Table 2.
tp | fp | tn | fn | Accuracya | Precisiona | Specificitya | Sensitivitya | NVPa | MCCa | |
---|---|---|---|---|---|---|---|---|---|---|
Theoretical/unweighted computational prediction methods | ||||||||||
SIFT | 10,464 | 4,856 | 12,188 | 7,433 | 0.65 | 0.64 | 0.62 | 0.68 | 0.66 | 0.30 |
PolyPhen 1b | 10,093 | 9,185 | 17,669 | 3,199 | 0.69 | 0.77 | 0.85 | 0.52 | 0.64 | 0.39 |
PolyPhen 1c | 14,285 | 4,993 | 13,671 | 7,197 | 0.70 | 0.68 | 0.66 | 0.74 | 0.72 | 0.40 |
PANTHER | 9,689 | 2,859 | 8,676 | 2,797 | 0.76 | 0.76 | 0.76 | 0.77 | 0.77 | 0.53 |
FATHMM (unweighted) | 11,561 | 4,839 | 16,257 | 7,707 | 0.69 | 0.72 | 0.77 | 0.60 | 0.66 | 0.38 |
Trained/weighted computational prediction methods | ||||||||||
PolyPhen 2b | 13,807 | 5,102 | 13,863 | 6,010 | 0.71 | 0.71 | 0.70 | 0.73 | 0.72 | 0.43 |
PolyPhen 2c | 16,206 | 2,703 | 10,199 | 9,674 | 0.69 | 0.64 | 0.51 | 0.86 | 0.78 | 0.39 |
PhD-SNP | 11,900 | 6,896 | 16,788 | 4,377 | 0.71 | 0.75 | 0.79 | 0.63 | 0.68 | 0.43 |
SNPs&GO | 13,736 | 5,487 | 17,028 | 1,382 | 0.82 | 0.90 | 0.92 | 0.71 | 0.76 | 0.65 |
nsSNPAnalyzer | 4,360 | 2,778 | 1,319 | 943 | 0.60 | 0.59 | 0.58 | 0.61 | 0.60 | 0.19 |
SNAP | 16,000 | 2,146 | 8,190 | 6,387 | 0.72 | 0.67 | 0.56 | 0.88 | 0.83 | 0.47 |
MutPred | 13,829 | 2,507 | 15,891 | 4,557 | 0.81 | 0.79 | 0.78 | 0.85 | 0.84 | 0.63 |
FATHMM (weighted) | 14,231 | 1,633 | 10,146 | 2,336 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.72 |
tp, fp, tn, fn refer to the number of true positives, false positives, true negatives, and false negatives, respectively.
Accuracy, Precision, Specificity, Sensitivity, NVP, and MCC are calculated from normalized numbers.
“Probably Pathogenic” predictions classed as disease causing.
“Probably Pathogenic” predictions classed as functionally neutral.
The performances of alternative computational prediction algorithms have been reproduced with permission from Thusberg et al. (2011). Copyright 2012, Wiley.