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Abstract
The ability to predict RNA secondary structure is fundamental for understanding and manipulating
RNA function. The structural information obtained from selective 2'-hydroxyl acylation analyzed
by primer extension (SHAPE) experiments greatly improves the accuracy of RNA secondary
structure prediction. Recently, Das and colleagues [Kladwang et al., Biochemistry 50:8049
(2011)] proposed a “bootstrapping” approach to estimate the variance and helix-by-helix
confidence levels of predicted secondary structures based on resampling (randomizing and
summing) the measured SHAPE data. We show that the specific resampling approach described
by Kladwang et al. introduces systematic errors and underestimates confidence in secondary
structure prediction using SHAPE data. Instead, a leave-data-out jackknife approach better
estimates the influence of a given experimental dataset on SHAPE-directed secondary structure
modeling. Even when 35% of the data were left out in the jackknife approach, the confidence
levels of SHAPE-directed secondary structure prediction were significantly higher than those
calculated by Das and colleagues using bootstrapping. Helix confidence levels were thus
significantly underestimated in the recent study, and resampling approach implemented by
Kladwang et al. is not an appropriate metric for assigning confidences in SHAPE-directed
secondary structure modeling.

Despite an explosion in discoveries of RNAs and their functional roles in biology, accurate
knowledge of structures of these molecules is incomplete.1 Knowledge of information
encoded in RNA structures, especially in RNA secondary structures (the pattern of base
pairs) is necessary for understanding and manipulating RNA function. Computational RNA
secondary structure prediction methods2,3 have been widely used to generate structural
hypotheses in RNA research. Secondary structures predicted from sequence alone often
have significant errors, however, including both falsely predicted and missing base
pairs.1,4,5 Incorporation of experimental structural information derived from chemical
probing experiments can significantly improve secondary structure predictions.6 For
example, the comprehensive and quantitative information available from selective 2'-
hydroxyl acylation analyzed by primer extension (SHAPE) probing experiments greatly
improves the accuracy of RNA secondary structure prediction.5,7,8

With widespread adoption of SHAPE and other experimental approaches for directing RNA
secondary structure prediction, rigorous a priori estimation of the confidence level of a given
RNA secondary structure prediction would constitute a major and welcome advance.
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Recently, Das and colleagues proposed a “bootstrapping” (resampling) approach to estimate
the variance and confidence level of predicted secondary structures based on resampling of
measured SHAPE data.9 Based on their statistical study, Das and colleagues suggested that
the confidence level of SHAPE-derived RNA secondary structure prediction is about 77%.
Follow up analysis of the work of Das and colleagues revealed that important components of
their experimental work were not consistent with recommended practices in using and
evaluating SHAPE technologies.10 In this correspondence, we show that the specific
resampling approach developed by Das and colleagues is unphysical, introduces systematic
error into the resampled data, and results in a large underestimation of the confidence of
SHAPE-directed secondary structure prediction. As detailed here, a leave-data-out jackknife
approach more accurately estimates the influence of a given experimental dataset on
SHAPE-directed secondary structure modeling.

MATERIALS AND METHODS
SHAPE-directed secondary structure prediction

We compared the resampling approach of Kladwang et al. and our jackknife approach on
four RNA molecules: tRNAPhe (76 nucleotides), adenine riboswitch (71 nucleotides), cyclic-
di-GMP riboswitch (97 nucleotides), and 5S rRNA (120 nucleotides). The SHAPE data for
these RNAs are presented in the companion manuscript10 and were used to direct secondary
structure prediction using RNAstructure as described.5

Kladwang resampling
For RNA molecules with nucleotide positions 1, 2, 3,…, N, bootstrap decoys were generated
as described9. To summarize, N nucleotide positions were randomly picked with repetition.
Thus, some nucleotide positions were picked multiple times whereas others were not picked
at all. If a nucleotide position was picked three times, for example, the SHAPE reactivity of
that position was multiplied by 3. In total, 400 such decoy SHAPE datasets were generated
and the RNA secondary structure predicted for each decoy SHAPE dataset using
RNAStructure.

Jackknife
The jackknife decoy was generated by picking (1 - f) × N nucleotide positions randomly
where f is the fraction of data omitted. We performed jackknife analysis using f values of
0.1 and 0.35. Thus, for a 100-nucleotide RNA molecule, the jackknife decoy dataset will
contain SHAPE values for 90 and 65 nucleotides, respectively, picked randomly out of the
100 values. Four hundred such decoy datasets were generated and the RNA secondary
structure predicted for each decoy SHAPE dataset using RNAstructure. For both jackknife
and bootstrapping approaches, we calculated the percentage of these 400 decoy RNA
secondary structures that contained each base-pair observed in the secondary structure
predicted by the original SHAPE data. The generation of a decoy dataset for each approach
is illustrated in Figure 1. Control simulations performed with 100 decoy datasets converged
with those using 400 decoys; we report the results of the 400 member decoy datasets here.
Performing a jackknife analysis with 35% omitted data represents an extreme case, because
it is uncommon to miss so many SHAPE measurements. Thus, the jackknifing results
presented here represent an over-estimation of the variability of SHAPE-directed structure
modeling.

RESULTS AND DISCUSSION
SHAPE reactivity at a position (Si) in an RNA reports the conformational flexibility of a
given nucleotide and is inversely related to the propensity of the position to form a base pair
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or tertiary contact.7,11 The measured SHAPE reactivity can be used as an experimentally-
based correction to bias an RNA secondary structure prediction.5 To estimate confidences
for individual helices in a given secondary structure prediction, Das and colleagues proposed
a bootstrapping approach to resample the measured SHAPE data.9 This approach was
motivated by the demonstrated utility of bootstrapping analyses in evaluation of
phylogenetic trees.12 Bootstrapping entails reshuffling a given set of data with repetition;
critically, for bootstrapping to be statistically justified the calculated quantity usually needs
to be independent of the order of the shuffled data, an assumption that is generally valid in
the construction of phylogenetic trees.

In the approach taken by Das and colleagues, SHAPE reactivities were generated for an
RNA molecule by “resampling with repetition” the original SHAPE reactivities. Given
SHAPE reactivities Si for nucleotides i = 1, 2, 3,…, N, resampling with repetition entails
picking N indices randomly, whereby an index value can be selected multiple times for a
given position, such that some nucleotides are not picked at all, whereas some are picked
multiple times. This specific implementation is not appropriate for treatment of SHAPE data
as SHAPE reactivities are not independent: both the actual reactivity and the position
associated with a given reactivity are required for secondary structure modeling. As SHAPE
data are thus inherently unsuitable for “resampling with replacement”, Das and colleagues
retained the positional information of SHAPE reactivity after resampling (hence, there was
no shuffling per se).9 In addition, when a position was sampled multiple times during
bootstrapping, the SHAPE reactivity of the position was increased by the amount equal to
the original reactivity of the position each time (Das, personal communication). Hence, the
relative error introduced at each position in this resampling approach is n × Si, where n is the
number of repetitions, (0, 1, 2,…; Fig. 1A, B). This treatment of repetition is intrinsically
different from the repetition introduced by a standard bootstrapping approach as
implemented for multiple sequence alignments, which increases the weight of the repeated
column in the alignment and thus enhances both sequence similarity and differences. In
contrast, in the approach used by Das and colleagues, repetition of high SHAPE values
increases the probability of breaking a base pair, whereas repetition of low SHAPE data
does not increase the probability of a forming a base pair.

This problem is most significant in regions of low, but non-zero, SHAPE reactivities that are
often base paired and was compounded by SHAPE signal processing errors in the prior
work.10 Several occurrences of multiplying the SHAPE reactivity value under this approach
would effectively destabilize a helix in which the original SHAPE data would otherwise
clearly score as unreactive, and likely paired, overall. Thus, the bootstrapping approach as
implemented by Das and colleagues9 results in introduction of systematic error because the
errors are integer multiples of the original data itself. In addition, the decoy datasets
generated were not the same size because, after each round of shuffling to retain positional
information, the number of data points differs from the number in the original dataset. Since
the errors added to the dataset are integer multiples of the data itself, the perturbation is
high, resulting in many datasets that are highly dissimilar to the experimental data. Overall,
this approach results in an underestimation of the confidence of secondary structure
prediction from the SHAPE data.

An alternate statistical method for estimation of the influence of a specific experimental
dataset on secondary structure modeling is the jackknife approach. Resampling by the
jackknife approach has also been used to estimate the confidence of phylogenetic trees.13

With jackknifing, the fluctuation is introduced simply through omission of a fraction of the
data, and the number of data points in each decoy dataset is identical. The key variable in
jackknife resampling is the fraction of excluded data.
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To quantify the extent of underestimation of the confidence of SHAPE prediction by the
method used by Das and colleagues, we used the jackknife method to evaluate recovery of
SHAPE-predicted base pairs for four RNA molecules – tRNAPhe, the adenine and cyclic di-
GMP riboswitches, and 5S rRNA by generating decoys with up to 35% of the SHAPE data
randomly removed. SHAPE data were measured using the documented approach for
performing the SHAPE experiment,8,14 which is substantially different from that introduced
by Das and colleagues.9,10 Experimentally, it is uncommon to have 35% of SHAPE missing
and few experimentalists would try to predict a structure with such a high level of missing
information, we therefore also performed a jackknife analysis with 10% of the data omitted,
the latter corresponding to a more realistic practical occurrence.

In general, both the Kladwang et al. resampling approach and jackknifing identified the
same helices as being less well-defined by the SHAPE data (Fig. 2). However, the
Kladwang et al. approach grossly underestimated the confidence of the helices in three of
the SHAPE-directed structure models, those of tRNAPhe, the cyclic-di-GMP riboswitch, and
5S rRNA. Estimated confidences based on bootstrapping were less than confidence
estimates obtained using decoy datasets that were missing (an extreme) 35% of the
experimental data (Fig. 2). In contrast, using the jackknife approach with a more physically
and experimentally realistic 10% omitted data, the majority of the base pairs have 100%
prediction confidences, and the lowest is ~80%, supporting the general robustness of the
SHAPE-directed secondary structure models.

A second problem with the specific resampling approach created by Das and coworkers lies
in their helix-by-helix interpretation. The bootstrap resampling of the SHAPE data
introduces noise that perturbs the relative free energy of each RNA structure. Longer helices
with lower free energies are less sensitive to this perturbation and are more likely to have
high confidence in prediction, especially given that Das and colleagues define the bootstrap
value of a helix as the maximum of the bootstrap values of base pairs across that helix.9 By
this definition, longer helices have more base pairs and are more likely to have at least one
base pair with a high “bootstrap value”. In contrast, shorter and less stable helices are more
sensitive to perturbations and thus more prone to break under perturbation. Therefore, the
estimated bootstrap value of a helix primarily reflects the stability of the helix rather than the
underlying SHAPE data.

In summary, the specific bootstrapping procedure proposed by Das and colleagues to
resample the SHAPE data is unphysical, introduces systematic error into the resampled data,
and results in an underestimation of the confidence of SHAPE-directed secondary structure
modeling. The calculated confidence level obtained via this approach is not an appropriate
metric for estimation of the accuracy of experimentally-directed RNA secondary structure
prediction. Instead, this work supports use of the jackknife approach to generate resampled
SHAPE data and to estimate the sensitivity of predicted secondary structures to the
underlying SHAPE dataset. The more general issue of a priori identification of individual
highly probable helices within a given experimentally-directed RNA structure model
remains a major research challenge.
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Figure 1. Generation of decoy SHAPE datasets via resampling-bootstrap and jackknife
approaches
(A) tRNAPhe SHAPE reactivities determined using a standard10 approach (top) and
representative decoy dataset generated by specific resampling algorithm of Kladwang et al.9

(bottom). The SHAPE reactivities not present in the decoy datasets (top) are shown as blue
bars in the original dataset and are shaded blue in the decoy dataset (bottom). Kladwang
resampling also results in modified SHAPE reactivities (green bars, notice the increase in
SHAPE reactivities at these positions in the decoy dataset). (B) SHAPE reactivities (top)
and representative decoy dataset as generated by jackknifing (bottom). The jackknife
approach results in SHAPE reactivities that are not picked in the decoy dataset (blue bars).
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Figure 2. Confidence estimation for SHAPE-directed secondary structure modeling
Confidence estimates for SHAPE-predicted base pairs, calculated using the specific
resampling algorithm of Kladwang et al.9 (gray circles) and using jackknife procedures that
omit either 10% (green squares) or 35% (blue diamonds) of the data for (A) tRNAPhe, (B)
adenine riboswitch, (C) cyclic-di-GMP riboswitch, (D) 5S rRNA. Gray shading emphasizes
regions in which the resampling-bootstrap approach underestimated confidences as
compared to removing (an extreme) 35% of the experimental SHAPE data.
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