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ABSTRACT: The rate at which nonsynonymous single nu-
cleotide polymorphisms (nsSNPs) are being identified in
the human genome is increasing dramatically owing to
advances in whole-genome/whole-exome sequencing tech-
nologies. Automated methods capable of accurately and
reliably distinguishing between pathogenic and function-
ally neutral nsSNPs are therefore assuming ever-increasing
importance. Here, we describe the Functional Analysis
Through Hidden Markov Models (FATHMM) software
and server: a species-independent method with optional
species-specific weightings for the prediction of the func-
tional effects of protein missense variants. Using a model
weighted for human mutations, we obtained performance
accuracies that outperformed traditional prediction meth-
ods (i.e., SIFT, PolyPhen, and PANTHER) on two sep-
arate benchmarks. Furthermore, in one benchmark, we
achieve performance accuracies that outperform current
state-of-the-art prediction methods (i.e., SNPs&GO and
MutPred). We demonstrate that FATHMM can be effi-
ciently applied to high-throughput/large-scale human and
nonhuman genome sequencing projects with the added
benefit of phenotypic outcome associations. To illustrate
this, we evaluated nsSNPs in wheat (Triticum spp.) to
identify some of the important genetic variants responsi-
ble for the phenotypic differences introduced by intense
selection during domestication. A Web-based implementa-
tion of FATHMM, including a high-throughput batch fa-
cility and a downloadable standalone package, is available
at http://fathmm.biocompute.org.uk.
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Introduction
Nonsynonymous single nucleotide polymorphisms (nsSNPs)

lead to amino acid substitutions (AASs) and have the potential
to affect the function of the protein product of a gene via the
structure, biochemistry and/or splicing of the protein. Advances
in high-throughput sequencing technologies have accelerated the
rate at which nsSNPs are now being identified [The 1000 Genomes
Project, 2010]. Accurate automated computational methods capable
of predicting the effects of AASs and amenable to high-throughput
analyses of large datasets are therefore of increasing importance for
identifying and prioritizing functional nsSNPs for further studies
[Thusberg and Vihinen, 2009].

The majority of computational prediction methods utilize evolu-
tionary sequence conservation and/or structural annotations within
homologous (orthologous and/or paralogous) proteins from a
database of known sequences and/or structures [Ng and Henikoff,
2006]. Traditionally, the BLAST range of pairwise alignment
[Altschul et al., 1990] and sequence profile algorithms [Altschul
et al., 1997] have been used to search large sequence databases for
homologous proteins falling within a predefined similarity thresh-
old. However, weaknesses of these algorithms include the position-
invariant scoring matrices in BLAST and the ad hoc estimation of
algorithm parameters, that is, position-invariant gap penalties, in
PSI-BLAST [Bateman and Haft, 2002]. On the other hand, hid-
den Markov models (HMMs) [Eddy, 1996; Krogh et al., 1994] are
powerful probabilistic models that can be used to capture position-
specific information within a multiple sequence alignment (MSA)
of homologous sequences. Here, an MSA is represented as a series of
match, insert, and delete states linked together via state transitions.
A match state models the position-specific amino acid probabilities
(with Dirichlet mixtures [Sjölander et al., 1996]) at each column
within the sequence alignment whereas insert/delete states allow
for particular residues/states to be inserted and skipped, respec-
tively, throughout the sequence alignment (position-specific inser-
tions/deletions). HMM profiles are similar to PSI-BLAST profiles
except they are applied within a more rigorous statistical framework
and have been shown to perform considerably better when detecting
distant relationships between homologous sequences [Madera and
Gough, 2002].

Inspired by previous work [Calabrese et al., 2009; Ng and
Henikoff, 2001; Thomas et al., 2003], we have capitalized upon
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recent advances in the HMMER3 software suite [Eddy, 2009] to
potentiate the computational prediction of the functional effects
of AASs using HMMs. First, we present an unweighted/species-
independent method in which homologous sequences are auto-
matically collected and aligned using an iterative search procedure.
The resulting MSA is then used to build an ab initio HMM where
sequence conservation is then interrogated through the internal
match states of the model. In conjunction, sequence conserva-
tion within manually curated HMMs representing the alignment of
conserved protein domain families: SUPERFAMILY [Gough et al.,
2001] and Pfam [Sonnhammer et al., 1997], is interrogated. This
additional domain-based analysis is capable of capturing impor-
tant structural and evolutionary constraints (via priors) that are
potentially missed when using an automatically collected alignment
of homologous sequences. Next, we introduce a weighted/species-
specific method, which incorporates “pathogenicity weights”. These
weights are derived from the relative frequencies of disease-
associated and functionally neutral AASs mapping onto conserved
protein domains. Using a model weighted for human mutations,
we obtained performance accuracies that outperformed traditional
prediction methods—SIFT, PolyPhen, and PANTHER—on two
separate benchmarks. Furthermore, in one benchmark, we achieve
performance accuracies that outperform current state-of-the-art
prediction methods: SNPs&GO and MutPred. We demonstrate that
our method, functional analysis through hidden Markov mod-
els (FATHMM), can be efficiently applied to all foreseeable high-
throughput large-scale genomic datasets, and advances the field with
the added benefit of providing phenotypic outcome associations. In
addition to demonstrating the predictive capabilities of FATHMM
on multiple benchmarks representing human mutations, we have
applied it in practice to a large dataset of nsSNPs in wheat (Triticum
spp.) to identify some of the key genetic variants responsible for
the phenotypic differences introduced by intense selection during
domestication and have made this analysis publicly available to the
scientific community.

Materials and Methods

The Mutation Datasets

A collection of five human mutation datasets from online
databases and the literature were downloaded and used in this
study (Table 1). First, inherited disease-causing AASs anno-
tated as DMs (damaging mutations) in the Human Gene Muta-
tion Database [Stenson et al., 2009] (HGMD—November 2011;
http://www.hgmd.org) and inherited putative functionally neutral
AASs in the UniProt database [Apweiler et al., 2004] (UniProt—
November 2011; http://www.uniprot.org/docs/humsavar) were
downloaded and used to calculate the pathogenicity weights im-

plemented in our weighted/species-specific method. Next, we
obtained two human mutation datasets to assess the perfor-
mance of FATHMM against the performance of other com-
putational prediction algorithms previously reported in the lit-
erature: the VariBench database (VariBench—November 2011;
http://bioinf.uta.fi/VariBench) used in a comprehensive review
[Thusberg et al., 2011] of nine other computational prediction
methods [Adzhubei et al., 2010; Bao et al., 2005; Bromberg and
Rost, 2007; Calabrese et al., 2009; Capriotti et al., 2006; Li et al.,
2009; Mort et al., 2010; Ng and Henikoff, 2001; Ramensky et al.,
2002; Thomas et al., 2003] and 267 AASs in four cancer-associated
genes (BRCA1, MSH2, MLH1, and TP53) used in a recent review
[Hicks et al., 2011] of four alternative computational prediction
algorithms [Adzhubei et al., 2010; Ng and Henikoff, 2001; Reva
et al., 2011; Tavtigian et al., 2006]. Finally, we downloaded a hu-
man mutation dataset consisting of disease-associated and putative
functionally neutral AASs from the SwissVar portal [Mottaz et al.,
2010] (SwissVar—February 2011; http://swissvar.expasy.org) and
performed an independent benchmark of FATHMM against eight
other computational prediction algorithms [Adzhubei et al., 2010;
Calabrese et al., 2009; Capriotti et al., 2006; Ferrer-Costa et al., 2004;
Li et al., 2009; Mort et al., 2010; Ng and Henikoff, 2001; Ramensky
et al., 2002; Thomas et al., 2003].

Scoring the Magnitude of Effect of Amino Acid
Substitutions

The procedure for predicting the functional consequences on the
protein function is as follows (see Supp. Fig. S1 for a flow diagram
detailing the procedure): the JackHMMER component of HMMER3
(one iteration with the optional –hand parameter applied; see Supp.
Fig. S2) is used to search for homologous sequences within the
UniRef90 [Suzek et al., 2007] database (November 2011). As part of
this procedure, an ab initio HMM representing the MSA of homol-
ogous sequences (with Dirichlet mixtures [Sjölander et al., 1996])
is constructed and used. In conjunction, protein domain annota-
tions from the SUPERFAMILY [Gough et al., 2001] (version 1.75)
and Pfam [Sonnhammer et al., 1997] (Pfam-A and Pfam-B; version
26.0) databases are made. The relevant SUPERFAMILY and Pfam
HMMs are then extracted only if and when the domain assignment
is deemed significant (e-value ≤0.01) and the AAS maps onto a
match state within the model.

The information gain (as measured by the Kullback–Leibler [Kull-
back and Leibler, 1951] divergence from the SwissProt/TrEMBL [Ap-
weiler et al., 2004] amino acid composition) is then calculated at
the corresponding match states within the HMMs extracted above.
Next, we interrogate the underlying amino acid probabilities mod-
eled by the most informative HMM and assume that a reduction
in the amino acid probabilities (when comparing the wild-type to
the mutant residue) indicates a potentially negative impact upon

Table 1. Summary of Mutation Datasets

Amino acid
Dataset Proteins substitutions Description

HGMD 2,298 49,532 Inherited disease-causing mutations from HGMD used to calculate our pathogenicity weights
UniProt 11,548 36,928 Inherited putative functionally neutral mutations from UniProt used to calculate our pathogenicity weights
VariBench 9,684 40,470 Benchmarking dataset used in a review of nine alternative computational prediction algorithms [Thusberg et al., 2011]
Hicks et al. 2011 4 267 Benchmarking dataset consisting of both disease-causing and functionally neutral mutations in four well-characterized

genes (BRCA1, MSH2, MLH1, TP53) used in a recent review of four alternative prediction algorithms [Hicks et al.,
2011]

SwissVar 11,986 59,976 Benchmarking dataset used as an independent benchmark of eight alternative prediction algorithms
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protein function whereas a gain in the amino acid probabilities
indicates a more favorable substitution. Furthermore, we assume
that larger reductions in amino acid probabilities have more sub-
stantial effects than smaller reductions in amino acid probabilities.
Here, the predicted magnitude of the effect upon protein function
is calculated as follows:

unweighted = ln
Pm/(1.0 – Pm)

Pw/(1.0 – Pw)
, (1)

where Pw and Pm represent the underlying probabilities for the wild-
type and mutant amino acid residues, respectively.

Incorporating Species-Specific Pathogenicity Weights

As before, we interrogate the amino acid probabilities within
the most informative SUPERFAMILY [Gough et al., 2001] or Pfam
[Sonnhammer et al., 1997] (Pfam-A and Pfam-B) HMM (as mea-
sured by the Kullback–Leibler [Kullback and Leibler, 1951] diver-
gence from the SwissProt/TrEMBL [Apweiler et al., 2004] amino
acid composition). However, for an improved performance in hu-
man, the predicted magnitude of effect is weighted by the relative
frequency of disease-associated (HGMD) and functionally neutral
(UniProt) AASs mapping onto the relevant SUPERFAMILY/Pfam
HMM:

weighted = ln
(1.0 – Pw) (Wn + 1.0)

(1.0 – Pm) (Wd + 1.0)
, (2)

where Pw and Pm represent the underlying probabilities for the
wild-type and mutant amino acid residues, respectively, and the
pathogenicity weights, Wd and Wn, represent the relative frequencies
of disease-associated and functionally neutral AASs mapping onto
the relevant HMM, respectively. The pathogenicity weights also
include a pseudo-count of 1.0 to avoid a zero divisible term.

Annotating the Molecular and Phenotypic Consequences of
Amino Acid Substitutions

The overall biological function of a protein is commonly governed
by the various combinations of protein domains within it [Peter-
son et al., 2010]. Therefore, we annotate the potential molecular
and phenotypic consequences of pathogenic mutations via domain-
centric ontologies [de Lima Morais et al., 2011]. For example, the
molecular consequences of AASs are statistically inferred by map-
ping SUPERFAMILY [Gough et al., 2001] HMMs onto the Gene
Ontology [Ashburner et al., 2000]. Moreover, the phenotypic con-
sequences of AASs are annotated by extending these mappings onto
several phenotype ontologies including the Human Phenotype On-
tology [Robinson et al., 2008], the Mammalian Phenotype Ontology
[Smith and Eppig, 2009] and the Plant Phenotype Ontology [Ilic
et al., 2007; Pujar et al., 2006].

Performance Evaluation

In accordance with previous computational prediction methods,
the following six parameters (formulae 3-8) were used to assess the
performance of our models:

Accuracy =
t p + t n

t p + t n + f p + f n
, (3)

Precision =
t p

t p + f p
, (4)

Sensitivity =
t p

t p + f n
, (5)

Specificity =
t n

f p + t n
, (6)

Negative Predictive Value (NVP) =
t n

t n + f n
, (7)

Matthew′s Correlation Coefficient (MCC)

=
(t p · t n) – (f n · f p )

√
(t p + f n) (t p + f p ) (t n + f n) (t n + f p )

, (8)

where tp and fp refer to the number of true positives and false
positives reported and tn and fn denote the number of true negatives
and false negatives reported.

Results

Calculating a Prediction Threshold

Theoretically, using our prediction formulae, scores approxi-
mately equal to zero indicate that there is no significant change
in the underlying amino acid probabilities whereas scores less than
zero indicate that an unfavorable substitution has been observed,
that is, the mutant residue is less likely to be observed than the
wild-type residue, and scores greater than zero indicate that a fa-
vorable substitution has been observed, that is, the mutant residue
is more likely to be observed than the wild-type residue. How-
ever, in practice, FATHMM is sensitive to small fluctuations in the
amino acid probabilities modeled within the HMMs. For example,
the slightest reduction in amino acid probabilities would yield a
pathogenic prediction in our unweighted/species-independent al-
gorithm. Therefore, to eliminate the effects of these fluctuations,
we plotted the distribution of the predicted magnitude of effect
for both disease-associated and functionally neutral AASs within
the SwissVar dataset (Fig. 1). From this, we calculated prediction
thresholds for our unweighted and weighted methods at which the
specificity and sensitivity were both maximized (–3.0 and –1.5, re-
spectively). Using our unweighted method, we noted that the ma-
jority of disease-associated AASs (>60%) fell below our threshold,
whereas the majority of functionally neutral polymorphisms (80%)
fell above this threshold. Furthermore, using our weighted method,
the majority of disease-associated AASs (80%) fell below our thresh-
old whereas a significant proportion of functionally neutral poly-
morphisms (>80%) fell above this threshold.

A Performance Comparison Against Published Reviews

The performance of FATHMM was compared against the per-
formance of other computational prediction algorithms reported
in two previously published reviews [Hicks et al., 2011; Thusberg
et al., 2011]. First, the VariBench database was used to bench-
mark our method against nine alternative computational predic-
tion algorithms [Adzhubei et al., 2010; Bao et al., 2005; Bromberg
and Rost, 2007; Calabrese et al., 2009; Capriotti et al., 2006; Li
et al., 2009; Mort et al., 2010; Ng and Henikoff, 2001; Ramen-
sky et al., 2002; Thomas et al., 2003] (Table 2). Typically, the
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Figure 1. The distribution of the predicted magnitude of effect for disease-associated (shaded region) and functionally neutral (unshaded region)
AASs in the SwissVar dataset using our unweighted and weighted methods (A and B, respectively). From this, we calculated prediction thresholds
at which both specificity and sensitivity were maximized (−3.0 and −1.5, respectively).

Table 2. Performance of Computational Prediction Methods using the VariBench Benchmarking Dataset

tp fp tn fn Accuracya Precisiona Specificitya Sensitivitya NVPa MCCa

Theoretical/unweighted computational prediction methods
SIFT 10,464 4,856 12,188 7,433 0.65 0.64 0.62 0.68 0.66 0.30
PolyPhen 1b 10,093 9,185 17,669 3,199 0.69 0.77 0.85 0.52 0.64 0.39
PolyPhen 1c 14,285 4,993 13,671 7,197 0.70 0.68 0.66 0.74 0.72 0.40
PANTHER 9,689 2,859 8,676 2,797 0.76 0.76 0.76 0.77 0.77 0.53
FATHMM (unweighted) 11,561 4,839 16,257 7,707 0.69 0.72 0.77 0.60 0.66 0.38
Trained/weighted computational prediction methods
PolyPhen 2b 13,807 5,102 13,863 6,010 0.71 0.71 0.70 0.73 0.72 0.43
PolyPhen 2c 16,206 2,703 10,199 9,674 0.69 0.64 0.51 0.86 0.78 0.39
PhD-SNP 11,900 6,896 16,788 4,377 0.71 0.75 0.79 0.63 0.68 0.43
SNPs&GO 13,736 5,487 17,028 1,382 0.82 0.90 0.92 0.71 0.76 0.65
nsSNPAnalyzer 4,360 2,778 1,319 943 0.60 0.59 0.58 0.61 0.60 0.19
SNAP 16,000 2,146 8,190 6,387 0.72 0.67 0.56 0.88 0.83 0.47
MutPred 13,829 2,507 15,891 4,557 0.81 0.79 0.78 0.85 0.84 0.63
FATHMM (weighted) 14,231 1,633 10,146 2,336 0.86 0.86 0.86 0.86 0.86 0.72

tp, fp, tn, fn refer to the number of true positives, false positives, true negatives, and false negatives, respectively.
aAccuracy, Precision, Specificity, Sensitivity, NVP, and MCC are calculated from normalized numbers.
b“Probably Pathogenic” predictions classed as disease causing.
c“Probably Pathogenic” predictions classed as functionally neutral.
The performances of alternative computational prediction algorithms have been reproduced with permission from Thusberg et al. (2011). Copyright 2012, Wiley.

performance of trained/weighted computational prediction algo-
rithms is superior to that of theoretical/unweighted algorithms.
Therefore, to allow for a fair comparison to be made, we opted
to compare our unweighted/species-independent method against
other theoretical/unweighted computational algorithms and our
weighted/species-specific method against other trained/weighted
computational prediction algorithms. From Table 2, and in terms
of performance accuracies, PANTHER [Thomas et al., 2003] ap-
pears to be the best performing theoretical/unweighted prediction
method with an accuracy of 76%. It appears that both SIFT [Ng
and Henikoff, 2001] (another sequence-based method) and our un-
weighted method perform less favorably with accuracies of 65% and
69%, respectively, indicating that FATHMM is somewhat the better
option of the two. The observed performances in our analysis indi-
cate that our weighted method is the best performing method avail-
able with an overall performance accuracy of 86%, thereby outper-
forming the current state-of-the-art prediction methods MutPred
[Li et al., 2009; Mort et al., 2010] (81%) and SNPs&GO [Capriotti
et al., 2006] (82%).

Next, we used the Hicks dataset to benchmark FATHMM
against four other computational prediction algorithms (using
their native alignments) [Adzhubei et al., 2010; Ng and Henikoff,
2001; Reva et al., 2011; Tavtigian et al., 2006] (Table 3). Over-
all, Align-GVGD [Tavtigian et al., 2006] appears to be the best
performing method. However, Align-GVGD employs gene-specific
alignments and its performance is severely affected when au-
tomatically generated alignments are used [Hicks et al., 2011].
These results appear to indicate that our unweighted method
is more specific than either Align-GVGD or SIFT; however, we
also noted higher false positive rates when compared with the
other prediction methods. In general, and perhaps more sur-
prisingly, it appears that the performance of all trained/weighted
computational prediction methods is inferior across the four
genes when compared to their theoretical/unweighted coun-
terparts. Again, although no one trained/weighted prediction
method performs best across the four genes, it would appear
that our weighted method is, on average, the most specific/least
sensitive.
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Table 3. Specificity and Sensitivity of Computational Prediction Methods in Four Well-Characterized Genes (BRCA1, MSH2, MLH1, and
TP53)

BRCA1 MSH2 MLH1 TP53

Algorithm Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity

Theoretical/unweighted computational prediction methods
SIFT 0.31 0.94 0.46 0.90 0.52 0.72 0.75 0.84
Align-GVGD 0.94 0.71 0.55 0.90 0.52 0.97 1.00 0.82
FATHMM (unweighted) 0.56 0.65 0.73 0.84 0.71 0.77 1.00 0.71
Trained/weighted computational prediction methods
PolyPhen-2 0.38 0.77 0.36 0.90 0.67 0.90 1.00 0.84
X-Var 0.56 0.82 0.27 1.00 0.33 1.00 0.50 0.96
FATHMM (weighted) 0.70 0.47 0.50 0.79 0.24 0.97 NAa 1.00

aThe specificity for our weighted method in this instance is uninformative as there was only one neutral mutation falling within conserved protein domains.
The performances of alternative computational prediction algorithms have been reproduced with permission from Hicks et al. (2011). Copyright 2012, Wiley.

Table 4. Performance of Computational Prediction Methods Using the SwissVar Benchmarking Dataset

tp fp tn fn Accuracya Precisiona Specificitya Sensitivitya NVPa MCCa

Unweighted computational prediction methods
SIFT 15,634 6,318 28,236 7,716 0.74 0.79 0.82 0.67 0.71 0.49
PolyPhen 1 12,803 8,759 18,603 4,497 0.71 0.70 0.68 0.74 0.72 0.42
PANTHER 8,283 5,842 17,447 5,162 0.68 0.71 0.75 0.62 0.66 0.37
FATHMM (unweighted) 14,311 6,717 29,454 9,429 0.71 0.76 0.81 0.60 0.67 0.43
Weighted/trained computational prediction methods
PolyPhen 2 (HumDiv) 19,782 13,592 20,874 3,204 0.73 0.69 0.61 0.86 0.81 0.48
PolyPhen 2 (HumVar) 19,928 13,239 21,227 3,058 0.74 0.69 0.62 0.87 0.82 0.50
PhD-SNP Sequence 15,695 9,380 26,838 8,062 0.70 0.72 0.74 0.66 0.69 0.40
PhD-SNP Profile 17,548 7,233 27,731 5,161 0.78 0.79 0.79 0.77 0.78 0.57
PMut 13,498 12,156 23,636 10,159 0.62 0.63 0.66 0.57 0.61 0.23
SNPs&GO 17,768 3,768 29,101 5,655 0.82 0.87 0.89 0.76 0.79 0.65
MutPred 21,365 3,500 32,719 2,392 0.90 0.90 0.90 0.90 0.90 0.80
FATHMM (weighted) 15,916 3,017 19,713 4,496 0.82 0.85 0.87 0.78 0.80 0.65

tp, fp, tn, fn refer to the number of true positives, false positives, true negatives, and false negatives, respectively.
aAccuracy, Precision, Specificity, Sensitivity, NVP, and MCC are calculated from normalized numbers.

An Independent Benchmark Against Other Computational
Prediction Methods

Although we recognize the importance of comparing predic-
tion methods in relation to previously established benchmarks, we
also conducted our own benchmark (using the SwissVar mutation
dataset – see Materials & Methods) comparing the performance of
FATHMM against eight published computational prediction meth-
ods [Adzhubei et al., 2010; Calabrese et al., 2009; Capriotti et al.,
2006; Ferrer-Costa et al., 2004; Li et al., 2009; Mort et al., 2010; Ng
and Henikoff, 2001; Ramensky et al., 2002; Thomas et al., 2003]
(Table 3—see Supp. Table S1). In contrast to the VariBench bench-
mark, and in terms of performance accuracies, it appears that both
SIFT [Ng and Henikoff, 2001] and our own unweighted method
outperform PANTHER [Thomas et al., 2003] (68%) with perfor-
mance accuracies of 74% and 71%, respectively, indicating that
SIFT is somewhat the better option. The best performing method is
MutPred [Li et al., 2009; Mort et al., 2010] with a performance ac-
curacy of 90%. However, the observed performances show that our
weighted method once again performs favorably when compared
to other state-of-the-art prediction methods: SNPs&GO [Calabrese
et al., 2009], despite the domain-based restriction inherited from
our pathogenicity weights. Next, we compared the performance of
our unweighted method via receiver operating characteristic (ROC)
curves against the top ranking theoretical/unweighted computa-
tional prediction methods: SIFT and PANTHER (Fig. 2A, B—see
Supp. Fig. S3 for a comprehensive ROC curve against all evaluated
methods). Impressively, given a 10% false positive rate, it seems that
the performance of our unweighted method is comparable to SIFT

thereby highlighting the sensitivity of our method to small fluctua-
tions within the underlying amino acid probabilities. Furthermore,
we compared the performance of our weighted method via ROC
curves against the top-ranking trained/weighted prediction algo-
rithms: MutPred and SNPs&GO (Fig. 2C, D). These results confirm
that our weighted method performs favorably when compared to
SNPs&GO.

The pathogenicity weights incorporated in FATHMM were not
directly used to train for, or recognize, pathogenic sequences and/or
mutations. We do nevertheless recognize the potential for bias in
the performances observed. Therefore, to remove this bias, we per-
formed a “leave-one-out” analysis on all benchmarking datasets.
Here, we adjusted our pathogenicity weights, Wd and Wn, if and
only when the AAS being evaluated was present in either the HGMD
[Stenson et al., 2009] or UniProt [Apweiler et al., 2004] datasets. We
observed no significant deviations in the performance measures re-
ported above and hence concluded that the performances observed
were not biased toward the pathogenicity weights employed (see
Supp. Table S2).

To understand the potential complementarity/redundancy of
FATHMM to other methods, we assessed the intersection of
disease-associated AASs correctly identified (true positives) by
our method and the top-ranking computational prediction al-
gorithms (Fig. 3). From this analysis, it was clear that no one
method completely encapsulates all other methods that is, each
method succeeded in correctly and uniquely identifying some
disease-associated AASs where other methods did not. These re-
sults reaffirm previous suggestions that combining predictions from
multiple prediction methods has the potential to perform better
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Figure 2. Receiver operating characteristic (ROC) curves for the top-ranking computational prediction algorithms evaluated using the SwissVar
dataset. Here, we compare our unweighted method against SIFT and PANTHER (A—full curve; B—10% false positive rate) whereas our weighted
method is compared to SNPs&GO and MutPred (C—full curve; D—10% false positive rate). Full ROC curves for all computational prediction
algorithms evaluated are made available in Supp. Figure S3.

than any individual method [Liu et al., 2011; Olatubosun et al.,
2012].

Facilitating the High-Throughput Analysis of Large
Genomic Datasets

Anticipating a massive increase in the number of available whole-
genome and whole-exome datasets, the need for accurate compu-
tational prediction methods capable of processing these datasets in
a timely fashion is increasingly apparent. As a result, the majority
of computational prediction algorithms now offer some form of
precomputed facility allowing for near-instant predictions to be re-
turned (see Supp. Table S3). However, only SIFT [Ng and Henikoff,
2001] and PolyPhen-2 [Adzhubei et al., 2010] allow for batch sub-
missions (with restrictions) to be made. To facilitate the high-
throughput analysis of large-scale genomic datasets, our public Web-
server provides up-to-date (precomputed) domain assignments
for several large sequence collections, including SwissProt/TrEMBL
[Apweiler et al., 2004]; thereby enabling (unrestricted) near-instant
predictions to be made for AASs falling within conserved protein
domains. Furthermore, our precomputed database is available as

an optional download enabling near-instant predictions to be made
while running our software locally.

Annotating Phenotypic Outcome Associations

As previously alluded to, FATHMM not only predicts the poten-
tially deleterious nature of AASs but is also capable of annotating
the molecular and phenotypic consequences of these mutations via
domain-centric ontologies. To illustrate this, we evaluated the pre-
dicted phenotypic consequences of disease-associated AASs within
the SwissVar dataset (Supp. Table S4). As expected, the phenotypic
consequences of well-characterized diseases are correctly identified.
For example, the cardiovascular consequences of the C1971Y mu-
tation in FBN1 (Marfan syndrome; MIM# 154700) are correctly
identified via domain-based ontological associations. However, po-
tential issues of using domain-centric ontologies arise when a com-
mon domain harbors multiple mutations with distinct and uniquely
expressed phenotypes. In these instances, domain-centric ontolog-
ical associations may have become diluted and should therefore be
used with caution. For example, the predicted phenotypic conse-
quences for the R239C mutation in CHRNG (Escobar syndrome;
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Figure 3. The intersection of disease-associated amino acid substitutions correctly identified by the top-ranking computational prediction
algorithms evaluated using the SwissVar dataset. Here, we compare our unweighted method against SIFT and PANTHER (A) whereas our weighted
method is compared to SNPs&GO and MutPred (B).

MIM# 265000) are consistent with the associated syndrome, which
is characterized by a decrease in fetal movement and overall muscle
weakness. However, phenotypes not associated with (or secondary
to) Escobar syndrome, for example abnormalities in temperature
regulation, were also predicted. Nevertheless, we foresee that these
annotations will be most prominent in protein sequences of un-
known function and/or ongoing nonhuman genome sequencing
projects, as demonstrated below.

Case Study: Annotating the Functional and Phenotypic
Consequences of nsSNPs in Wheat

As the world’s population continues to grow, so does the demand
for crops with particular characteristics such as drought resistance,
high yield and resistance to pests and pathogens. The cultivation
and repeat harvesting of wild “landrace” wheat varieties has led
over time to the emergence of domesticated “elite” wheat varieties
with desirable phenotypic characteristics. In an attempt to eluci-
date some of the important genetic variants responsible for these
characteristics, we collected single nucleotide variants (SNVs) from
four elite UK bread wheat varieties (Avalon, Cadenza, Rialto, and
Savannah) and have predicted the functional effects of these mu-
tations when compared to four landrace wheat varieties from the
Watkins collection held at the John Innes Centre, Norwich, UK
(304, 306, 311, and 328). For this analysis, SNVs were mapped onto
the draft wheat genome assembly and six-frame translated. For
each reading frame, SUPERFAMILY [Gough et al., 2001] and Pfam
[Sonnhammer et al., 1997] domain assignments on the full-length
amino acid sequence were made and the corresponding AASs were
evaluated using our unweighted method. We found several biolog-
ically interesting SNV differences between the landrace and elite
wheat varieties (see Supp. Table S5). For example, wheat contig
F0Z7V0F01D2DA5 had a SNP at position 172 in the casein kinase
II beta subunit domain with phenotypic consequences predicted
to affect the flower developmental stages and vegetative growth.
The casein kinase II beta subunit domain has a putative function
in flowering time regulation in the model plant Arabidopsis [Ogiso
et al., 2010] and is likely to be biologically significant as European
domestic wheat will have been selected to grow under shortened
seasons and different day lengths to the landraces. Next, wheat
contig GIZP4PP04H5FGF had a SNP at position 219, which lies
within the Pfam starch synthase catalytic domain. Once again, this

is likely to be biologically significant as the quantity and properties
of starch are important to the baking properties of cultivated wheat
and will thus have been under strong selection. Finally, wheat contig
09781 had a SNP at position 368 in the cysteine proteinase domain
with predicted phenotypic consequences affecting plant structure
development. In cereals, cysteine proteases are known to be impor-
tant in the laying down of storage proteins [Fahmy et al., 2004].
As with starch, the properties of wheat storage proteins will have
come under intense selection during domestication as they are the
most important determinant of baking qualities and economic yield.
These results, made publicly available to the wheat genomics com-
munity at http://www.cerealsdb.uk.net/functional_snps/index.htm,
illustrate the potential additional utility of FATHMM in predicting
the functional consequences of variants identified in ongoing non-
human genome sequencing projects (even in species very distantly
related to human).

Discussion
Here, we have introduced and discussed the FATHMM soft-

ware and server: a species-independent method with optional
species-specific weightings for the prediction of the functional ef-
fects of protein missense variants. Inspired by previous sequence-
based computational prediction algorithms [Ng and Henikoff, 2001;
Thomas et al., 2003], our unweighted/species-independent method
interrogates sequence conservation through the underlying amino
acid probabilities modeled by the internal match states of sev-
eral HMMs representing the alignment of homologous sequences
and conserved protein domains. Following a similar weighting
scheme implemented in SNPs&GO [Calabrese et al., 2009], our
weighted/species-specific method amalgamates sequence conserva-
tion within the HMMs with “pathogenicity weights” represent-
ing the relative frequencies of disease-associated and function-
ally neutral AASs mapping onto conserved protein domains. The
pathogenicity weights incorporated here are not directly used to
train for, or recognize, pathogenic sequences, and/or mutations.
Instead, these weights are capable of recognizing protein domains
(species-independent/evolutionary units) sensitive to or intolerant
of missense mutations. Therefore, the pathogenicity weights imple-
mented in FATHMM are also likely to represent an improvement
for nonhuman organisms (especially those not too distantly related
to human) [Ferrer-Costa et al., 2005].
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The performance of FATHMM was compared to the perfor-
mances of alternative computational prediction methods previously
reported in two published reviews [Hicks et al., 2011; Thusberg et al.,
2011]. Furthermore, we performed our own independent bench-
mark comparing the performance of FATHMM against the perfor-
mance of other computational prediction methods. In two bench-
marks (VariBench/SwissVar), the performance of our unweighted
method is comparable to another sequence-based method: SIFT [Ng
and Henikoff, 2001], and to a sequence/structure-based method:
PolyPhen-1 [Ramensky et al., 2002]. This performance reaffirms the
ability of FATHMM to recognize important structural and/or evo-
lutionary constraints (via priors) modeled within manually curated
HMMs representing the alignment of conserved protein domains:
SUPERFAMILY [Gough et al., 2001] and Pfam [Sonnhammer et al.,
1997]. A detailed analysis of four cancer-associated genes (Hicks;
BRCA1, MSH2, MLH1, and TP53) shows Align-GVGD [Tavtigian
et al., 2006] to be the best performing prediction method. How-
ever, this can be attributed to the manually curated (gene-specific)
sequence alignments employed in the prediction method. On aver-
age, the performance of our unweighted method in this benchmark
is comparable to SIFT.

An important issue to consider when comparing the performance
of trained/weighted computational prediction methods is the cross-
validation dataset, that is, these prediction methods should ideally
be tested using “blind” datasets to minimize the bias in the perfor-
mances observed. Unfortunately, this level of testing is not possi-
ble as it would require retraining/validating all prediction methods
with common datasets. However, the majority of disease-associated
AASs in the VariBench database were collected from Locus-Specific
Databases (LSDB) and are not found in commonly used training
datasets, for example, SwissProt/TrEMBL [Apweiler et al., 2004].
Therefore, the curators claim this bias is minimized in this dataset
[Thusberg et al., 2011]. Here, the performance of our weighted
method appears to outperform the current state-of-the-art pre-
diction methods: MutPred [Li et al., 2009; Mort et al., 2010] and
SNPs&GO [Calabrese et al., 2009]. By contrast, the mutation dataset
used in our independent benchmark was collected from the SwissVar
[Mottaz et al., 2010] portal. As a result, the estimated performances
of other computational prediction methods which have been trained
on SwissProt/TrEMBL mutations may be overinflated. Here, Mut-
Pred is the best performing method; however, the performance
of our weighted method is comparable to SNPs&GO. To alleviate
the potential bias in our method, we performed a leave-one-out
analysis and found no significant deviations in the observed perfor-
mances; we therefore concluded that the performances observed in
FATHMM were not an artifact of the weighting scheme employed.
The performances of all trained/weighted computational prediction
algorithms were, somewhat surprisingly, inferior when compared
to their theoretical/unweighted counterparts across four cancer-
associated genes. The performances observed within Align-GVGD
(gene-specific alignments) suggest that there may be some benefit
in incorporating disease-specific weightings into our algorithm, for
example, cancer-specific weightings similar to those employed by
Capriotti and Altman (2011).

A potential disadvantage of our weighted method is the inherited
restriction (via the weighting scheme employed) to AASs falling
within conserved protein domains. However, protein domain an-
notations from the SUPERFAMILY and Pfam databases encompass
around 80% of the SwissProt/TrEMBL database [Punta et al., 2012].
In our analysis, we were able to analyse a large proportion (>70%) of
the VariBench and SwissVar benchmarking datasets. On the other
hand, unlike other sequence-based prediction methods (including
our own unweighted method), which are too slow for practical use in

large-scale sequencing projects, our weighted method uses compu-
tationally inexpensive domain assignments. Therefore, FATHMM
can be efficiently applied to all foreseeable high-throughput large-
scale genomic datasets with minimal reduction in coverage. In addi-
tion, our method advances the field with its unique ability to anno-
tate the molecular and phenotypic consequences of AASs using sev-
eral domain-centric ontologies [de Lima Morais et al., 2011] includ-
ing the Human Phenotype Ontology [Robinson et al., 2008] and the
Mammalian Phenotype Ontology [Smith and Eppig, 2009]. Thus,
by coupling the functional predictions generated by FATHMM with
domain-based ontological associations, as opposed to protein level
annotations, we have developed a tool, which is capable of provid-
ing useful insights into the underlying mechanisms disrupted by
AASs without any prior/background information on the protein
itself. A Web-based implementation of FATHMM, which facilitates
the high-throughput analysis of large-scale genomic datasets, and
includes a downloadable open-source software package, is available
at http://fathmm.biocompute.org.uk.
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Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S. 2008. The Human Phe-
notype Ontology: a tool for annotating and analyzing human hereditary disease.
Am J Hum Genet 83:610–615.
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