Langevin equation for

multi-cellular interactions. The panels demonstrate a tumor cell (red)

approaching the endothelium (green), forming nascent N-cadherin

bonds (yellow), disrupting endothelial cell VE-cadherin bonds, and

traversing the endothelium (adapted with permission from [66]). d An

off-lattice hybrid discrete-continuum approach modeled the growth of

a whole tumor and invasion at the tumor periphery. The model was

comprised of a continuum model for nutrient transport, and a discrete

model for single cell behavior such as motility, adhesion, and

proliferation. The model demonstrated that single cell adhesion plays

a role in determining the fate and morphology of the tumor mass

(adapted with permission from [59])
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Table 2 Approximate values for parameters governing tumor cell migration

Parameter Value Notes References

Stiffness

Normal stromal ECM stiffness 200 Pa Unconfined compression with electromechanical

indenter

[12]

Mammary adenocarcinoma ECM

stiffness

4 9 103 Pa Explants of tumor tissue from MMTV-Her2/neu,

Myc, and Ras transgenic mice measured by

unconfined compression

[12]

Colon adenocarcinoma stiffness 4 9 103 Pa Explants of tumor tissue from L5147T mouse

xenografts measured by confined compression

[207]

Glioblastoma stiffness 26 9 103 Pa Explants of tumor tissue from U87 mouse xenografts

measured by confined compression

[207]

Reconstituted basement membrane

(Matrigel, stock concentration)

175 Pa Unconfined compression with electromechanical

indenter

[12]

Tissue culture plastic 109 Pa Elastic modulus [208]

Collagen gel elastic modulus 8 Pa 0.5 mg/ml collagen density, storage modulus

measured by parallel plate rheology

[108]

328 Pa 2 mg/ml measured with electromechanical indenter [12]

Collagen fiber extensional

modulus

9 9 109 Pa Force applied to fiber, strain measured by X-ray

crystallography

[109]

Cell stiffness 1 9 100 to 1 9 103 Pa Highly dependent on cell type, culture substrate

stiffness, and mechanical testing method. Lower

stiffnesses measured by particle tracking

microrheology for cells embedded within

collagen gel [96]. Higher stiffnesses measured by

AFM on metastatic cancer cells isolated from

pleural fluids [209]

[96, 209]

Length scales

Basement membrane pore size in

vivo

50–100 nm Measured by electron microscopy [210]

Tumor-associated matrix pore size 20–130 nm Measured by electron microscopy of human

melanoma implanted subcutaneously. Two

distinct regions of matrix were observed. Bundles

of aligned collagen fibrils with interfibrillar

distances of 20–42 nm and bundles of poorly

organized fibrils with interfibrillar distances of

75–130 nm

[211]

\150 nm Herpes simplex virus (HSV, *150 nm in diameter)

did not penetrate into collagen-rich areas of

human melanoma implanted into mouse skinfold

chambers. Treatment with collagenase increased

transport of HSV into the tumor

[212]

Collagen gel pore size 2 9 103 nm 4.0 mg/ml collagen gel polymerized at 37 �C [110]

11 9 103 nm 1.0 mg/ml collagen gel polymerized at 22 �C [110]

Tumor cell dimensions 3D 50 9 103 nm Major axis length of MDA-MB-231 in fibroblast

derived ECM, measured from image provided by

reference

[213]

Mesenchymal migrating cell

microtrack

10–15 9 103 nm Diameter of defect in ECM generated by

proteolytically active migration

[4]

Collagen fiber bundle diameter 2–10 9 103 nm Measured in vivo [214]

Collagen fibril diameter 35 nm Collagen type I gel polymerized at pH7 measured by

emission scanning electron microscope

[215]

75 nm Measured by electron micrograph from in vivo

tissue samples

[214]

Transport properties

Chemokine and growth factor

diffusivity

130–160 9 10-8 cm2/s CCL5, CCL17, CCL21 in dilute solution [117]

10 9 10-7 cm2/s EGF in dilute agarose gel [216]
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adhesion sites, the model produced realistic tumor mor-

phologies that could not be generated by previous

continuum models. Several studies have also implemented

a force-based, microscale approach to effectively model

the biphasic haptotactic and haptokinetic migratory

response for tumor cells in 3D matrices, and these models

have provided insight into the parameter space of adhesion

and ECM stiffness that governs 3D migration speed [60,

61]. Although these models establish a framework for

studying cell migration through 3D matrices, they are

limited by certain assumptions such as fixed values for

matrix density and cell adhesivity to the matrix. Further-

more, the model described by Zaman et al. lacked

consideration of soluble ligand fields and thus could not

account for chemotaxis. Anderson et al. [62] developed an

agent-based model that predicts clonal evolution of a tumor

as a function of the microenvironment properties. Such

agent-based models have the advantages of simulating

multiple interacting cells, but require the input of numerous

parameters or assumptions, not all of which can be pre-

cisely or independently determined.

Subcellular models provide insight into mechanical and

cellular processes that are difficult to measure experimen-

tally. The subcellular element model successfully captures

cell-level mechanical properties of cells by modeling the

cell as a subset of nodes whose interaction is governed by

mechanical potentials between the nodes (Fig. 3b) [63];

however, this model lacks chemical reaction kinetics and

Table 2 continued

Parameter Value Notes References

Oxygen diffusivity 5 9 10-5 cm2/s In cell culture medium [217]

Collagen gel permeability 10-13 m2 Measured in a 2 mg/ml collagen gel in a

microfluidic device with a modified PIV

technique

[32]

10-13 to 10-14 m2 2.5 mg/ml [171]

Colon adenocarcinoma

permeability

3.4 9 10-16 m2 Explants of tumor tissue from L5147T mouse

xenografts measured by confined compression

and assuming a poroelastic model for deformation

[207]

Glioblastoma permeability 4.8 9 10-16 m2 Explants of tumor tissue from U87 mouse xenografts

measured by confined compression and assuming

a poroelastic model for deformation

[207]

Interstitial flow speed 0.1–4.0 9 10-6 m/s Measured in vivo by FRAP [167, 168]

Computational model for IF in

solid tumors

\20 9 10-6 m/s The magnitude of IF speed depends on ratio of

transvascular to interstitial flow resistance. Larger

resistance to flow in the interstitium creates high

IF speed at the tumor periphery

[57, 166]

Forces

Myosin II motor force 1.4–3.5 pN Measured using an optical trap [218, 219]

Force generated by actin

polymerization

5 pN/filament Dependent on experimental method and platform [13]

a5b1/fibronectin bond strength 0.1–100 pN Dependent on loading rate and method. Lower

strengths measured with magnetic tweezers,

higher strengths measured with AFM

[13]

Cellular contractile force 5 9 103 pN Epithelial cell edge measured on fibronectin-coated

pillars

[220]

300 9 103 pN MDA-MB-231 total magnitude of contractile force

measured on compliant substrate

[221]

2 9 106 pN Fibroblast whole cell on collagen-coated compliant

substrate

[222]

Intratumoral IFP 4–38 mmHg Mean IFP measured for various tumors measured in

vivo. Brain tumors are characterized by the lowest

IFP with a mean of 4.6 mmHg, and renal cell

carcinomas are characterized by the highest IFP

with a mean of 38 mmHg. Individual mammary

carcinomas varied from 4.0 to 53.0 mmHg, with a

mean of 23.7 mmHg. IFP is a function of tumor

size and of position within the tumor

[166, 223]

Normal IFP 0–0.4 mmHg Control measurement within rat thigh muscle [223]
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cannot capture signal transduction. On the other hand,

chemical reaction models provide insight into signal

transduction and have long been used to predict the effect

of a drug on cell function (Fig. 3a) [64], but these models

lack the mechanical consideration to adequately capture

cell migration.

Cell migration is inherently a multi-scale process,

involving both mechanical and chemical signal integration,

and coarse-graining provides a technique for modeling

multi-scale phenomena. Contact guidance in migrating cell

populations has been effectively modeled by treating the

cells as a continuum, where the continuum properties are

derived from single cell migration models [65]. To further

improve this multi-scale approach, Ramis-Conde et al. [66]

developed a hybrid discrete-continuum model and explic-

itly considered cell signaling in the discretely modeled

cells (Fig. 3c). The signaling model allowed dynamic

modulation of cell–cell adhesion properties, which allowed

simulation of intravasation. However, by considering sig-

naling on a whole-cell level, the authors could not capture

localized signaling events or simulate the effects of sig-

naling gradients, which are critical in carcinogenesis and

metastasis formation. Parameter estimation and assumption

validation for computational models remains an issue for

maintaining the physiologic relevance of the models (a list

of parameters relevant to tumor cell migration is provided

in Table 2), but advanced experimental platforms such as

microfluidics provide resolution over parameters that are

difficult to estimate with traditional assays. For example,

Irimia et al. [67] recently coupled their computational

model for neutrophil chemotaxis to experiments performed

in a microfluidic device to aid in parameter estimation and

model verification. Although computational models have

offered insight into the complex and interactive mecha-

nisms that regulate tumor cell migration, there remains

room for new approaches that simultaneously encompass

both chemical and mechanical stimuli, and are capable of

bridging scales from molecular to cellular to tissue levels.

Mesenchymal migration

The experimental platforms and computational methods

discussed above have provided much insight into the

mechanisms by which tumor cells migrate in the sur-

rounding stroma. In epithelial tissues, cells are tightly

connected to their neighbors and form polarized cell sheets

with high levels of E-cadherin expression. During the

formation of metastatic lesions in carcinomas, epithelial

cells undergo genetic and epigenetic changes that induce a

phenotypic transition, in which cells lose E-cadherin

expression [68], reducing homophilic cell–cell connec-

tions, and express vimentin [69], N-cadherin [70], and

other fibroblastic markers (reviewed in [71]). This pheno-

typic switch is known as the epithelial to mesenchymal

transition (EMT), and results in cells of epithelial origin

acquiring a phenotype more amenable to migration and

invasion into the surrounding tissue. The migratory phe-

notype is varied and dynamic, with invading cells

migrating individually or collectively and modulating the

mechanism of migration with changes in the stromal

properties (review of migration mechanisms [4]).

Mesenchymal cell migration is an orchestrated process,

requiring ECM remodeling, extension of protrusions

through actin polymerization, formation of new adhesions,

molecular motor-mediated cell contraction, and the release

of adhesions at the trailing edge (reviewed in [72, 73]).

Migration through 3D matrices is termed invasion, and

tumor cell invasion is mediated by invadopodia, special-

ized Src-kinase-dependent protrusions that are selectively

observed in metastatic cells and extend into the ECM to

probe the proximal chemical and mechanical microenvi-

ronment [74]. In general, cell migration is a stochastic

process [75], and in the absence of an external gradient or

directional cue, cells migrate randomly [76]. However,

when presented with a directional cue, such as a chemokine

gradient, the internal signaling machinery becomes polar-

ized and cells migrate with directional bias [77]. Several

metrics are commonly used to quantify aspects of cell

migration beyond speed and direction. Detailed persistence

metrics such as root-mean-squared speed, directional per-

sistence time, and a random motility coefficient can be

determined by fitting experimental mean-squared dis-

placement data with a theoretical expression that models

cell migration as a biased random walk [78]. Directionality,

defined as the ratio of net migration distance to the total

distance traveled for a given period of time, is a commonly

used metric that is more straightforward to compute [79].

The stochasticity of cell migration and the fact that

direction and speed can be modulated independently

complicates the use of end-point migration assays. For

example, migration with high speed and low persistence

cannot be distinguished from low speed, highly persistent

migration. This issue is compounded in Transwell assays,

where only the number of cells reaching and crossing the

membrane is measured, and increased migration speed with

random direction could be confused with directionally

biased migration. Furthermore, there is often significant

cell–cell heterogeneity in cell migration characteristics,

and migration statistics are often averaged over a cell

population. These bulk, or population-averaged, metrics

can obscure aspects of the migratory response that may be

important for understanding the response of tumor cells to

various stimuli. These disadvantages can be overcome by

the use of live-cell imaging in microfluidic systems. For

example, Haessler et al. [80] used population histograms
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and scatter plots to identify subpopulations of cells that

respond uniquely to interstitial flow, with downstream

migrating cells moving with high directional persistence

and upstream migrating cells moving faster but with less

directional persistence, supporting the hypothesis that flow

imparts simultaneous and competing stimuli to tumor cells

[32].

Mechanical signals

ECM stiffness and density

Traditionally, extracellular stimuli to migration are divi-

ded into mechanical and chemical signals, and the ECM

imparts a variety of mechanical signals to migrating cells.

The relationship between the density and organization of

stromal tissue and tumor progression is bilateral and

dynamic, with tumor cell phenotype dictated by the

stromal properties and tumor cells modifying the chemical

and mechanical profile of the stroma [81]. In particular,

the density and stiffness of the stromal ECM has been

shown to influence the invasion of tumor cells. Mam-

mographically dense breast tissue has long been known to

be a risk factor for breast cancer [82], but recently it was

demonstrated that increased matrix density can promote

invasion of tumor cells even in the absence of stromal

cells [83]. Collagen crosslinking [84] and lysyl oxidase

(LOX) overexpression [85] contribute to increased ECM

stiffness in the tumor stroma [38], and stiffness of the

ECM is a critical regulator of mammary gland function

and morphology [86]. The surrounding stromal tissue in a

normal mammary gland is characterized by an elastic

modulus of *200 Pa, while the elastic modulus of

mammary tumor-associated stroma is *4 kPa (Table 2)

[12].

The stiffness and density of the substrate are sensed by

the cell through adhesion molecules, primarily integrins

[87], a class of tension-sensitive transmembrane molecules

that can initiate the formation of a continuous mechanical

link between the ECM fibers and cellular cytoskeleton [88].

Integrins are both substrate and tension dependent [89], and

activation and clustering of integrins initiates a mechano-

sensitive signaling cascade [90]. The mechanical strength

of cell–ECM adhesions is dependent on integrin engage-

ment [91]. Vinculin recruitment, a measure of matrix

adhesion maturation and an integrin signaling component,

is dependent both on externally applied force [92] and

internally generated myosin-mediated force [93]. Integrins

are overexpressed in cancer cells, and a drug that blocks

aVb3-integrins has been shown to increase apoptosis and

the efficacy of radiation treatment of mice with mammary

adenocarcinoma [94].

Advances in techniques to engineer substrate stiffness in

vitro have allowed investigation of the effect of ECM

stiffness on tumor cells. Similar to the mechanosensing by

fibroblasts and other cell types [95], prostate tumor cells

are sensitive to substrate stiffness, increasing their elastic

modulus with an increase in the substrate stiffness [96].

Interestingly, breast cancer cells that overexpress the

receptor tyrosine kinase ErbB2 are more sensitive to sub-

strate stiffness [97]. Furthermore, ECM stiffening

contributes to altered integrin and ERK signaling, resulting

in high Rho-dependent cellular contractile stress, disrupt-

ing the breast epithelial phenotype and promoting the

malignant phenotype [12].

Rho-mediated contractile stress and integrin signaling

are key regulators of cell migration [98], and integrin

signaling is altered in tumors (see review of integrins in

cancer in [99]). Recently, a technique involving cross-

linking collagen in vitro enabled Levental et al. [38] to

demonstrate that the increased stiffness of tumor-associ-

ated stroma increases levels of b1 integrin and FAKpY397

colocalization, and that these signals contribute to

increased breast tumor cell invasion through enhanced

PI3K signaling. The rigidity of the substrate alters in-

vadopodia function of breast cancer cells, with enhanced

matrix degradation and more functional invadopodia per

cell on stiffer substrates [100].

Cellular contractile stress generation is required for

rigidity sensing [13], and interfering with myosin motor

activity attenuates the effects of stiffness on migration.

Myosin light chain kinase inhibitor ML-7 impedes

invadopodia maturation and decreases FAKpY397 and

CaspY165 localization within breast carcinoma invadopodia

[100], and inhibition of myosin II or Rho-associated kinase

(ROCK) attenuates the ability of glioma cells to sense

substrate rigidity [101]. Stiffness sensing is also cell-type

specific, and the stiffness-dependent invasion of breast

cancer cells into 3D matrices is dictated by the specific

genetic profile of the metastatic cells. Single cell subpop-

ulations of MDA-MB-231 have been shown to demonstrate

tissue-specific metastatic lesions, tissue tropisms [102], and

these subpopulations have shown varying stiffness depen-

dence when invading 3D tissues. For example, breast

cancer cells that metastasize to bone do not show stiffness

dependent invasiveness; however, cells that metastasize to

the lung invade less with increasing stiffness [103].

Although most experiments to date investigate cell

migration as a function of stiffness on substrates or within

matrices of uniform stiffness, stiffness gradients can guide

cell migration on 2D substrates [40], and in 3D [104, 105].

Furthermore, patterning stiffness on substrates has been

shown to lead to self-aggregation of fibroblasts [106]. The

tumor microenvironment is heterogeneous, characterized

by abrupt changes in the mechanical properties of the tissue
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[107], and the role this mechanical heterogeneity plays in

guiding cell migration has yet to be determined. However,

improved resolution in measuring the mechanical proper-

ties of tumors in vivo, multi-scale models that address

substrate and cell mechanics, and improved techniques for

creating artificial ECMs with customized mechanical

properties will provide insight into the relationship

between stiffness gradients and cell migration.

MMPs and matrix synthesis

As mentioned above, stiffness and stiffness gradients have

been shown to influence cell migration on 2D substrates,

and recently there has been much interest in determining

the role of stiffness of 3D matrices on cell invasion. In 2D,

mechanical properties can be easily quantified using a

variety of rheometric techniques, and these bulk mechan-

ical properties agree well with microscale mechanical

properties measured with techniques such as atomic force

microscopy (see review of 2D vs. 3D for cancer cell

invasion in [36]). However, 3D matrices that mimic in vivo

ECM are fibrous and the material is structured on cellular

length scales, so assessing the mechanical properties rele-

vant to cell migration is challenging. For example, the

storage modulus of a 0.5 mg/ml collagen hydrogel is less

than 10 Pa [108], while the extensional modulus of a fiber

is on the order of GPa [109]. The coupling of matrix ligand

density, pore size, and matrix stiffness in 3D migration

assays employing collagen type I hydrogels further com-

plicates investigation of the role of mechanical properties

on 3D tumor cell invasion. For example, increasing

hydrogel matrix protein density increases stiffness but also

decreases pore size and increases ligand density. Tumor

cell invasion is regulated both by pore size and stiffness

[110], and crosslinking techniques provide orthogonal

control of matrix ligand density and stiffness, though pore

size and stiffness remain inversely coupled [108].

Cells in matrices with subcellular pore sizes implement

a combination of force and proteolytic matrix degradation

to overcome the structural barrier to migration imposed by

the matrix fibers. Transformed breast carcinoma and

fibrosarcoma cells apply force to collagen fibers to reor-

ganize and reorient local matrix, while MMPs focally

degrade matrix to reduce steric hindrance [111]. MMPs are

key regulators of carcinogenesis, and their function extends

beyond degrading matrix proteins [112]. As tumor cells

secrete MMPs to degrade the interstitial matrix, this pro-

vides microtracks of weakened and digested matrix

enabling migration of subsequent cells [113]. MMPs dif-

fuse from tumor or stromal cells into the surrounding

interstitium [112], and the expression, secretion, and action

of MMPs couples the tumor cell chemical and mechanical

microenvironment. For example, MT1-MMP expression is

required for carcinoma cells to digest matrix proteins and

invade into the 3D matrix [114], and MT1-MMP activity is

also required to activate surface-bound TGF-b in carci-

noma cells, which affects cell growth and matrix secretion

[115]. Furthermore, MMP cleavage of matrix materials can

release soluble cytokines that are bound to the ECM in

inactive, precursor form [116], and the transport environ-

ment within the tissue can induce gradients in these soluble

signals, providing directional cytokine cues to cells [117].

Intercellular mechanical signals

Fibroblasts are stromal cells that remodel the ECM through

secretion of type I, type II, and type V collagen and

fibronectin and contribute to basement membrane forma-

tion through secretion of collagen type IV and laminin (see

review of fibroblasts in ECM remodeling in [118]). In

tumors, stromal fibroblasts acquire an activated phenotype

similar to fibroblast activation in wound healing [119], with

80 % of stromal fibroblasts achieving the activated

phenotype in breast carcinomas [120]. Along with myofi-

broblasts [121], these cancer-associated fibroblasts (CAFs)

are characterized by increased deposition of matrix, known

as desmoplasia, which contributes to the increased stiffness

of tumor-associated ECM (see review of CAFs in [122]),

and CAFs demonstrate altered gene expression from nor-

mal stromal fibroblasts including upregulation of genes

governing ECM deposition [123]. CAFs dynamically

interact with tumor cells, sensing changes to the matrix

through integrin-dependent adhesions, and further regu-

lating the ECM by modulating matrix and MMP secretion.

The dynamic evolution of the tumor stroma is known as

stromagenesis (see review of stromagenesis in [124]), and

altered stroma is a key feature of carcinogenesis [125].

CAFs alter the mechanical landscape of the tumor

stroma and contribute to increased invasiveness of carci-

noma cells [126]. In addition to the desmoplasia-associated

matrix stiffening, fibroblasts generate high levels of con-

tractile stress and can thus apply tensile stresses to the

surrounding ECM. Fibroblasts seeded in 3D collagen gels

increase the mechanical stiffness and resistance to fracture

of tissue constructs [127], and TGFb-activated fibroblasts

seeded in 3D collagen gels can induce Rho-dependent

contraction of these constructs [128]. These CAF-mediated

alterations to the mechanical properties of the tumor stroma

promote the invasive phenotype, and fibroblasts can

directly promote the invasion of carcinoma cells. Migrating

fibroblasts locally degrade matrix and secrete fibronectin

and tenascin-C when seeded in collagen type-I and

Matrigel hybrid tissue constructs. The matrix degradation

is dependent on integrin engagement and Rho- and ROCK-

mediated regulation of myosin light chain activity, sug-

gesting that cellular tension generated by the fibroblasts is
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necessary to degrade the matrix. These microtracks, cre-

ated through matrix degradation, are sufficient to promote

carcinoma cell migration, even when Rho and ROCK are

blocked in the migrating tumor cells; however, the tumor

cell migration requires Cdc42 and MRCK to modulate

myosin light chain accumulation and activity [129]. The

effects of the microtracks on tumor cell migration suggest

fibroblast-mediated local mechanical and matrix architec-

tural stimuli guide tumor cell migration, and advances in

micropatterning technology and computational models for

investigating pericellular matrix organization [130] will

provide further insight into the mechanisms by which

fibroblasts influence migration of local tumor cells.

ECM topography

Bulk reorganization of the tumor ECM during cancer

progression promotes cell invasion, and mammary tumor

explants cultured ex vivo within collagen hydrogels reor-

ganize the peripheral collagen fibers [131]. In mouse

models, mammary tumor stroma is characterized by

structured, dense collagen type I. The collagen fibers are

strained around the tumor and oriented normally to the

tumor surface at the tumor margin. The aligned collagen

fibers correlate with local cell invasion, and both collective

and single cell invasion are observed along the radially

oriented collagen fibers [131], consistent with the obser-

vation that metastatic carcinoma cells migrate in the

direction of collagen fibers in vivo [132]. Questions

remain, however, regarding the mechanism by which the

ECM is altered in tumor development. For example, it

remains to be seen whether dense collagen regions promote

carcinogenesis and precede tumor growth, or whether

collagen alignment is induced by increased matrix con-

traction by the epithelial tumor cells and altered matrix

deposition by activated fibroblasts during tumor growth.

Furthermore, questions remain as to whether the radial

collagen fibers are formed by invading cells at the tumor

periphery or if the aligned fibers precede and promote cell

invasion.

Just as fibroblasts can reorganize the stromal matrix,

tumor cells can induce topographical stimuli that guide

migration. ROCK-mediated epithelial cell contractility can

locally deform the ECM, even in the absence of protease

activity and stromal fibroblasts [133], and, in vitro, Rho/

ROCK and myosin-dependent contractility of carcinoma

cells can lead to alignment of collagen fibers normal to the

tumor periphery [134]. Alignment of collagen fibers has

long been known to influence fibroblast migration through

increased migration velocity along the fibers and suppressed

migration normal to the fiber alignment direction, a mech-

anism known as contact guidance [135], and fibroblasts

migrate rapidly along micropatterned lines of matrix [43].

Interestingly, fiber alignment promotes carcinoma cell

invasion in the direction of the fibers even when Rho and

ROCK activity is blocked in the migrating cells, suggesting

that tension generated in the stroma could promote invasion

through collagen fiber alignment [134]. These results, in

conjunction with the data mentioned above from Gaggioli

et al. [129] on fibroblast-generated microtracks, suggest that

restriction of cell–ECM adhesions, either by fiber alignment

or cell confinement, provides a strong directional stimulus

for tumor cell migration.

Recently, advances in experimental techniques have

provided insight into the role of mechanical confinement

on cell migration. Irimia and Toner [45] developed a

microfluidic platform to confine cells in channels of vary-

ing cross-sectional area, and they found that, in channels

with cross-sectional dimensions comparable to a cell

diameter, tumor cells, including breast, lung, prostate, and

colorectal adenocarcinoma, migrated rapidly with high

directional persistence. These channels, however, were

rigid and nonporous. Recently, Ilina et al. [136] imple-

mented a two-photon laser ablation technique to generate

microtracks within collagen matrices and found that not

only do the microtracks guide the migration of breast

cancer cells even in the absence of MMP activity but the

cells use an MMP-independent pushing mechanism to

expand the track diameter during migration. One limitation

of these studies is that the channels were synthesized from

uniform hydrogels, whereas in vivo fibroblasts create mi-

crotracks and secrete matrix proteins, producing spatial

heterogeneity in the chemical and mechanical signals

within the tissue. Advances in micropatterning techniques

could provide insight into how the altered chemical,

mechanical, and steric properties of the microtrack influ-

ence cell migration in vivo.

Solid stress

Growth of a tumor within a confined tissue compresses the

surrounding matrix and generates compressive stresses,

which, in combination with elevated interstitial fluid

pressure [137], contributes to high levels of solid stress

within the tumor [138]. To investigate the role of the

compressive stresses on tumor progression, Helmlinger

et al. [139] developed a technique for growing tumor

spheroids within agarose gels and demonstrated that solid

stress generated by the growing spheroid limited tumor

growth. Computational models accurately captured the

experimentally observed growth curves and verified that

increasing agarose density further limits growth by

increasing the radial and circumferential stresses generated

by growing spheroids [140]. Subsequent work has dem-

onstrated that compressive stresses limit the growth of

tumor spheroids by increasing apoptosis while decreasing
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proliferation, with the spatial regions of highest compres-

sive stress corresponding to the highest rates of apoptosis

[141]. High compressive stress within tumors, which can

collapse intratumoral blood vessels [142], can also influ-

ence the invasive properties of cells within the tumor by

creating hypoxia and high interstitial pressure. Compres-

sive stress increased the motility, measured by the rate of

migration in a wound-healing assay, of transformed and

partially transformed breast carcinoma cells, while it sup-

pressed the migration of non-malignant breast epithelial

cells. The increased level of invasion was dependent on the

development of leader cells [143], characterized by high

directional persistence and directionality in their migration,

and myosin light chain kinase inhibitor ML-7 blocked the

migration of leader cells, suggesting a role for intracellular

tension in the migration response to compressive stress

[144].

Chemical signals

Chemotaxis

Traditionally, chemical migratory stimuli, mediated pri-

marily by soluble chemical signals, have been considered

independently of mechanical stimuli. Gradients in soluble

molecules can guide the migration of tumor and stromal

cells and modulate cancer progression [145]. Tumor cells

and stromal cells sense the local concentration of chemo-

kines and growth factors through surface receptors, and a

recent review highlights the key factors and pathways

involved in chemotaxis in cancer progression [14]. Che-

mokine receptors are often upregulated in cancer cells in

vivo [146], and both tumor cells and stromal cells migrate

in response to chemokine gradients. Chemokines can be

secreted autologously, released from the matrix, or secreted

by stromal cells, and cells respond to the magnitude of the

transcellular chemokine gradient as well as the mean

chemokine concentration [147].

Despite the growing body of work on the molecular

mechanisms behind directional sensing and migration in

cancer cells, little is known about the chemo-mechanical

dynamics of chemotaxis in 3D environments. Furthermore,

tumor cells secrete chemokines, and autocrine chemokine

gradients can guide cell migration in the absence of an

externally applied chemokine gradient [148]. Tumor cells

in vivo are likely exposed to multiple, competing chemo-

tactic stimuli, and it is unknown how tumor cells respond

to simultaneous growth factor gradients. As discussed

below, there is crosstalk and cooperation between growth

factor receptors and integrins, and the mechanical envi-

ronment must be considered when evaluating tumor cell

chemotaxis. The advent of new, microfluidic platforms for

investigating chemotaxis [149] will help to elucidate the

mechanisms by which cells integrate mechanical and

chemical signals in vivo.

Heterotypic tumor-stromal cell paracrine signaling

Chemical signal gradients that regulate tumor cell che-

motaxis can be established through secretion of soluble

chemokines by non-cancerous stromal cells and diffusion

through the ECM in the tumor microenvironment. This

cell–cell communication through paracrine factors is crit-

ical during tumor progression and invasion [150], and

involves a variety of different cell types in the tumor

microenvironment, such as fibroblasts, immune cells, and

endothelial cells [151]. Recent progress in characterization

of these cells showed that stromal cells isolated from

mammary tumors have altered gene expression patterns

[152] compared to their normal counterparts. These stromal

cells have been characterized as ‘‘cancer-associated stro-

mal cells,’’ such as cancer-associated fibroblasts [122] and

tumor-associated macrophages [153]. The study of these

interactions in vivo is difficult because of the challenges

with precisely dissecting the underlying molecular path-

ways. Traditionally, Transwell assays have been employed

to study the migration or invasion of tumor cells in

response to unidirectional conditioned medium or

bi-directional signaling with stromal cells, while in recent

years a large number of investigators have also developed

new microsystems-based assays [28, 35, 46, 154]. Stromal–

tumor cell interactions may also include juxtacrine sig-

naling involving direct physical contact [150] and through

secretion and binding of ECM molecules. Our focus here is

on how tumor cell migration is regulated through stromal

cell-secreted factors; however, an important direction for

further investigation is the mechanisms by which tumor

cells modulate stromal cell phenotypes and how these

changes can subsequently result in feedback loops further

promoting tumor cell invasion.

Tumor-macrophage and tumor-fibroblast interactions

In vivo studies utilizing a microneedle chemotaxis invasion

assay and multiphoton imaging showed that carcinoma cells

and macrophages interact via a paracrine loop involving

colony stimulator factor 1 (CSF-1) secreted by the tumor

cells to signal EGF secretion by the macrophages leading to

tumor cell chemotaxis. Involvement of this paracrine loop

in promoting tumor cell invasion has also been demon-

strated in vitro through studies of macrophage––tumor cell

signaling [155]. De Wever et al. [156] demonstrated that

myofibroblasts isolated from cancer stroma, or TGF-b
transformed fibroblasts induce proinvasive activity in colon

cancer cells through production of the extracellular matrix
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glycoprotein tenascin-C and secretion of scatter factor/

hepatocyte growth factor (HGF). In their study, however,

they did not address the question of whether physical con-

tact between the two cell types was required to establish the

proinvasive effects on cancer cells. A microfluidic model

incorporating 3D co-culture of carcinoma cells and fibro-

blasts was utilized to demonstrate that cancer cell invasion

was upregulated by cancer-associated fibroblasts compared

to their normal counterparts [157]. Sung et al. [154]

developed a microfluidic 3D compartmentalized system of

co-cultured epithelial cells and fibroblasts to study the

transition from a localized carcinoma into an invasive car-

cinoma. By modulating the intercellular distance between

the two cell types, the authors demonstrated that morphol-

ogy of the mammary clusters changes with direct contact

between the two cell types, leading to a more invasive

phenotype with long protrusions.

Tumor-endothelial cell interactions

Using a Transwell-based co-culture model of human glio-

blastoma and microvascular endothelial cells, Kenig et al.

[17] demonstrated that endothelial cells increased the

invasiveness of cancer cells. Enhanced tumor cell invasion

was driven by endothelial cell SDF-1 expression resulting

in increased expression of MMP-9 by the tumor cells. Kaji

et al. [46] used a micropatterned system to co-culture HeLa

and HUVEC cells, which included fluid flow control to

direct transport of soluble factors from the tumor to the

endothelial cells or vice versa. Interestingly, tumor-condi-

tioned medium resulted in retraction of the endothelial

monolayer, while endothelial-conditioned medium did not

influence the migration of HeLa cells. Recently, Franses

et al. [158] investigated the role of endothelial cells in

tumor cell proliferation and invasion, and the authors

showed that dysfunctional endothelial cells, which

expressed lower levels of perlecan, secreted higher levels

of interleukin-6 (IL-6), resulting in increased invasion of

human breast and lung carcinoma cell lines. Apart from

blood vessel endothelial cells, lymphatic endothelial cells

have also been implicated in cancer metastasis. Using a co-

culture Transwell assay, Issa et al. [159] demonstrated that

lymphatic endothelial cells promoted melanoma cell pro-

teolytic activity and motility via a paracrine loop involving

tumor cell-secreted VEGF-C and lymphatic endothelial

cell-secreted CCL21.

Interactions of tumor cells with multiple stromal cell

types

Although most studies have investigated the interaction

between tumor cells and a single stromal cell type, recent

experiments employed three different cell types to more

closely mimic the tumor microenvironment. Interestingly,

different stromal cell types may also communicate directly

via paracrine signals and secrete factors that inhibit or

promote tumor cell migration factors. Hsu et al. [34]

employed a microfluidic model with three chambers to

demonstrate that macrophage-conditioned medium reduced

the ability of myofibroblasts to promote lung adenocarci-

noma cell migration. Walter-Yohrling et al. [160] showed

that tumor cells of different origin, including breast,

ovarian, prostate, and lung carcinoma, have positive or

negative effects on the induction of endothelial/myofibro-

blast invasion in a tri-culture organotypic assay. Clearly,

multiple cell type interactions are implicated in tumor cell

invasion, and further studies are needed that incorporate a

greater variety of tissue-specific cells to better mimic the in

vivo microenvironment.

Chemo-mechanical crosstalk

Interstitial flow

Interstitial fluid provides a transport medium for nutrients

and signaling molecules [161, 162]. Jain and Baxter [163]

identified that elevated interstitial fluid pressure (IFP)

within the tumor interstitium inhibits drug delivery to

tumor tissue, and subsequent work established a mathe-

matical framework for determining the critical parameters

that govern transport of soluble species from the vascula-

ture into neoplastic tissue [57]. High blood vessel

permeability, elevated oncotic pressure [164], and abnor-

mal lymphatic vessels contribute to high IFP within the

tumor, and high intratumoral pressure has been correlated

with poor prognosis in vivo [165]. IFP within tumors can

be nearly as high as the microvascular pressure (up to

30 mmHg; [137]), while IFP in normal tissue is close to

zero [166], and this difference in pressure between normal

and neoplastic tissue leads to high IFP pressure gradients at

the tumor margin. IFP gradients drive convection of

interstitial fluid, and Chary and Jain [167] determined

typical interstitial flow (IF) speeds to be on the order of

0.1–2.0 lm/s. The magnitude of IF velocity depends on the

magnitude of the IFP gradient and the hydraulic conduc-

tivity of the tumor (Table 2), and subsequent work has

indicated that the velocity can reach up to 4.0 lm/s [168].

Computational models demonstrate that IF velocity is a

function of the ratio of interstitial to vascular flow resis-

tance [57], and when the resistance to IF transport is much

greater than resistance to vascular transport, IF velocity at

the tumor periphery can reach as high as 10.0 lm/s [166].

The convection of soluble signals by interstitial flow

provides a host of migration signals to invading tumor cells

by transporting both autocrine and paracrine chemokines
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(see review of IF and effects on tumor cell invasion in

[169]). In recent work by Shields et al. [170], IF was found

to increase the metastatic potential of breast cancer and

melanoma tumor cells through binding of self-secreted

chemoattractant via the CCR7 receptor. This autocrine

signaling, termed ‘‘autologous chemotaxis,’’ arises when IF

transports secreted ligand downstream, and the balance

between convection and diffusion establishes a Peclet

number-dependent pericellular gradient, which provides a

chemotactic signal in the downstream direction [117]. IF

also influences fibroblast function, promoting matrix reor-

ganization, differentiation into myofibroblast phenotype

[171], and fibroblast migration [172], and these mecha-

nisms prime the stromal environment through MMP

secretion and Rho-dependent matrix contraction to pro-

mote tumor cell invasion [173].

Computational models have helped elucidate the effects

of IF on the mechanical microenvironment, and the simu-

lations demonstrate that IF applies stress to matrix fibers,

which can be sensed by the cell through matrix adhesions

[174], and IF imparts shear stress on the cell membrane, the

magnitude of which is determined by the arrangement of

matrix fibers [175]. Recent work demonstrates that, when

the CCR7 receptors are blocked, breast cancer cells

migrate in the upstream direction, and the data suggest that

the upstream stimulus is mechanically mediated. This flow

mechanotaxis arises primarily from pressure gradients

across the cell, resulting in a net force on the cell in the

flow direction, which is balanced by a net force on matrix

adhesions in the upstream direction (Fig. 4) [32]. Origi-

nally, flow mechanotaxis was thought to be mediated by

tension in integrins, supported by the increase FAKpY397 in

cells exposed to flow, but recently a potential role for the

glycocalyx has been identified in the cellular response to

interstitial flow. Interstitial flow increases the migration of

vascular smooth muscle cells through increased MMP13

expression, mediated by heparan sulfate proteoglycans

[176]. Although this work was performed with vascular

smooth muscle cells, syndecan expression in breast cancer

has been demonstrated [177], though it remains to be seen

whether proteoglycans play a role in the tumor cell

response to interstitial flow.

Although the details of the mechanism guiding cells to

migrate upstream have yet to be verified, recent evidence

supports the hypothesis that IF imparts competing stimuli

on migrating breast cancer cells [80]. The flow-induced

expression of MMPs in fibroblasts [172] further compli-

cates investigation of IF as a migration cue as the MMPs

degrade the matrix, altering the flow field and pressure

distribution around the cell. In glioma cells, fluid stress

activates MMP1 [178], and secreted soluble MMPs could

be convected downstream, degrading the matrix on the

Fig. 4 Chemical factors influence the cellular response to mechanical

factors and vice versa. MMP and matrix secretion modulates the

stiffness and pore size of the surrounding matrix, while growth factor

receptor (GFR) activation influences integrin expression and activation.

MMP-mediated matrix degradation releases chemical signals, while

integrin activation and clustering can alter GFR expression and

activation. GFRs and integrins can form macromolecular complexes,

and elements of the intracellular signaling pathway are shared.

Interstitial flow induces mechanical signals through fluid shear and

pressure stresses, while simultaneously inducing chemical signals

through convection of autocrine and paracrine signaling factors (HSPGs

are heparan sulfate proteoglycans and PLCc is phospholipase C-gamma)
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downstream side of the cell, further activating adhesion

molecules on the upstream side, though that remains to be

demonstrated.

Focal adhesion kinase and Src kinase as mediators

for crosstalk

IF applies chemical and mechanical stimuli to cells, but the

signals are further coupled intracellularly through shared

signaling pathways from chemical and mechanical recep-

tors (Fig. 4). Focal adhesion kinase (FAK) is an important

regulator of tumor progression, with elevated FAK

expression found in invasive human cancers [179], and

FAK has been identified as a potential target for cancer

therapeutics [180]. Autophosphorylation of FAK at Y397

requires the cell to be bound to a rigid substrate, while

clustering of integrins can induce phosphorylation at other

sites in FAK [181], and autophosphorylation at Y397

increases linearly with stiffness of the substrate [91].

FAKpY397 increases the affinity of FAK for the Src

homology 2 domain of many proteins, including Src kinase

[182], which can further phosphorylate FAK at other ty-

rosines, resulting in full activation of FAK enzymatic

activity [183].

FAK further regulates downstream signals crucial to cell

migration, and FAKpY397 is required for cell motility [184,

185]; however, the role of FAK in 2D cell migration and

3D invasion seems to be different. Expression of v-Src

restores 2D migration defects in FAK-/- fibroblasts, but

FAK expression and the formation of a FAK-Src signaling

complex was required for 3D cell invasion [186]. The

discrepancy between 2D and 3D is presumably due to the

fact that the FAK-Src-p130cas signaling construct leads to

activation of MMP-2 and MMP-9 and matrix degradation

for invasion [187]. Src further contributes to mechano-

transduction through selective modulation of integrin-

dependent traction forces [188].

FAK and Src are also key regulators of chemokine-

induced migration. FAK can be transphosphorylated by

activated EGFR, and FAK function is required for EGF-

stimulated chemotaxis and motility [184]. Src can also

be directly phosphorylated by EGFR [187], and as FAK

is recruited to sites of integrin clustering and is required

for growth factor-stimulated motility, Src is likely

involved in the cooperativity or crosstalk between growth

factor and integrin signaling [184]. The intracellular

coupling of chemical and mechanical stimuli through

FAK/Src complicates cell migration assays because

testing for phosphorylation of FAK, Src, or downstream

components does not distinguish between chemical and

mechanical activation. Thus, assays that allow indepen-

dent modulation of chemical and mechanical stimuli, or

assays for further upstream signals, such as vinculin, are

required to test the mechanism of activation within the

cell.

Growth factor and integrin crosstalk

Integrins regulate the activity and downstream signaling of

receptor protein tyrosine kinases (RPTKs) such as EGFR,

coupling adhesion and growth factor signaling [189].

Matrix adhesion induces the formation of integrin-EGFR

macromolecular signaling complexes [190], and integrin

clustering can induce phosphorylation and activation of

EGFR and downstream signals (see review of integrin and

growth factor cooperation in [191]). The association of

integrins and growth factor receptors introduces crosstalk

between adhesion and growth factor pathways, and this

crosstalk necessitates consideration of the ECM when

investigating chemokines and vice versa (Fig. 4). For

example, when breast cells are cultured in 3D, blocking of

b1 integrin or EGFR reduces expression of both receptors,

restoring malignant breast cancer cells to the normal epi-

thelial phenotype, an effect not seen when the cells are

cultured on 2D substrates [192]. Integrins can also act to

amplify growth factor signals influencing chemokine-

induced invasion. In carcinoma cells, a6b4 integrin asso-

ciates with and is phosphorylated by the HGF-specific

receptor tyrosine kinase c-Met, and functional a6b4 integrin

is required for HGF-dependent invasion [193]. The cross-

talk between integrins and growth factor receptors results

in coupling between the chemical and mechanical micro-

environments, and recently it has been shown that

stiffening of the ECM can increase the sensitivity of epi-

thelial cells to EGF [194].

This relationship between integrins and growth factor

receptors is bi-directional, and growth factor activation can

influence integrin function. In prostate carcinoma cells,

binding of the chemokine CXCL12 to its receptor CXCR4

increases adhesion to the ECM through a5 and b3 integrin

activation [195]. Recent work has demonstrated that a5b1

integrin binds to and activates c-Met, which initiates Src/

FAK signaling and promotes migration in ovarian cancer

cells. Blocking a5b1 integrin or c-Met decreases Src/FAK

activation and cell invasion in vitro and inhibits metastasis

formation in vivo; however, activation of c-Met by soluble

HGF can restore the ovarian cancer invasive potential even

when a5b1 integrin is blocked. Importantly, the integrin-

mediated activation of c-Met was substrate-specific, and

c-Met phosphorylation by integrin was not observed on

collagen substrates [196].

Integrin and cadherin crosstalk

ECM adhesion–growth factor crosstalk is further compli-

cated by crosstalk between cell-–ECM and cell–cell
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adhesion molecules. A variety of mechanisms contribute to

matrix and intercellular adhesion crosstalk (see review of

adhesion crosstalk in [197]), including feedback in which

integrin activation alters cadherin expression and vice

versa. The Src/FAK signaling complex is at the heart of

this crosstalk [198], and c-Src suppression in breast cancer

cells results in E-cadherin upregulation, reversion of the

mesenchymal phenotype to an epithelial phenotype, and

reduced cell migration [199]. Using a dual-micropipette

technique, Martinez-Rico and colleagues [200] demon-

strated that the force required to separate cell doublets

attached by E-cadherin-mediated adhesion was dependent

on specific integrin engagement, and that cells, including

carcinoma cells, attached to fibronectin-coated beads

required a larger force to separate cell doublets than cells

attached to vitronectin- or polylysine-coated beads. Pat-

terning of ECM ligands further allows the regulation of

cell–cell junction morphology and force distribution [201].

Recently, Borghi et al. [202] implemented a reductionist

micropatterning technique to investigate crosstalk of cad-

herin- and integrin-mediated adhesions in governing

epithelial cell motility. The micropatterning technique

allowed cells to simultaneously adhere to collagen IV and

the extracellular domain of E-cadherin. Micropatterning

directed traction force and migration parallel to the major

axis of areas printed with collagen IV. Notably, the presence

of E-cadherin stripes decreased lamellipodia activity but did

not affect migration rate. Depletion of aE-catenin within the

epithelial cells increased lamellipodia activity, migration

rate, and decreased migration coordination among epithelial

cell sheets. These results suggest E-cadherin engagement

influences the direction of migration but not migration rate,

consistent with the results of Abercrombie and Heaysman

[203], who originally postulated contact inhibition in fibro-

blasts. Interestingly, contact inhibition is lost in tumor cells

[204], and recently it has been shown that matrix stiffening

results in the loss of contact inhibition and acquisition of a

malignant phenotype [194].

Conclusions and future directions

In this review, we provide an overview of recent experi-

mental studies that investigate the effects of different

factors present in the tumor microenvironment on tumor

cell migration. These experimental approaches have pro-

vided great insight into the factors that guide cell migration

in vivo, but the experimental platforms often trade preci-

sion for physiologic relevance. Computational models have

been developed to supplement experimental data, but cell

migration is inherently a multi-scale process, and models

developed thus far lack the capability of simulating cancer

progression and cell migration at various length scales.

Mechanical stimuli such as ECM topography, ECM stiff-

ness, pore size, solid stress, and matrix contraction, and

chemical stimuli from autocrine and paracrine sources,

influence the direction and speed of cell migration. These

various signals signal simultaneously to the tumor cells,

and tumor cell migration is an integrated response to

multiple signals. Despite significant progress in unraveling

the underlying molecular mechanisms and signaling path-

ways for transducing individual stimuli, the crosstalk

between these different factors in the tumor microenvi-

ronment at the extracellular and intracellular levels remains

largely unknown.

Integrating computational and experimental approaches

will allow for a more detailed understanding of these

mechanisms and their interplay, and this strategy has pro-

ven to be successful regarding the treatment of pancreatic

ductal adenocarcinoma. Computational modeling has

demonstrated that IFP acts as a barrier for drug delivery to

tumors [57], and these models suggest that altering vascular

and interstitial permeability could increase the efficacy of

anti-tumor therapy [166]. In vitro experiments, coupled

with in vivo data, have further demonstrated that IFP and IF

alter the migration properties of migrating tumor cells and

suggest that IF might increase the formation of metastases

[32, 170]. Recently, Provenzano et al. [205] demonstrated

that, by enzymatically degrading matrix elements in the

tumor stroma, IFP is significantly reduced within the tumor

allowing increased transport of small molecule therapeutic

drug, which resulted in increased mouse survival and

decreased formation of metastases. Furthermore, a growing

body of work, motivated in part by computational models,

suggests that targeting the tumor microenvironment in

combination with anti-angiogenic therapy, increases drug

transport and improves cancer therapy [58].

To this end, development of the next generation func-

tional migration assays that enable integration of

spatiotemporal control of mechanical and chemical signals

with high-resolution, real-time imaging, and the ability to

conduct biochemical assays, is crucial. The investigation of

tumor cell migration at the single cell level will allow

investigation of the diverse migration strategies employed

by individual tumor cells inside the complex and hetero-

geneous tumor microenvironment. Progress in this

direction will help to develop more accurate diagnostic

techniques to quantify and predict cell migration in

patients, thus informing methods for constraining tumor

cell dissemination and halting metastasis formation.
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