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Abstract 
Although, coumarins are a group of compounds which are naturally found in 
some plants, they can be synthetically produced as well. Because of their 
diverse derivatives, origin and properties most of them can be used for 
medicinal purposes. For example, they can be used against fungal diseases or 
in studying structure and biological properties of antifungal agents to discover 
new compounds with the similar activity. A Structure Property/Activity 
Relationship (SAR) can be utilized in prediction of biological activity of desired 
molecules.  
In order to represent a relationship between the physicochemical properties of 
coumarin compounds and their biological activities, 68 coumarins and 
coumarin derivatives with already reported antifungal activities were selected 
and eleven attributes were generated. The descriptors were used to perform 
artificial neural network (ANN) and to build a model for predicting 
effectiveness of the new ones. The correlation coefficient between the 
experimental and the predicted MIC values pertaining to all the coumarins 
was 0.984. This study paves the way for further researches about antifungal 
activity of coumarins, and offers a powerful tool in modeling and prediction of 
their bioactivities. 
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Introduction 
During the last two decades, human fungal 

infections have increased among immune 
compromised individuals (1). Candida 
albicans (C. albicans) is the major agent of 
candidosis in humans (2) which is the com-
monest invasive fungal infection in patients 
with malignant haematological disease and in 
bone marrow transplant recipients (3). One 
common cause of mortality among hospital-
ized patients is nosocomial infection due to 
opportunistic fungal pathogens (4). The 
development of azole-based antifungal drugs 
has revolutionized the treatment of many 
fungal infections, but therapy may still  

 
necessitate application of the highly toxic 
drug amphotericin B or a combination of 
drugs. Due to rapid emergence of resistance in 
fungal pathogens to the conventional drugs, 
discovery of new potent antifungal com-
pounds is necessary. Plant extracts containing 
coumarin derivatives demonstrate antifungal 
activity (5) and some synthetic coumarin 
derivatives are also active against the yeast  
C. albicans (6). Coumarin is a benzopyrone 
and a naturally occurring constituent of many 
plants and essential oils, including tonka 
beans, sweet clover, woodru, oil of cassia and 
lavender (7). The presence of phenolic, 
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hydroxy and carboxylic acid groups on the 
coumarin nucleus has been considered 
necessary for antimicrobial activity (8). The 
coumarins are extremely variable in structure 
and due to the various types of substitutions in 
the basic structural form their biological 
activity is influenced (9). As a result, a lot of 
biological parameters should be evaluated to 
increase our understanding of the mechanisms 
by which these coumarins act and a careful 
structure-property/activity-relationship study 
of coumarins should be conducted.  

The so called "Cheminformatics" was intro-
duced to the common use. It is often described 
as part of the analytical chemistry that by 
making use of mathematics, probability theory, 
mathematical statistics, as well as the decision-
making theory and computer techniques, has 
been applied to a diverse range of problems in 
the field of chemistry (10). By combining to-
gether the elements of informatics and chem.-
ical analysis, cheminformatics appeared to be 
particularly useful in the professional work of 
pharmacists. It is concerned with the search for 
new chemical compounds as potential drugs, 
clinical analysis of these compounds, optimiza-
tion of drug formulation, evaluation of its 
quality as well as leading to recognition of 
complicated processes in which the drug 
substances are involved in a human organism 
(11).  

Among the multivariate analyses used in 
the cheminformatics, the principal component 
analysis (PCA), cluster analysis (CA) and 
artificial neural networks (ANNs) have been 
the most widely used methods (12). Their valu-
able features are that they can present the 
correct interpretation of the measured data 
and obtain the maximum useful information 
from them (13). A feed-forward Multi-layer 
Perceptron (MLP) neural network is the most 
commonly used paradigm in medicinal chem-
istry. They usually consist of an input layer, 
one output layer and one or two hidden or 
middle layer(s). All units in one layer are 
connected to all the units in the next layers (14). 
The signals flow from the first input layer 
forward through hidden nodes, where a 

weighed sum of inputs is computed and 
passed through activation function and the 
result is finally presented to the output layer. 
This process is called "feed-forward" (15).  

A proper weight setting is not known 
beforehand and hence, initially, the weights 
are given a random value. The process of 
updating the weights to a correct set of values 
is called "Training or Learning", which is 
mostly achieved by means of Backpropaga-
tion (BP) algorithm (16). The BP is a gen-
eralization of the least mean squared algo-
rithm that modifies network weight to 
minimize the mean squared error between the 
desired and actual outputs of the network. The 
BP uses supervised learning in which the 
network is trained using data for which inputs 
as well as desired outputs are known (17).  

The application of ANN’s in solving 
different problems in pharmacy is receiving 
growing attention when it comes to data 
analysis problems (18). It is mainly because 
they are applicable in every situation in which 
a relationship between predictor variables 
(inputs) and predicted variables (output) 
exists, even when that relationship is very 
complex and not easy to express in the usual 
terms of correlation or differences between 
groups. Therefore, anywhere that there are 
problems of prediction, classification or con-
trol, neural networks prove to be helpful (19). 
Accordingly, in this study, neural computing 
is used for building an efficient model in 
order to evaluate the relationship between 
physicochemical properties and bioactivity of 
antifungal coumarins.  
 

Materials and Methods 
Data set 

The data set was composed of 68 cou-
marins and coumarin derivatives selected on 
the basis of antifungal activity. Antifungal 
activity of compounds from Table 1 that were 
screened by the well dilution method has been 
taken from the literature (20-27). 

Authors encountered problems related to 
reporting of antifungal activity according to 
the two different forms of minimal inhibitory 
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Table 1. Structure and bioactivity of studied coumarins 
 

N
um

ber 

Compound MIC(µg/ml) 
observed 

MIC(µg/ml) 
predicted* Ref 

N
um

ber 

Compound MIC(µg/ml) 
observed 

MIC(µg/ml) 
predicted* Ref 

1 

 

62.5 291 20 13 

 

1000 285 20 

2 
O O

O  

250 290 20 14 

 

1000 293 20 

3 

 

250 290 20 15 

 

1000 262 20 

4 

 

250 290 20 16 

 

1000 159 20 

5 

 

1000 264 20 17 
O O

PhH2CO

H3CH2CH2CO  

1000 272 20 

6 

 

1000 282 20 18 

 

1000 230 20 

7 

 

1000 302 20 19 

 

500 166 20 

8 

 

2000 341 20 20 

 

1000 225 20 

9 

 

1000 282 20 21 

 

250 279 20 

10 

 

250 274 20 22 

 

1000 269 20 

11 

 

250 137 20 23 

 

1000 281 20 

12 

 

250 125 20 24 

 

250 309 20 

Contd. 
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N
um

ber 

Compound MIC(µg/ml) 
observed 

MIC(µg/ml) 
predicted* Ref 

N
um

ber 

Compound MIC(µg/ml) 
observed 

MIC(µg/ml) 
predicted* Ref 

25 

 

500 280 20 36 

 

25 252 21 

26 

 

500 286 20 37 

O O

OMe

HO

 

93.75 232 21 

27 

 

500 301 20 38 

 

512 267 22 

28 

 

500 315 20 39 

 

64 322 22 

29 

 

250 290 20 40 
O O

OMe

MeO

 

78.75 181 23 

30 

 

500 284 20 41 

 

22.6 230 23 

31 

 

500 279 20 42 

 

42.65 284 23 

32 

OO O

H3COCO

CH2Ph

 

62.5 290 20 43 

 

31.4 290 23 

33 

 

64 205 21 44 

 

16.65 264 23 

34 

 

70 237 21 45 

 

5 189 24 

35 

 

80 279 21 46 

 

25 215 24 

Contd.
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concentration (MIC) and 50% inhibitory con-
centration (IC50) which disabled the analysis 

of data set with adequate care. To make the 
dataset uniform, we multiplied the IC50 values 

N
um

ber 

Compound MIC(µg/ml) 
observed 

MIC(µg/ml) 
predicted* Ref 

N
um

ber 

Compound MIC(µg/ml) 
observed 

MIC(µg/ml) 
predicted* Ref 

47 

 

500 270 25 58 

 

250 287 26 

48 

 

15.6 137 25 59 

 

3752 3557 27 

49 

 

15.6 138 25 60 

 

3321 3332 27 

50 

 

31.3 131 25 61 

 

4310 3774 27 

51 

 

15.6 136 25 62 

 

1979 1682 27 

52 

 

15.6 143 25 63 

 

3478 3041 27 

53 

 

7.8 141 25 64 

O O

H
N

N

O N

O

O

O

Cl

 

2705 2547 27 

54 

 

125 129 25 65 

 

2150 2343 27 

55 
 

7.8 136 25 66 

 

2035 2490 27 

56 

 

250 282 26 67 

O O

H
N

N

O N

O

O

O

 

3256 2486 27 

57 

 

250 205 26 68 

 

1870 1714 27 

(*) The observed MICs and structures of coumarin compounds are derived from mentioned references in the table, but predicted MICs have 
been calculated by our ANN model. 
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by two to obtain a close equivalent of 
MIC level. Thus, the number generated is 
approximately equal to MIC for complete 
inhibition. Preliminary results have shown 
that coumarins possess considerable anti-
fungal activity (5). Therefore, antifungal scre-
ening results of isolates of C. albicans were 
used for the modeling of activity against this 
microorganism. 
 
Descriptors generation 

Eleven attributes have been generated for 
the description of selected coumarin derive-
atives that included eight quantum chemical 
descriptors; molar refractivity (cm3), molar 
volume (cm3), parachor (cm3), index of 
refraction,  surface tension (dyne/cm), density 
(g/cm), polarizability (10-24cm3), molecular 
mass (Da) and three regular calculated de-
scriptors (% carbon, % hydrogen, % oxygen). 
Calculation of quantum chemical descriptors 
was preceded by molecular geometry opti-
mization based on the PM3 semiempirical 
approach. Both semiempirical and regular 
calculations were carried out by ACDLAB 
11.02 release 21, May 2008 for in vacuo 
systems. Besides, quantum chemical descrip-
tors, the regular calculated descriptors, % 
carbon, % hydrogen, and % oxygen) were 
included in the pool that make better 
understanding of structure–function activity 
of coumarin antifungal.   
 
Learning tools 

In this study the artificial neural network 
application of Easy-NNplus 8.0 release 2007, 
was utilized for SAR model development. 
Since this technique has been thoroughly 
described in the reference (28), a detailed 
description of the method has been omitted. 
However, a specific implementation of the 
method for this study is given below.  

A standard feed-forward network, with 
back propagation rule and with one, two or 
three hidden layer architecture was chosen. 
The physico-chemical descriptors were used 
as the inputs, while MIC was the output of the 
network architecture. In order to avert an 
over-fitting problem, which is usually pro-

duced by more weights due to higher numbers 
of neurons in input and hidden layers (29), the 
number of neurons was kept to minimum. 
However, to produce the optimum architect-
ture, powerful enough to model the functions 
and keep the errors below 0.05%, number of 
nodes in the hidden layer(s) were varied. 
 

Model validation 
Model validation process provides a rea-

sonable mean for understanding and approach 
to molecular design and action mechanism 
analysis. Applied primary validation methods 
involved the use of random number gener-
ators as a part of the learning process. In order 
to analyze the influence of inherent random-
ness on the prediction stability, ten repetitions 
of the complete validation process with dif-
ferent random seeds were made in all cases 
(Y-scrambling test). Accuracy has been selec-
ted for evaluation of predictive performance 
of a single validation process, while a cor-
relation coefficient (CO) of accuracies obtain-
ed across ten repetitions was established as a 
measure of learning stability. Also cross-
validation was applied by leave-n-out method.  
 

Results 
The results of this paper are based on 

investigation and analysis of collected or 
calculated data of several coumarin structural 
descriptors. The artificial neural network 
system was performed to build a powerful 
model for prediction of lead and template 
antifungal coumarins. Table 2 shows results 
of the various architectures of the neural 
network system. The numbers of hidden layer 
nodes were varied according to different node 
numbers and layers. One of the best architec-
tures, considering the correlation behavior and 
output cycles of calculation was 11-8-4-1. 
The importance of an input descriptor is 
determined by the sum of the absolute values 
of the weights of all the outgoing architecture 
connections from the input node to the next 
layer. Some factors, such as surface tension, 
percent of oxygen, index of refraction, and 
percentage H have appeared among the most 
important factors. The least important de-
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scriptor was determined as the density. A 
range of predicted activity varied from 
125.6796 to 3774.3753. The correlation coef-
ficients between the experimental and the 
predicted MIC value pertaining to all the 
coumarins was 0.984 (Figure 1).  

Compounds 67, 15, and 5 corresponded to 
the highest error that was generated during the 
training cycles. Y-Randomization result 
showed that the classification accuracy for 
randomized data sets was significantly lower 
than for the original data sets (data not shown) 
and hence we concluded that there is no 
evidence of over-fitting in our models. Cross 
validation is done by leave-some-out (some= 
4) validating method. Validation showed that 
average of absolute errors was 0.379.  
 

Discussion 
The artificial neural networks (ANNs) have 

become an important modeling technique in 
numerous areas of chemistry and pharmacy 

(30). The mathematical adaptability of ANN 
commends them as a powerful tool for pattern 
classification and building predictive models. 
A particular advantage of ANNs is their 
inherent ability to incorporate nonlinear de-
pendencies between the dependent and in-
dependent variables without using an explicit 
mathematical function.  

This study presents an approach to correlate 
the antifungal activity score data for a data set 
of drug-like molecules with the structural 
descriptors. In this study a nonlinear modeling 
technique of artificial neural network (ANN) 
with back propagation learning algorithm and 
sigmoid activation function was used. In this 
work, a MLP network (29) was developed and 
used to obtain a nonlinear SAR model. Topo-
logically, it consisted of input, hidden, and 
output layers of neurons or units connected by 
weights. Each input layer node corresponded 
to a single independent variable (physico-
chemical descriptor) with the exception of the 
bias node. Similarly, each output layer node 
corresponded to a different dependent vari-
able (property under investigation). In this 
study, all descriptors were derived solely from 
molecular structures which did not require 
experimental data or expensive theoretical 
calculations (to be obtained).  

The ANN model was trained only on the 
training set since the validation set was used 
to monitor the external prediction error and 
thus to avoid overtraining. Among the 11 
architectures constructed, the best ANN 
architecture we found was 11–8–4–1. That is, 
in the first layer eleven inputs comprised of Figure 1. Plot of predicted activity versus the observed one 

Table 2. Various architecture of neural network and their criteria used in this study 
 

Architecture Layer 
number Number of training cycles Average error for training set Average error for validation set 

11-4-1 1 363 0.009987 0.008889 
11-7-1 1 258 0.009941 0.009839 
11-14-1 1 320 0.009998 0.009787 
11-16-1 1 327 0.009981 0.008973 
11-5-4-1 2 615 0.009987 0.009876 
11-8-4-1 2 333      0.009924 0.00459 
11-8-7-1 2 435 0.009932 0.009567 
11-8-12-1 2 350 0.00996 0.00657 
11-4-5-4-1 3 1259 0.09999 0.07789 
11-8-4-4-1 3 1554 0.09999 0.09054 
11-12-5-4-1 3 1198 0.08812 0.08639 
11-12-7-3-1 3 947 0.06812 0.07687 
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eleven input descriptors, hidden layer 
comprised of seven neurons, and the last 
output layer comprised of one neuron for the 
property modeled. The statistical criteria 
obtained for the ANN model are shown in 
Table 2.  

As it can be seen from this table the error 
for the training set is quite low. In addition, 
the errors for the validation set are also low 
showing the good prediction ability. The 
range of observed and predicted data criterion 
is very close to each other, that is, the overall 
prediction is close to experimental. Also, from 
these result we can conclude that the ANN 
model satisfactorily predicts the clas-
sification nature of the experimental data. 
Here, we should take into account that a large 
number of molecular descriptors are usually 
used in SAR methods. The specific biological 
action of drugs is frequently described by 
hydrophobic, electronic, steric and physico-
chemical properties. Physicochemical pro-
perties characterize the pharmacodynamic 
properties in the ligand– receptor interaction. 
They define the ability of the drug to join to 
the receptor.   

The results of this ANN-based study 
indicate that surface tension is one of the most 
important factors in coumarin bioactivity. 
Surface tension of the molecule causes it to 
creep around the membrane, leading to forma-
tion of a layer of loaded molecules at the cell 
membrane quickly (31). This finding could 
describe how the LogP is the main sensitivity 
descriptor of the trained network.  Sensitivity 
analysis is a measure of how the outputs 
change when the inputs are changed. Result of 
this paper could help to predict bioactivity of 
new coumarins. 
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