Skip to main content
. 2012 Oct 3;34(1):57–65. doi: 10.1002/humu.22225

Table 4.

Performance of Computational Prediction Methods Using the SwissVar Benchmarking Dataset

tp fp tn fn Accuracya Precisiona Specificitya Sensitivitya NVPa MCCa
Unweighted computational prediction methods
SIFT 15,634 6,318 28,236 7,716 0.74 0.79 0.82 0.67 0.71 0.49
PolyPhen 1 12,803 8,759 18,603 4,497 0.71 0.70 0.68 0.74 0.72 0.42
PANTHER 8,283 5,842 17,447 5,162 0.68 0.71 0.75 0.62 0.66 0.37
FATHMM (unweighted) 14,311 6,717 29,454 9,429 0.71 0.76 0.81 0.60 0.67 0.43
Weighted/trained computational prediction methods
PolyPhen 2 (HumDiv) 19,782 13,592 20,874 3,204 0.73 0.69 0.61 0.86 0.81 0.48
PolyPhen 2 (HumVar) 19,928 13,239 21,227 3,058 0.74 0.69 0.62 0.87 0.82 0.50
PhD-SNP Sequence 15,695 9,380 26,838 8,062 0.70 0.72 0.74 0.66 0.69 0.40
PhD-SNP Profile 17,548 7,233 27,731 5,161 0.78 0.79 0.79 0.77 0.78 0.57
PMut 13,498 12,156 23,636 10,159 0.62 0.63 0.66 0.57 0.61 0.23
SNPs&GO 17,768 3,768 29,101 5,655 0.82 0.87 0.89 0.76 0.79 0.65
MutPred 21,365 3,500 32,719 2,392 0.90 0.90 0.90 0.90 0.90 0.80
FATHMM (weighted) 15,916 3,017 19,713 4,496 0.82 0.85 0.87 0.78 0.80 0.65

tp, fp, tn, fn refer to the number of true positives, false positives, true negatives, and false negatives, respectively.

a

Accuracy, Precision, Specificity, Sensitivity, NVP, and MCC are calculated from normalized numbers.