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Helicobacter pylori is the most common bacterial infection worldwide. Biological costs
incurred by chronic colonization include increased risk for gastric adenocarcinoma [1].
Approximately 660,000 new cases of gastric cancer/year are attributable to H. pylori;
eradication of this pathogen significantly decreases the risk of developing cancer in infected
individuals. Nevertheless, only a small percentage of colonized persons develop neoplasia;
enhanced risk is related to H. pylori strain differences, host responses governed by genetic
diversity, and/or specific interactions between host and microbial determinants [2].
Universal test and treat strategies for H. pylori are not feasible due to the high prevalence of
infection combined with the expense and side effects of antibiotic therapy [1]. These
observations, in conjunction with evidence that carriage of certain strains is inversely related
to esophageal adenocarcinoma and atopic diseases [1,3], underscore the importance of
identifying mechanisms that regulate interactions of H. pylori with its human host which
promote carcinogenesis.

One H. pylori strain-specific virulence locus that augments gastric cancer risk is the cag
pathogenicity island, which encodes a type IV secretion system (TFSS) [4–6]. The product
of the cagA gene (CagA) is translocated by the TFSS into epithelial cells, undergoing
targeted tyrosine phosphorylation by Src and Abl kinases at motifs (termed A, B, or C/D)
containing the amino acid sequence EPIYA [7–10]. Phosphorylated CagA activates a
cellular phosphatase (SHP-2) and ERK mitogen-activating protein kinases (MAPK) leading
to morphological aberrations that mirror changes induced by growth factor stimulation
[11,12]. Moreover, non-phosphorylated intracellular CagA can exert effects with
carcinogenic potential including activation of β-catenin [13,14].

DNA damage resulting from inflammation-associated reactive oxygen and nitrogen species
(RONS) also is contributory towards the development of pre-malignant lesions within H.
pylori-infected gastric mucosa. Loss of a key enzyme, alkyladenine DNA glycosylase
(AAG) that repairs DNA damage induced by RONS, augments the severity of atrophy and
foveolar hyperplasia in the stomachs of mice challenged with H. pylori [15]. H. pylori can
also directly induce DNA damage in gastric epithelial cells via activation of a pathway
mediated by spermine oxidase (SMO). SMO catabolizes the formation of the polyamine
spermine, which produces H2O2, leading to DNA damage [16]. Chaturvedi et al. recently
reported that H. pylori CagA can induce SMO-mediated DNA damage in vitro and in rodent
models of infection, results that were mirrored by findings in human subjects colonized with
H. pylori cagA+ strains [16]. Of great importance, H. pylori-infected rodents that developed
dysplasia harbored a subset of gastric epithelial cells in which SMO production and DNA
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damage were high, but which were resistant to apoptosis, thereby representing a cellular
population poised for neoplastic transformation (Figure 1).

The gastric epithelium is organized into functionally monoclonal glandular units.
Homeostasis is regulated via stem cells, which legislate glandular function via infrequent
asymmetric divisions with subsequent differentiation of progeny into epithelial cell lineages.
Stem cells are tightly regulated by Wnt proteins, which activate β-catenin. Barker et al.
previously demonstrated that the Wnt target gene Lgr5, encoding an orphan G protein-
coupled receptor, marks a multipotent stem cell population responsible for long-term
renewal of gastric epithelium [17]. Further, a subpopulation of Lgr5-expressing cells
possesses the ability to generate gastric organoid cultures in vitro, which could be
maintained for up to 9 months [17].

Helicobacter pylori can interact intimately with stem cell populations. In transgenic mice
that over-express Leb, H. pylori adhere directly to gastric epithelial cells [18,19]. Genetic
ablation of parietal cells in Leb-expressing transgenic mice permits the gastric epithelial
progenitor (GEP) stem cell population to expand, accompanied by an expansion of H. pylori
colonization and inflammation within the glandular epithelium [20, 21]. Further, delineation
of the GEP transcriptome has identified several pathways that are over-represented in this
lineage which are of particular biological importance for carcinogenesis, including Wnt/β-
catenin [22]. Epidemiologic data supporting the presence of aberrant β-catenin signaling in
the majority of gastric malignancies, in conjunction with evidence that cancer-associated H.
pylori cagA+ strains activate this pathway has fueled efforts to define how chronic
inflammation mediates stem cell damage.

In this issue, Uehara et al. examined the relationship between H. pylori colonization, gastric
cancer and DNA damage within Lgr5+ cells using specimens harvested from patients, an
important approach since the human stomach represents the primary endogenous ecological
niche for H. pylori. Lgr5-positive cells, as determined by immunohistochemistry and
immunofluorescence, were primarily localized to the gastric antrum within the mucous neck
region, without localization to surface or pit regions. To bolster the specificity of Lgr5 as a
stem cell marker, sections were also stained for another putative stem cell marker, CD44.
Virtually all Lgr5+ cells also co-expressed CD44. To replicate these findings in an
experimental in vivo system, Lgr5-positive cells were also identified within murine gastric
mucosa with a similar topographical pattern of distribution was identified.

Gastric mucosa from colonized subjects with cancer contained significantly increased
populations of Lgr5+ cells, compared with uninfected patients, with cancer; however, Lgr5+

cell abundance was the same when all gastric cancer patients (infected and uninfected) were
compared with all non-cancer patients. Thus, the presence of H. pylori influenced the
expansion of stem cell populations in subjects who developed gastric malignancy.

Based upon these associations, the authors then delved into mechanisms that may underlie
the development of cancer in these subjects. Buoyed by the finding of a strong relationship
between the number of Lgr5+ cells and the severity of acute inflammation, Uehara et al. next
quantified DNA damage using 8OHdG as a surrogate marker of oxidative DNA damage,
stratifying their results based on Lgr5 cellular positivity. Similar to findings focused on Lgr5
per se, significantly higher levels of 8OHdG were detected in Lgr5+ epithelial cells
compared with Lgr5-negative cells among H. pylori-infected persons with gastric cancer. Of
interest, within the lamina propria, levels of 8OHdG were higher in Lgr5+ cells in uninfected
subjects who did not have gastric cancer. Further, in contrast to epithelial Lgr5+ cells,
lamina propria Lgr5+ cells co-expressed CD45 and vimentin, suggesting a possible
leukocyte lineage derivation.
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This study has offered important information regarding how a chronic bacterial infection
may affect carcinogenesis within the context of inflammation, providing a framework for
future studies focused on these relationships. As with all original research, new questions
and directions for future experiments ensue from these results. Subsequent studies should
focus on the microbial elements required for the induction of DNA damage in stem cells. As
described previously, the translocated effector protein CagA can directly induce DNA
damage in gastric epithelial cells (Figure 1) [16]; thus a rational next step would be to
stratify H. pylori-colonized persons into those that harbor cagA+ versus cagA− strains. In
vitro studies can be performed to determine if the ability of CagA to induce DNA damage is
dependent upon the phosphorylation status of translocated CagA. If so, CagA proteins from
East Asian H. pylori strains, which are more potent in inducing cellular morphologic
aberrations, could be compared to CagA proteins derived from Western H. pylori strains. A
logical extension could incorporate a more detailed investigation of other stem cell
populations that may be affected. In the intestine, Lgr5 marks a highly proliferative
population of stem cells. In contrast, Powell et al. recently reported that Lrig1 (Leucine-rich
repeats and immunoglobulin-like domains 1) is a transmembrane protein that marks a
distinct population of quiescent stem cells which functions as a tumor suppressor [23]. Lrig1
is expressed in the stomach; therefore, it would be additionally important to define the
effects of H. pylori infection on this stem cell population. Finally, studies of mice infected
with H. pylori or with the related mouse-adapted Helicobacter species, H. felis, have
demonstrated that bone marrow derived cells (BMDCs) home to and engraft in sites of
chronic gastric inflammation, particularly within foci where tissue injury induces excessive
apoptosis and overwhelms the population of endogenous tissue stem cells [24,25]. Within
the inflamed stomach, BMDCs degenerate into adenocarcinoma, suggesting that gastric
epithelial carcinomas can originate from marrow-derived sources [24, 25]. Are the stem
cells identified in the current study endogenous to the stomach or are they derived from
other sites?

Studies such as the one performed by Uehara et al. are important in that they have utilized
the natural niche of H. pylori as a nidus to demonstrate biologically relevant relationships
between elements of the microbiota, host responses, and disease. Investigations that focus on
specific interactions between H. pylori and its host can provide models for general patterns
that may be extended to other malignancies that arise from inflammatory foci and facilitate a
deeper understanding of how chronic inflammation leads to malignant degeneration.
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Fig. 1.
Hypothetical model of DNA damage induced by intracellular delivery of H. pylori CagA
into gastric stem cells
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