Skip to main content
. 2012 Oct 3;34(1):57–65. doi: 10.1002/humu.22225

Table 3.

Specificity and Sensitivity of Computational Prediction Methods in Four Well-Characterized Genes (BRCA1, MSH2, MLH1, and TP53)

BRCA1 MSH2 MLH1 TP53




Algorithm Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity
Theoretical/unweighted computational prediction methods
SIFT 0.31 0.94 0.46 0.90 0.52 0.72 0.75 0.84
Align-GVGD 0.94 0.71 0.55 0.90 0.52 0.97 1.00 0.82
FATHMM (unweighted) 0.56 0.65 0.73 0.84 0.71 0.77 1.00 0.71
Trained/weighted computational prediction methods
PolyPhen-2 0.38 0.77 0.36 0.90 0.67 0.90 1.00 0.84
X-Var 0.56 0.82 0.27 1.00 0.33 1.00 0.50 0.96
FATHMM (weighted) 0.70 0.47 0.50 0.79 0.24 0.97 NAa 1.00
a

The specificity for our weighted method in this instance is uninformative as there was only one neutral mutation falling within conserved protein domains.

The performances of alternative computational prediction algorithms have been reproduced with permission from Hicks et al. (2011). Copyright 2012, Wiley.