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Abstract
Quantitative genetic models of sexual selection have generally failed to provide a direct
connection to speciation and to explore the consequences of finite population size. The connection
to speciation has been indirect because the models have treated only the evolution of male and
female traits and have stopped short of modeling the evolution of sexual isolation. In this article
we extend Lande’s (1981) model of sexual selection to quantify predictions about the evolution of
sexual isolation and speciation. Our results, based on computer simulations, support and extend
Lande’s claim that drift along a line of equilibria can rapidly lead to sexual isolation and
speciation. Furthermore, we show that rapid speciation can occur by drift in populations of
appreciable size (Ne ≥ 1000). These results are in sharp contrast to the opinion of many
researchers and textbook writers who have argued that drift does not play an important role in
speciation. We argue that drift may be a powerful amplifier of speciation under a wide variety of
modeling assumptions, even when selection acts directly on female mating preferences.
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Although quantitative genetic models of sexual selection have illuminated many
evolutionary phenomena, they have generally failed to make explicit predictions about
speciation. The list of illuminated phenomena includes runaway dynamics (Lande 1981), the
“sexy son” hypothesis (Kirkpatrick 1985; Pomiankowski et al. 1991), good genes (Schluter
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and Price 1993; Kirkpatrick 1996; Iwasa and Pomiankowski 1999), and sexual conflict
(Gavrilets 2000; Gavrilets et al. 2001, Gavrilets and Hayashi 2005). The fact that rapid
evolution of sexual signals occurs under some conditions in most models in this family
implies a strong connection to speciation. Furthermore, the existence of equilibrium lines or
cycles in some models carries the implication that pairs of replicate populations could
speciate as a consequence of equilibrium differences in sexual signals (Mead and Arnold
2004). Despite the apparent clarity of these implications about speciation, the models in
question stop short of actually modeling the approach to speciation. In particular, most
quantitative genetic models have provided only speculations about the extent of speciation
because they have failed to make explicit the connection to sexual isolation.

The reason for the disconnect between quantitative genetic models of sexual selection and
speciation is that the models have primarily considered evolution within single populations,
and they have failed to specify the relationship between trait evolution and sexual isolation
among populations. To successfully make the needed connection, a model must sample pairs
of evolving populations and assess their sexual isolation. The primary, novel aim of this
article is to make explicit statements about the evolution of sexual isolation by combining a
model for evolution by sexual selection (Lande 1981) with a model for sexual isolation
(Arnold et al. 1996). As a result, we can quantitatively describe the conditions that can lead
to speciation by sexual isolation in terms of estimable parameters of selection, inheritance,
and population size.

Translating the output of models of sexual selection into the currency of speciation (the
extent of reproductive isolation) is important for three reasons. First, by explicitly modeling
the time course of evolving sexual isolation, we will show that drift can help promote
speciation in only a thousand generations. Furthermore, histories in which periods of
increasing isolation alternate with periods of decreasing isolation are common in our
simulations. This pattern, in which isolation waxes and wanes, has far-reaching implications
but is seldom discussed in the speciation literature. Second, the needed translation connects
the literature on sexual selection models (Mead & Arnold 2004) with an extensive empirical
literature on sexual isolation. By modeling the evolution of sexual isolation—and not just
divergence in sexually selected traits—we can compare our theoretical results with patterns
of sexual isolation observed in major empirical surveys (Tilley et al. 1990; Coyne and Orr
1997). In particular, we show that under realistic values of inheritance, selection, and
population size, drift could have played an important role in producing the patterns of sexual
isolation (and hence speciation) that have been observed in radiations of plethodontid
salamanders and Drosophila. Third, the approach we outline promises a solution to the long-
standing, notorious problem of constructing discriminating tests among the many alternative
models of sexual selection (Bradbury and Andersson 1987). By establishing a new model-
data connection, we should be able to test sexual selection models using the predictions they
make about patterns of sexual isolation, a possibility that we will explore in a later article.

A surprising limitation of most quantitative genetic models of sexual selection is that they
fail to explore the evolutionary stochasticity that arises from finite population size. By
assuming infinite population size, most models make predictions about the expected
evolutionary behavior of the average population, while ignoring variation about that
expectation. This limitation characterizes virtually all of the 30 models of sexual selection
reviewed by Mead and Arnold (2004). The problem is that by ignoring such stochastic
variation we may miss the essential message of the model. For example, although the
deterministic equilibrium for a model may be a point in phenotypic trait space, stochasticity
(i.e., genetic drift) may produce a considerable cloud of variable outcomes about that point.
A focus on the cloud is important because, as we will show, stochasticity can amplify the
opportunity for sexual isolation and speciation. Consequently, our secondary aim is to
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explore the implications of finite population size for the evolution of sexual isolation and
speciation. Lande (1981) provided a foundation for this exploration in the form of equations
for the variance expected among evolving replicate populations in sexual signals and
preferences. Nevertheless, Lande (1981) did not explore the stochastic evolution of sexual
isolation. We use computer simulations to assess the validity of some of Lande’s
approximations, as well as to make detailed portrayals of the stochastic evolution of sexual
isolation. Although we focus our combined analytical and simulation approach on a single
evolutionary model (Lande 1981), we argue that this approach could be profitably applied to
any of the 30 quantitative genetic models of sexual selection that have been constructed so
far (Mead and Arnold 2004).

Theoretical Background
We used a model developed by Lande (1981) to simulate the evolution of behavioral
isolation by sexual selection in finite populations. According to this model, evolution of a
male ornamental trait is driven by natural and sexual selection. Female mating preferences
for that male trait evolve as a correlated response. The male ornament, z, and female
preference, y, are normally distributed, sex-limited quantitative traits with phenotypic means
z̄ and ȳ and variances σ2 and τ2. Likewise, the additive genetic (breeding) values of the two
traits are normally distributed. The additive genetic variances of both the male ornament (G)
and female preference (H) are assumed to be in mutation–selection balance and to remain
approximately constant (Lande 1976). Additive genetic covariance between the male
ornament and female preference (B) is created by linkage disequilibrium that arises from
mate choice and sexual selection and is likewise assumed to remain approximately constant
in mutation–selection balance (Lande 1980, 1981). Males do not protect or provision mates.
Every female is inseminated each generation, and hence there is no fecundity selection on
female preference nor is there any direct viability selection on preference. The male
ornament experiences weak natural (viability) selection, described by a Gaussian curve with
an intermediate optimum θ and width ω. Following viability selection, the male trait
distribution experiences sexual selection arising from female mate choice. The sexual
preference of each female is described by a Gaussian curve with an intermediate optimum y
and width ν. In other words, a female’s preference is absolute in the sense that she most
prefers to mate with a male with ornament value y, and her tendency to mate falls off as the
ornament of a prospective mate deviates in either direction from that value. The overall
selection gradient on the male trait (β) is therefore generated by natural selection towards an
optimal male phenotype and sexual selection generated by Gaussian mating preference
functions

where S is the total shift in the male trait mean caused by selection within a generation (the
overall selection differential) and α = ν2/ω2. Because there is no direct selection on the
female preference trait y, it evolves by genetic drift and as a correlated response to selection
on the male trait. At equilibrium the forces of natural and sexual selection balance (β = 0)
yielding a line of equilibrium given by the equation

The per generation deterministic change in the means of the male ornament and the female
preference is given by the equations
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(1a)

(1b)

Away from the line of equilibrium, populations evolve in response to selection along lines
with a slope given by the genetic regression B/G. Populations evolving in response to
selection either walk-towards a line of stable equilibrium (when B/G < α + 1) or runaway
from a line of unstable equilibrium (when B/G > α+ 1). In this article we explore the stable
(walk-towards) case, the most likely outcome in many natural systems (Mead and Arnold
2004). Selection ceases once a population reaches the stable line of equilibrium, but the
population may drift along the line and will be driven back to the line by selection if it drifts
away from the line.

Lande (1981) also characterized the process of population differentiation by drift along the
line of equilibrium. Let the population mean phenotype be a column vector, (z̄ ȳ)T, where T
denotes transpose. Each generation sampling in a finite population of effective size Ne will
produce variance among a set of replicate populations in this vector that is given by the
variance–covariance matrix

(2)

At any generation t, the probability distribution of mean phenotypes is bivariate Gaussian.
Using a diffusion approximation, Lande (1981) found that the variance–covariance matrix
for this distribution at generation t converges to approximately

(3)

where  is the additive genetic correlation between the male ornament and female
mating preference. The diagonal elements in this matrix are the among-replicate variances in
trait means (male ornament and female preference). The off-diagonal element is the among-
replicate covariance between male and female trait means. Note that the correlation in the
matrix on the right-hand side of equation (3) is 1, so the evolutionary dynamics are
equivalent to univariate evolution along the line of equilibrium. Consequently, one issue that
we can resolve with simulation is the question of how much additional variance might be
contributed by drift away from, and response to selection back towards, the line of
equilibrium. As we will see, the contribution is negligible. In the next section we extend the
Lande (1981) model so that it makes explicit predictions about sexual isolation.

A pair of replicate populations, A and B, can diverge in average phenotype and hence
become sexually isolated as their mean male and female trait values are shuffled towards
and along a line of equilibrium by selection and drift. In any given generation, sexual
isolation can be assessed by calculating the average probability of mating within and
between populations A and B given the means and variances for male ornaments and female
preferences in the two populations. Formulas are derived in Arnold et al. (1996) under
Lande’s (1981) assumptions for the case of absolute mating preferences. In extending

Uyeda et al. Page 4

Evolution. Author manuscript; available in PMC 2013 January 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lande’s (1981) model to make predictions about sexual isolation, we assume that either just
two traits, z and y, account for sexual isolation, or that z and y represent linear combinations
of many male and female traits that jointly account for sexual isolation. Under the second
interpretation, we assume that the coefficients of the linear combinations do not evolve.

The probability that a randomly chosen female will mate with a male of phenotype z, ψ (z),
is a key female variable in this formulation. Averaging this probability over the phenotypic
distribution of males yields the average probability of mating, π, given an encounter
between a male randomly chosen from one population and a female randomly chosen from
the same or a different population. This conditional probability, π, coincides with the
probability of mating that is commonly assessed in studies of sexual isolation (e.g.,
Malogolowkin-Cohen et al. 1965), thereby providing a direct connection between sexual
selection models and empirical data on sexual isolation. This overall probability of mating,
π, reaches a maximum value when the mean of the male trait, z̄, coincides with mean value
of mates most preferred by females, ȳ, and falls off as a Gaussian curve as the male mean
deviates in either direction from the female mean. More exactly, the average probability of
mating when the female is drawn from population i and the male from population j is

(4)

where 0 ≤ cij ≤ 1 is the distance between the mean of the most preferred mate of females in
population i and the mean of the male trait in population j, dij = ȳi − z̄j, and Σ2 = τ2 + υ2 +
σ2. Thus, this expression can be used to calculate the average probabilities of mating in
encounters within and between populations. The constant cij can be thought of as the
probability of mating between partners when the male and female means coincide. For
simplicity, we assume that cij = 1 for all combinations of population encounters. Note that
the probability given in equation (4) is the overall probability of mating given an encounter
between potential partners drawn randomly from populations i and j, and not necessarily the
frequency of matings within and between populations over a generation.

Total sexual (joint) isolation between populations A and B can be calculated as

(5)

JI is a conventional measure of sexual isolation that effectively ranges from zero (when all
within and between population encounters are equally successful) to two (when all within
population encounters are successful but all between populations encounters are not)
(Bateman 1949; Merrell 1950; Malogolowkin-Cohen et al. 1965). Because JI does not
involve ratios of variables, it has smaller standard errors than some other measures of
isolation. A more complete illustration of the dynamics of Lande’s (1981) model and its
relationship to JI in our simulation model is available at the website http://oregonstate.edu/
%uyedaj/sexualselection.html.

We can also obtain an expression for the expected value of JI under Lande’s (1981)
assumptions. Because the difference between z̄ and ȳ within populations is expected to be
negligible compared to the corresponding difference between populations, we can make the
simplifying assumption that dAA = dBB = 0. This simplification yields πAA = πBB = 1 and
πAB = πBA. Thus, the key probability affecting the distribution of JI is the distribution of
interpopulation mating probabilities (πAB and πBA). The distributions of these probabilities
are identical and simply a function of the distribution of male phenotype among replicate
populations at generation t, which can in turn be obtained using Lande’s dispersion matrix
equation (3). Using the distribution function method, we can derive the probability density
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function (PDF) of πAB at generation t (Appendix), so that the probability that πAB takes the
value x at generation t is

(6)

where Dz(t) is the variance of z̄ among replicate populations at generation t as approximated
by the first element of Lande’s dispersion matrix D(t) (eq. 3). Although this density function
in equation (6) is not well characterized, it can be evaluated numerically. Assuming that the
within population mating probabilities are close to 1, the expected value of JI at generation t
is 2(1 − E[πAB(t)]), where E[πAB(t)] is the expected value of πAB at generation t, which is
obtained from equation (6).

Methods
THE SIMULATION MODEL

We simulated the evolution of trait means in 10,000 independent replicate population pairs
for 1000–10,000 generations for each of 324 parameter combinations in a fully factorial
design. Each replicate consisted of a pair of populations that started at the same point on the
line of equilibrium, the natural selection optimum for the male trait (z̄ = ȳ = θ). For
convenience and without loss of generality, we scaled z so θ = 0. Note that this scaling
convention does not imply that there is an absence of the male ornament at the optimum, θ.
Each generation, we calculated the total deterministic response to selection in each
population using equation (1). Following selection, the per generation change due to drift
was sampled from a bivariate normal distribution with zero means and a variance–
covariance matrix given by equation (2) and added to the selection response. After 1,000
and 10,000 generations, we calculated JI for each population pair to generate a distribution
of 10,000 replicate values of JI. The mean and variance of JI and the proportion (Pi) of JI
values greater than 1.6 (see below) were obtained from this distribution. All simulations and
analyses were performed in R (R Development Core Team 2007).

Wherever possible we made benign and/or biologically realistic choices of parameter values.
We standardized the phenotypic variances of the two traits before selection, so that σ2 = τ2

= 1. We simulated all combinations of cases in which natural selection was relatively weak
(ω2 = 25, 50, and 100) and sexual selection was relatively strong (ν2 = 5, 10, and 20), so
that α = ν2/ω2 ranged from 0.05 to 0.8. The values of ω2 that we used correspond to the
weak end of a distribution of values for stabilizing selection estimated in natural populations
(Kingsolver et al. 2001; Estes and Arnold 2007). Stinchcombe et al. (2008) have pointed out
a common error in the estimation of coefficients of stabilizing/disruptive selection (γ). The
range of ω2 values that we used corresponds to a γ range of −0.04 to −0.01, assuming no
directional selection (β = 0), which is well within the span of true values of γ reported by
Stinchcombe et al. (2008) and, indeed, at the commonly observed, weak end of the
stabilizing selection distribution. (See Estes and Arnold (2007) for the formula we used to
convert between γ and ω2.) Measurements of female preference functions are rarer than
estimates of stabilizing selection, but nevertheless, studies of acoustic insects and
amphibians (Gerhardt and Huber 2002) suggest that when preference functions are
unimodal, curvature is weak compared with the distribution of male trait values (i.e., ν2 >
σ2). We varied G and H so that the genetic correlation between ornament and preference

was in the moderate-to-high range . Parameter values in this range
are consistent with selection experiments in which a substantial correlated response in
female preferences was detected after just a few generations of selection on male ornaments
(Bakker 1993; Houde 1994; Wilkinson and Reillo 1994; Hollocher et al. 1997; Blows 1999;
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Gray and Cade 2000;Wagner et al. 2001). Finally, we used moderate to relatively large
effective sizes (Ne = 500, 1000, 5000) to be consistent with empirical estimates (Estes and
Arnold 2007) and to satisfy the assumption that genetic variances and covariances would be
maintained by mutation–selection balance (Lande 1976, 1981).

In evaluating our results, we used a value of JI > 1.6 as a criterion for substantial sexual
isolation. In a survey of sexual isolation in Drosophila, Coyne and Orr (1997) used one
minus the ratio of the frequencies of heterospecific to homospecific matings as a measure of
sexual isolation and found that in a strong majority of sympatric species the value of this
index was 0.8 or higher. Assuming that πAA = πBB = 1, a value of 0.8 for their index
corresponds to JI = 1.6. Likewise, in a survey of sexual isolation among 31 allopatric pairs
of populations of salamanders in the Desmognathus ochrophaeus complex, JI ranged from
0.20±0.16 to 1.50 ± 0.12 (Arnold et al. 1996), again suggesting that JI = 1.6 is an
appropriate criterion for substantial isolation.

In addition to the full simulation model, we used Lande’s diffusion approximation (Lande
1981, eq. 3) and the PDF of πAB, equation (6), to generate distributions of JI for the same
set of parameter combinations. These distributions were compared to the full simulation
model to verify the accuracy of the simplifying assumptions used to derive equations (3) and
(6). Methods are described in more detail in Supporting Appendix S1.

Results
SIMULATED EVOLUTION OF SEXUAL ISOLATION

Simulations of the evolution of a male trait and female preference based on Lande’s (1981)
model show that drift promotes rapid divergence in sexually selected traits. The model
predicts a line of neutral equilibrium for the population means of the male trait, z̄, and
female preference, ȳ, along which the forces of natural and sexual selection on the male trait
exactly balance (Fig. 1). This equilibrium line is either stable or unstable, depending on
parameters of genetic variance in the two traits and the strength of natural and sexual
selection (Lande 1981). Here we consider only biologically realistic parameter values for
which the line of equilibrium is stable; that is, populations that drift away from the line
evolve back towards it. Independent populations evolve along the line by genetic drift, so
that two populations may diverge from each other along the line of equilibrium. As the male
trait distribution in one population diverges from the female preference in the other
population, the probability of mating between populations decreases. We estimate the degree
of sexual isolation between two populations by the joint isolation index (JI). Figure 1
illustrates an instance of modest isolation (Fig. 1A, JI = 0.89) and an instance of profound
isolation (Fig. 1B, JI = 1.95). The time course for evolution of isolation in a sample run can
be viewed at http://oregonstate.edu/~uyedaj/sexualselection.html.

Because drift along the line of equilibrium is a random walk process, the trajectories of
population pairs usually do not show a monotonic increase in sexual isolation. Instead,
simulated pairs of populations may experience temporary periods of substantial sexual
isolation (i.e., JI > 1.6) and then return to a level of isolation that in sympatry would allow
interbreeding (Fig. 2). Nonetheless, the variance of trait values among independently
evolving populations increases with time (eq. 3). As a result, both the mean value of JI
across a large number of simulated population pairs and the proportion of pairs of
populations at sexual isolation (JI > 1.6) increase monotonically under biologically realistic
parameter values, as shown in Figure 3. The change from a unimodal to a bimodal
distribution of JI, apparent in Figure 3, is characteristic of simulations under realistic
parameter values resulting from the fact that JI is bounded at 2. Given enough time, the
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proportion of pairs of populations at complete isolation (i.e., πAB = πBA = 0, JI ≈ 2)
asymptotically approaches 1 for all parameter values for which D > 0.

EFFECTS OF POPULATION SIZE, INHERITANCE, AND SELECTION ON THE EVOLUTION
OF SEXUAL ISOLATION

The evolution of sexual isolation depends on parameters of inheritance, population size, and
selection, and we will consider their effects in that order. In light of the fact that the
distribution of JI is often bimodal (Fig. 3), we used the proportion of replicate pairs that
achieved a substantial level of isolation (JI > 1.6) as a summary measure of isolation for a
set of replicate runs. In the discussions that follow, note that because we have standardized
phenotypic variance of the male and female traits to 1, their additive genetic variances, G
and H, are equivalent to heritabilities. In our simulations, evolution of sexual isolation by
drift increased as either the genetic variance of the male trait, G, or the genetic correlation
between the male and female trait, rg, increased (Fig. 4). Not surprisingly, because genetic
drift depends on effective population size, sexual isolation by drift decreased with increasing
effective population size for all parameter combinations. As a result, at large population
sizes the effect of inheritance parameters was reduced because relatively few population
pairs evolved substantial isolation.

Evolution of sexual isolation also depends on the strength of both natural and sexual
selection on the male trait. Stronger natural selection on the male trait (lower values of ω2)
reduces the evolution of sexual isolation by reducing the rate of drift along the line of
equilibrium (Fig. 5A), as predicted by equation (3). In contrast, stronger sexual selection
(lower values of ν2) increases the evolution of sexual isolation by drift (Fig. 5B) for two
reasons. First, stronger sexual selection increases the variance among populations caused by
drift along the line of equilibrium, as predicted by equation (3). Second, stronger sexual
selection reduces the probability of mating between two populations, equation (4), given a
particular difference in their male trait means.

These effects of inheritance, selection, and population size on the evolution of sexual
isolation are shown in greater detail in Table 1. Note that substantial sexual isolation can
evolve by drift even in very large populations in only 1000 generations. In an especially
favorable case (rg = 0.9, ω2 = 100, ν2 = 5, α = 0.05), 11% of population pairs of effective
size 1000 evolved substantial isolation after only 1000 generations, and after 10,000
generations 64% had achieved substantial isolation. Such very rapid evolution is
exceptional, however, and in general substantial isolation commonly evolves only after 5000
or more generations.

We compared the simulation results (Table 1) to results using both a diffusion
approximation and a PDF (Supporting Table S1 and S2, Supporting Appendix S1). All three
methods yielded very similar results for realistic parameter values, indicating that the
simplifying assumptions used to derive equations (3) and (6) are good approximations.

In summary, using all three methods, the incidence of sexual isolation increased with time,
with additive genetic variance in the male trait and female preference, with genetic
correlation between the traits, and with strength of female preference. Evolution of sexual
isolation decreased with stronger natural selection on the male trait and with larger effective
population size.
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Discussion
TEMPO AND PATTERN IN THE EVOLUTION OF SEXUAL ISOLATION

The novel contribution of this article is to describe the time course for the evolution of
sexual isolation—not just the evolution of sexually selected traits under assumptions of
quantitative inheritance. Our simulations indicate that sexual isolation is promoted by drift,
even in populations of appreciable size. Instances of substantial isolation can evolve rapidly,
in as few as 1000 generations, under favorable circumstances (strong genetic correlation
between the sexes, weak natural selection on the male trait, strong female mating
preferences), even when Ne is in the range 1000–5000. Thus, drift due to finite population
size is a mechanism that could account for the moderate degrees of sexual isolation (JI <
1.0) that have been observed among allopatric populations in surveys of Drosophila and
plethodontid salamanders (Coyne and Orr 1989, 1997; Tilley et al. 1990; Arnold et al.
1996).

Our simulations also suggest that the evolutionary history of sexual isolation is likely to be
one in which isolation waxes and wanes. As a pair of populations evolves in allopatry,
periods of divergence in male ornaments may alternate with periods of convergence,
resulting in fluctuations in the degree of sexual isolation (Fig. 2). Of course, because the
average trajectory across a large sample of population pairs shows a monotonic increase in
isolation (Fig. 3), some individual trajectories may likewise be characterized by ever-
increasing isolation. Waxing and waning of isolation is especially pronounced in our model
because drift dominates evolutionary dynamics once populations reach the line of
equilibrium. Even in models with more selective constraint, however, finite population size
should result in temporary reversals in evolutionary trajectory and hence in some degree of
waxing and waning.

The prospect of stochasticity in the evolution of reproductive isolation has often been
ignored or dismissed in discussions of speciation. Coyne and Orr (2004), for example,
argued that sexual isolation would evolve so slowly by drift that this route to speciation can
be disregarded. If populations maintain effective sizes in excess of 5000, the role of drift
may indeed be insubstantial (Table 1). In vertebrates and many other groups in which Ne is
commonly in the range 500–1000, stochasticity may however play a large role in the
divergence of mating preferences and hence in the evolution of isolation and speciation. In
such groups, finite population size might promote both the rapid evolution of isolation and
repeated evolutionary reversals that we have observed in our simulations. Furthermore, these
conclusions do not require a strong assumption about the selective neutrality of preferences.

While we argue that drift that will increase the potential for sexual isolation, an earlier
simulation study of Lande’s (1981) model arrived at the opposite conclusion (Nichols and
Butlin 1989). The authors were concerned with the unstable runaway case and argued on the
basis of their simulations that genetic variance and covariance will not be maintained in
finite populations and so will limit divergence. They argued that this loss of variation will be
exacerbated by a decrease in effective population size as the male trait distribution diverges
from the viability optimum, causing fewer males to obtain the majority of the matings.
Unfortunately, their simulations were apparently limited to very small population sizes and
strong selection parameters (ω2 = υ2 ≈ σ2 = τ2), and on that basis it is not surprising that
little genetic variance and covariance was maintained in their simulation runs. In other
words, Nichols and Butlin (1989) explored a small region of the parameter space with
limited biological relevance (unstable case, very small population size, strong selection
parameters), and consequently their results have little bearing on our conclusions. In another
study that explored the consequences of finite population size, Wu (1985) simulated
evolution by sexual selection in a genetic system with two haploid loci, each with multiple

Uyeda et al. Page 9

Evolution. Author manuscript; available in PMC 2013 January 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



alleles. Although selection and population size were parameterized in a way that makes
comparisons to natural populations or quantitative genetic models difficult, Wu (1985)
found that the Fisher–Lande process worked synergistically to accelerate the evolution of
sexual isolation, a result in line with ours.

THE ASSUMPTION OF SELECTIVELY NEUTRAL PREFERENCES
The assumption of the present model that female mating preferences are selectively neutral
may seem untenable to readers familiar with the last 25 years of work on quantitative
genetic models of sexual selection. Since 1981, nearly all such models have allowed for
stabilizing or other modes of selection on preferences, that is direct costs (Mead and Arnold
2004). The inclusion of such costs can cause Lande’s (1981) line of equilibrium to collapse
to a single, stable point of equilibrium (e.g., Pomiankowski et al. 1991). Because this
collapse seems to erase the possibility of diversification of male ornaments and speciation,
model builders have focused on alternative scenarios (such as cubic selection on preference
or plateau selection on the male trait) that promote diversification by creating multiple
points or stable limit cycles (reviewed in Mead and Arnold 2004). While exploring these
scenarios, focus has been restricted to the deterministic behavior of the models (i.e., only
populations of infinite size have been explored). Our exploration of stochastic behavior
suggests that dismissal of stable equilibrium points, arising from direct costs to preferences,
has been too hasty.

Adding a cost to preferences may restrict—but does not eliminate—the possibility of
ornament diversification and speciation. Obviously a continuum exists between no costs and
substantial costs to mating preferences, and many actual mating systems probably lie along
this continuum. By including finite population size in models, one can readily show that
along this continuum, the equilibrium changes from a line to a linear cloud to a point. This
equilibrium continuum is shown in Figure 6. In a model with selection on preferences in a
finite population, a balance is achieved between drift, which tends to disperse populations
away from the equilibrium point that characterizes populations of infinite size, and selection,
which drives populations towards that point. The resulting equilibrium cloud is large if
populations are small and/or the cost of preferences is weak. As shown in Figure 6D, the
equilibrium cloud can be of substantial size even in large populations if the cost of
preferences is sufficiently small. Notice that in this particular case, mean ornamental values
of populations may differ by nearly six phenotypic standard deviations. Thus, even when
selection acts on preferences, both substantial ornament diversification and sexual isolation
can occur.

CLOUDS RATHER THAN POINTS OF STABLE EQUILIBRIUM
Our exploration of the stochastic behavior of Lande’s (1981) model highlights the need to
explore stochastic versions of other models of sexual selection. A trend in the theoretical
literature since 1981 has been to focus on equilibrium conditions in populations of infinite
size, sometimes dropping genetic covariances from the model on the grounds that they do
not affect the equilibrium (e.g., Kokko 2005). Our analysis of Lande’s (1981) model
highlights the importance of both inheritance and selection during stochastic evolution. In
particular, the size and configuration of the equilibrium cloud is affected both by population
size and the genetic covariance between ornament and preference, equation (3). Because the
Fisher–Lande process that relies on the genetic correlation between the sexes is embedded in
virtually all of the 30 models derived from Lande (1981), stochastic versions of those
models probably possess equilibrium clouds with similar properties. The implication of this
result, which needs to be confirmed by more theoretical work, is that the last couple of
decades of modeling have underestimated the potential for speciation by sexual selection.
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BRIDGING FROM SEXUAL SELECTION TO SEXUAL ISOLATION AND SPECIATION
Our results establish the feasibility of explicitly modeling the evolution of sexual isolation
and hence the path to speciation. An explicit connection to isolation and speciation is
missing in most quantitative genetic models of sexual selection because modeling ends with
a specification of ornament and preference evolution. The essential, often missing step is to
extend existing models so that they treat the sampling properties of pairs of diverging
populations. A second, missing step is to evaluate the degree of sexual isolation that is
achieved by any given amount of divergence in ornaments and preferences. We used a
particular model of sexual isolation (Arnold et al. 1996) to accomplish this second step,
although sometimes it can be achieved directly from the model (Gavrilets and Hayashi
2005). In any case, specifying the degree of isolation in the currency of one of the standard
measures of sexual isolation (e.g., JI) is especially useful. By using one of the standard
currencies, the results of the model can be related directly to the extensive empirical
literature on sexual isolation.

One problem in making a connection between sexual selection models and empirical
measures of sexual isolation is the necessity of specifying a particular functional form for
mating preferences. In the present case, we used just one (Gaussian-shaped, absolute) of
many possible forms for mating preferences. An important goal for the future will be to
establish whether conclusions about the evolution of sexual isolation depend tightly on
assumptions about mode of preferences. Although general conclusions about the evolution
of ornaments do not seem much affected by alternative assumptions about preference
functions (Lande 1981), they might affect the rate at which isolation evolves.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

Probability density function for πAB

Probability density function for πAB

Let z̄A be the mean male trait value from population A and z̄B be the mean male trait value
from population B. Approximating evolutionary divergence from an ancestor as a Gaussian
diffusion process, the male trait means at generation t are normally distributed with mean of
zero and a time-dependent variance equal to the first element in the dispersion matrix,
equation (3),

Consequently, Z = z̄A − z̄B is normally distributed with a mean of zero and a variance
approximately equal to 2Dz(t). If we assume that the differences between male and female
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trait values within a population are negligible compared to between populations (dAA = dBB
= 0), then equation (4) becomes,

Thus, we can derive a formula for the cumulative distribution function of πAB (and
consequently of πBA as well) by solving for the cumulative distribution function,

Substituting the cumulative distribution function for Z yields,

where FZ is the cumulative distribution function of the random variable Z. Taking the
derivative of both sides with respect to x and substituting in the probability density function
(PDF) of Z yields the PDF for πAB at generation t,

The expected value of πAB at generation t can be determined by integrating x fπAB (x) over
x,

Note that this probability of inter-population mating depends on two variances, Dz(t) and Σ2.
The first variance represents the dispersion among replicate populations in mean male trait
value at generation t. The second variance is Σ2 = τ2 + υ2 + σ2, a constant (Arnold et al.
1996). Assuming that πAB = πBA and πAA = πBB = 1, then the expected value of JI at
generation t is E (JI (t)) = 2(1 − E (πAB(t))).
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Figure 1.
Sexual isolation between populations that have diverged along the line of equilibrium. The
axes represent population means for a male trait and female preference. The upper portion of
each graph shows the line of equilibrium predicted by the model. The lower portion of each
graph shows the distributions in two independent populations of the male trait (solid lines)
and the population-level average female preference (dashed lines). The scale in both
portions is in units of within population phenotypic standard deviation of the male trait. (A)
Two populations that have experienced modest divergence lie relatively close to each other
on the line of equilibrium, resulting in a modest level of sexual isolation (JI = 0.89). (B) The
two populations have experienced appreciable divergence, resulting in almost maximal
sexual selection (JI = 1.95). Parameter values for this example are: σ2 = 1, τ2 = 1, and ν2 =
5.
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Figure 2.
Two examples of simulated evolutionary trajectories for sexual isolation. Joint isolation
index (JI) is shown as a function of time for two pairs of populations (shown in blue and
green). JI waxes and wanes as the populations drift away from or towards each other along
the line of equilibrium. The horizontal dotted line corresponds to JI = 1.6, which may be
considered a substantial level of sexual isolation (see text). Parameter values are: G = H =
0.6, γ = 0.7, Ne = 1000, ω2 = 50, ν2 = 5 (see text for explanation of parameters).
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Figure 3.
Distribution of joint isolation (JI) in 10,000 independent pairs of populations over 10,000
generations of simulated evolution, showing mean isolation (solid line) and standard
deviation (dashed lines). Histograms show the distribution of JI at 2000-generation intervals,
with shaded bars indicating substantial sexual isolation (JI > 1.6). Note that JI ranges from 0
to 2 and is bimodally distributed at and beyond generation 4000. The proportion of
replicates with JI > 1.6 increased from 9.1% in generation 2000, to 44.5% at generation
10,000. Parameter values as in Figure 2.
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Figure 4.
Effect of inheritance and population size on the evolution of sexual isolation. The proportion
of simulated pairs of populations with substantial isolation (JI > 1.6) is shown as a function
of effective populations size (Ne) for different values of additive genetic variance of the
male trait (G) and genetic correlation between the male trait and female preference (γ). The
results are for 10,000 replicate pairs after 10,000 generations of evolution by drift. Values of
other parameters: H = G, γ2 = 50, ν2 = 5.
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Figure 5.
Effects of population size and selection on the evolution of sexual isolation. The proportion
of simulated pairs of populations with substantial isolation (JI > 1.6) is shown as a function
of effective populations size (Ne) for (A) different strengths of natural selection on the male
trait (ω2; larger values indicate weaker selection) and (B) different strengths of sexual
selection on the male trait (ν2; larger values indicate weaker selection). The results are for
10,000 replicate pairs after 10,000 generations of evolution by drift. Other parameter values
as in Figure 2.
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Figure 6.
The effect of preference costs and population size on evolutionary equilibria. Adding direct
costs to female preference results in a single equilibrium point in a population of infinite size
(e.g., Pomiankowski and Iwasa 1993). We conducted simulations using the dynamic
equations of Pomiankowski and Iwasa (1993, eq. 4) but allowed finite population size. This
stochastic version of their model, which we will describe elsewhere, yields linear elliptical
clouds at equilibrium. The size of the cloud depends on the magnitude of the preference
costs and population size. Simulations were run for 10,000 generations for 2000 replicate
populations with Ne = 1,000. The ellipses shown here are the 95% confidence ellipses at
equilibrium. The scales on both axes are in units of within-population phenotypic standard
deviation. Parameter values for Pomiankowski and Iwasa’s preference cost (B) for each
ellipse are: (A) b = 0.1 (B) b = 0.01 (C) b = 0.0025 (D) b = 0.001 (E) b = 0 (i.e., no
preference cost). Other parameter values are: γ = 0.7, G = H = 0.6, ω2 = 50 and ν2 = 5.
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